N
N

N

HAL

open science

EXTRAPOLATED ALTERNATING ALGORITHMS
FOR APPROXIMATE CANONICAL POLYADIC
DECOMPOSITION

Andersen Man Shun Ang, Andersen Man, Shun Ang, Jérémy E Cohen, Le Thi

Khanh, Nicolas Gillis

» To cite this version:

Andersen Man Shun Ang, Andersen Man,

Shun Ang, Jérémy E Cohen, Le Thi Khanh,
et al. EXTRAPOLATED ALTERNATING ALGORITHMS FOR APPROXIMATE
CANONICAL POLYADIC DECOMPOSITION. ICASSP, May 2020, Barcelone, Spain.

10.1109/ICASSP40776.2020.9053849 . hal-02330641v2

HAL Id: hal-02330641
https://hal.science/hal-02330641v2

Submitted on 24 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02330641v2
https://hal.archives-ouvertes.fr

EXTRAPOLATED ALTERNATING ALGORITHMS FOR APPROXIMATE CANONICAL
POLYADIC DECOMPOSITION

Andersen Man Shun Ang', Jeremy E. Cohen*, Le Thi Khanh Hien', Nicolas Gillis'

tDepartment of Mathematics and Operational Research, Université de Mons, Belgium
TICNRS, Université de Rennes, Inria, IRISA Campus de Beaulieu, Rennes, France

Update20200924: corrected the typo in line 9 of Algo. 2.
ABSTRACT

Tensor decompositions have become a central tool in machine learn-
ing to extract interpretable patterns from multiway arrays of data.
However, computing the approximate Canonical Polyadic Decom-
position (aCPD), one of the most important tensor decomposition
model, remains a challenge. In this work, we propose several algo-
rithms based on extrapolation that improve over existing alternating
methods for aCPD. We show on several simulated and real data sets
that carefully designed extrapolation can significantly improve the
convergence speed hence reduce the computational time, especially
in difficult scenarios.

Index Terms— Canonical Polyadic Decomposition, Tensor,
Non-convex Optimization, Block-coordinate Descent, Acceleration

1. PROBLEM STATEMENT

p
Let ® be the tensor product [a(l) ®.. .®a(p)]i1mip =11 a£j> with
=1

a) € R™ and p € N*, set n = X jn; for a collection of n; € N*.
We are interested in solving efficiently the following approximate
Canonical Polyadic Decomposition (aCPD) optimization problem:

Definition 1 (aCPD) Given a tensor T € R™ of order p and an
integer r, find a tensor I' such that

T = argmin |T — G||%, (1)
rank(G)<r

where the rank of a tensor G is defined as

r P
min {r eN|3Y eRY, G = Z@agf)} .®
i=1 j=1

The aCPD problem is ill-posed in the sense that a solution might not
exist, since the set of rank 7 tensors is not closed as soon as r > 1
and p > 2 [1]. This poses serious problems in practice. It has been
documented that the estimates of each block A) = [agj ) aY )]
(1 £ j < p) may in consequence have pairs of columns growing to
infinity while canceling each-other out, even if a best rank r approx-
imation exists; see [2] and the references therein. This degeneracy
causes “swamps” in the cost function decrease, such as shown in
Figure 1. The cost function is also non-convex albeit quadratic with
respect to each block AV < 7 < p). Therefore, computing
aCPD remains a challenging task in general. We refer the interested
reader to [3] for a comprehensive survey on these questions.

AMSA, LTKH and NG acknowledge the support by the European Re-
search Council (ERC starting grant No 679515), and by the Fonds de la
Recherche Scientifique - FNRS and the Fonds Wetenschappelijk Onderzoek
- Vlanderen (FWO) under EOS project O005318F-RG47.

2. SOME EXISTING ALTERNATING ALGORITHMS

As tensor decompositions have become an important and extensively
studied topic in data science, it is out of the scope of this paper to
summarize all the literature on how to compute aCPD. Therefore, in
what follows, we focus on alternating methods, which update one
block of variables AY) at a time while keeping the others fixed.

