Communication Dans Un Congrès Année : 2020

EXTRAPOLATED ALTERNATING ALGORITHMS FOR APPROXIMATE CANONICAL POLYADIC DECOMPOSITION

Andersen Man Shun Ang
  • Fonction : Auteur
Andersen Man
  • Fonction : Auteur
Shun Ang
  • Fonction : Auteur
Le Thi Khanh
  • Fonction : Auteur

Résumé

Tensor decompositions have become a central tool in machine learning to extract interpretable patterns from multiway arrays of data. However, computing the approximate Canonical Polyadic Decomposition (aCPD), one of the most important tensor decomposition model, remains a challenge. In this work, we propose several algorithms based on extrapolation that improve over existing alternating methods for aCPD. We show on several simulated and real data sets that carefully designed extrapolation can significantly improve the convergence speed hence reduce the computational time, especially in difficult scenarios.
Fichier principal
Vignette du fichier
ACHG_ICASSP.pdf (382.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02330641 , version 1 (24-10-2019)
hal-02330641 , version 2 (24-09-2020)

Identifiants

Citer

Andersen Man Shun Ang, Andersen Man, Shun Ang, Jérémy E Cohen, Le Thi Khanh, et al.. EXTRAPOLATED ALTERNATING ALGORITHMS FOR APPROXIMATE CANONICAL POLYADIC DECOMPOSITION. ICASSP, May 2020, Barcelone, Spain. ⟨10.1109/ICASSP40776.2020.9053849⟩. ⟨hal-02330641v2⟩
88 Consultations
350 Téléchargements

Altmetric

Partager

More