There are mainly two categories of alternating algorithms to
compute aCPD: Exact Block-Coordinate Descent (EBCD) algo-
rithms, and Approximate BCD (ABCD) algorithms. EBCD algo-
rithms feature block-wise optimal updates. The most well-known
EBCD algorithm for aCPD is Alternating Least Squares (ALS),
also called CP-ALS or sometimes PARAFAC (which is also an-
other name for aCPD). ALS sequentially updates the blocks AW a5
follows:

AD = g(1, Ay .= 1 BD, 3)
where T};; is the j-th unfolding of T, as defined for instance in [4], ©®

) 1
is the Khatri-Rao product and B DT = ® AW, ALS has no con-

l=p
1]

vergence guarantee since each block update may have more than one
solution [5]. There are some local convergence guarantee though [6].
Another simple BCD algorithm is Hierarchical ALS (HALS), which
updates each column of each AW sequentially. While HALS has
scarcely been used for solving aCPD (contrary to its nonnegative
counterpart [7]), it may in principle be faster than ALS for large ten-
sors since no linear systems are to be solved at each iteration due
to the separability of the objective function. A variant of HALS, A-
HALS, updates the columns of each factor AV with several cycles
before jumping to another factor. This allows to reduce the compu-
tational cost as some matrix products can be reused [8].

ABCD algorithms, such as alternating gradient methods, do not
solve each subproblem optimally. These methods have scarcely been
considered for solving aCPD, in favor of all-at-once gradient-based
approaches [9].

3. PROPOSED APPROACHES: IBPG AND HERBCD

In the following, we introduce two algorithms for computing aCPD
that make use of extrapolation in two different ways. Extrapolation
for escaping saddle points and enhancing convergence speed is an in-
tensively studied topic in machine learning, in particular in the con-
text of deep learning where the cost functions to minimize are highly
non-convex and gradient-based algorithms might require a “push” to
escape bad regions of the search space faster. Our goal is to show
empirically that extrapolation, on top of enhancing empirical conver-
gence speed in difficult cases, also helps escaping “swamps” when
computing aCPD. This observation is actually not new, and may be



traced back to seminal work by Harshman [10]. We provide a fresh
view on these issues by using more recent optimization techniques.
For convenience, let us define the cost function F' as

T p
FAD, . AP) = T =3 Qa7 )

i=1 j=1

3.1. Inertial Block Proximal Gradient (iBPG)

A recent trend in non-convex optimization for machine learning,
which takes root in the seminal work by Nesterov [11], is to make use
of extrapolation of the iterates to enhance convergence speed of the
cost function. Although such techniques were originally designed
for convex smooth problems and gradient descent, extrapolation has
been investigated in the context of non-smooth [12], non-convex [13]
problem and in conjunction with alternating gradient descent [14].
It has also been shown that extrapolation of the iterates can be in-
terpreted in the realm of harmonic mechanical systems, shedding
light on the performance enhancement [15, 16]. These techniques
have been seldom used for solving aCPD, despite some recent at-
tempts [17, 18] summarized in Section 5.

Such an alternating (proximal) gradient descent algorithm with
extrapolation was recently proposed [19], which we refer to as iBPG,
to solve a general nonconvex nonsmooth block separable composite
optimization problem. iBPG embraces some advanced features of

Algorithm 1 iBPG for CPD
1: Initialization: Choose 6, = 0.99, 8 = 1.01, tx = 1,
and 2 sets of initial factor matrices (A"],..., A®)) and
(A, AP). Setk = 1.
2: Set AQL, = AY) j=1,... p.
3 Set AU =AY j=1,...p.

4: repeat
50 forj=1,...,pdo
6: the= 31+ 1+ 483 ) 1 = L1

7 w,(fz1 = min (1111%1, 0w
LY = "(Bzij))TBzij) ’

: repeat
10: Compute two extrapolation points

j)
Li@)
Ly,

AOY = 4G+ w2, (A% - A0 ),

P ST
AU = AQ) + pu?), (A% - AR

1 Set AGh, = A,
12: Update AW by gradient step:
) _ A6 _ L (460 g@) T &)
A8, = A0 _ G (A9 (BT =) B,
k—1
13: until some criteria is satisfied
14: Set AY) = AY)..
15 end for

16: Setk=k+ 1.
17: until some criteria is satisfied

acceleration methods using extrapolation:

® iBPG uses two different extrapolation points to evaluate the gradi-
ent and to add inertial force. This feature was experimentally shown
to improve convergence compared to the use of a single extrapola-
tion point.
© iBPG does not require a restarting step: convergence is guaranteed
without any restart. This is in contract with most algorithms using
extrapolation in the non-convex case where a restarting step is nec-
essary to ensure convergence [17, 14]: a step is accepted only if the
objective function decreases and, when this is not the case, the algo-
rithm restarts by taking a standard gradient step. This feature is very
useful when evaluating the objective function is expensive.
e iBPG is very flexible in the choice of the order in which the blocks
are updated: for example each matrix factor can be updated several
times allowing to reuse some computations (like in A-HALS [8])
leading to more updates at a lower computational cost.

iBPG is proved to have sub-sequential convergence under some
mild conditions, and global convergence under some additional as-
sumptions. iBPG can easily be instantiated for aCPD, the resulting
algorithm is summarized in Algorithm 3.1. As the choice of the
parameters in Algorithm 3.1 satisfies the relaxed conditions in [19,
Remark 4.7], we can derive from [19, Theorem 4.8] that iBPG for
solving aCPD is guaranteed to have (at least) a sub-sequential con-
vergence; see [19, Section 5] for a similar explanation in the case of
non-negative matrix factorization problem.

3.2. Heuristic Extrapolation and Restart (her) BCD

Although alternating gradient-based approaches are not state-of-the-
art at the moment for computing aCPD, BCD algorithms on the other
hand are extremely popular, in particular the ALS algorithm, mostly
due to its simplicity and efficiency for simple problems. However,
ALS is known to converge slowly for instance when the factors AW
are ill-conditioned. In this paper, we introduce an extrapolation of
the factor estimates between each block update. Moreover, the ex-
trapolation technique is not a straightforward heuristic line search
such as described in [20, pp.95-96], but mimics Nesterov’s extrap-
olation by introducing pairing variables Z/). For instance, when
updating the jth factor in the ALS algorithm at the kth iteration, the
update is modified as:

Agcj) =g (T, [Z,ikj), Z,ilflj)]) as defined in (3) 5)

Zlij) — A§€j> + B (Al(cj> . Al(cjll) , (6)

where [ is updated heuristically (see Algorithm 3.2) using three pa-
rameters (7,7, ) following the strategy described in [21]. In short,
the idea is to use a restart criterion Fy = F(A"; Z ,i#p ), which
is the cost evaluated at the pairing variable for the first p — 1 modes
and the original variable at the last mode, to update Bx. When F
decreases, we grow [ (multiply it by a constant v > 1). When F
increases, we decrease (8 (divide it by a constant n > 1). In Al-
gorithm 3.2, § is the upper bound of 3, which is also updated dy-
namically. Beside updating 3, restart is carried out based on Fto
decide whether to keep AD or ZU) in the next iteration. We re-
fer to this procedure as Heuristic Extrapolation and Restart (her). It
could be used in the same way to design a her-HALS algorithm and
a her-Gradient algorithm, which we do not discuss here do to the
space restriction. In fact, any BCD algorithm can be accelerated us-
ing her, by extrapolating the partial estimates for each block update.
We label such a generic approach herBCD.



Algorithm 2 herALS for CPD

1: Initialization: Choose Bo € (0,1), n > v > 7§ >
1, and 2 sets of initial factor matrices (A", ..., A%)) and
(Z§,..., Z). Set Bo = 1and k = 1.

2: repeat

3 forj=1,...,pdo

4 Update: get Al(j ) as (5).

5: Extrapolate: get Z ,ij ) as (6).

6:  end for

7. Compute F}, = F(A,(f); Z,i#p)).

8 if Fx > Fj_1 for k > 2 then

Setg,gj) = A;Cj) foryj=1,...,p
Set Bk = Br—1, Bk = Br—1/7
9: else ) )
Set AV =z forj=1,....p
Set B, = min{1, Bx—17}, Bx = min{fx—1, Bx—17}
10: end if
11:  Setk=k+1.
12: until some criteria is satisfied

3.3. Additional cost of extrapolation

A natural question that arises when modifying well-known algo-
rithms to enhance their convergence speed is the impact of such mod-
ifications on the computational time. Indeed, it is often possible to
improve the relative decrease of the objective at each iteration with
respect to ALS, but doing so while keep a fixed cost per iteration is
more challenging.

The cost of iBPG is essentially that of an alternating gradient
method. Indeed, the computation of the extrapolation points is neg-
ligible given that r is small, since computing the operator norm of
an r X r matrix is cheap (lines 7 and 8 in Algorithm 3.1). Moreover,
since there is no need for restart like in herALS, the cost function
does not need to be computed at each iteration. Therefore, the cost
for each block update boils down to the cost of computing the gra-
dient, which cost is itself known to be dominated by the so-called
Matricized Tensor Times Khatri-Rao Product (MTTKRP). The MT-
TKRP can be efficiently implemented, see for instance [22, 23]. In
summary, for small r, one block update of iBPG has essentially the
same cost as one block update of ALS since the matrix to inverse in
ALS is of size r x r.

The cost of one iteration of herALS is also essentially the same
as one iteration of ALS, although this requires a twist on the restart
condition. Indeed, to perform restart, it is in theory necessary to
check if the cost function is increasing after extrapolation. However,
computing the cost function is expensive for aCPD unless the pre-
viously computed MTTKRPs can be reused. Note that the restart in
herALS is based on the cost evaluated at the pairing variables, for
which MTTKRPs have indeed been computed in the ALS update.
Although this is not a standard way to perform restart, this allows to
keep computational cost low while showing no practical difference.

4. EXPERIMENTS

In this section we compare iBPG and herALS to three algorithms:
the original un-accelerated ALS (ALS), the accelerated ALS using
Bro’s acceleration (Bro-ALS), and the LS-ALS: an accelerated ALS
where extrapolation sequence is computed by line search in the style
of Anderson Acceleration. See section 5 for description of Bro-ALS
and LS-ALS.

In each experiment, the notation [/, J, K, r] denotes the sizes
of the tensor (I, J, K), and the factorization rank r. All experi-
ments are run over 20 random initilaziations, and we plot the me-
dian of the cost value over these 20 trials. There are two impor-
tant things to note: all herBCD across all experiments use the same
set of default parameters [5o,~,7,n] = [0.5,1.05,1.01,1.5]. All
the y-axis of the plots is in the form of F' — Fl,in, where F' is the
cost evaluated at all AY) and Flpiy is the minimal possible cost ob-
tained in the experiment across all initializations and algorithms.
All the experiments are run with MATLAB (v.2015a) on a laptop
with 2.4GHz CPU and 16GB RAM. The codes are available from
https://angms.science/research.html.

4.1. Synthetic data sets

Figure 1 shows the result over two experiments and details the cho-
sen dimensions of the problem. In both balanced and unbalanced

cases that were tested, the data tensor is generated as Z;zl aéw ®

a((f) ® a((f) + N, where the ground truth factors A are sampled
from a Gaussian distribution with zero mean and unitary variance.
Note that we adjust the condition number of A 0 100 using the
SVD and replacing the singular values by logaritmihc scaled values
between 1 and 100. The tensor NN is an additive Gaussian noise with
zero mean and variance 0.001. The results show that iBPG and her-
ALS are the best algorithm among the five tested algorithms, and in
particular seem to avoid the swamp in which ALS lands in the un-
balanced case. LS-ALS, which converges fast in terms of iterations,
suffers from higher per-iteration cost.

Balanced [50, 50, 50, 10] Unbalanced [150,10%, 50, 10]

v R VA
108! _\ 10° | --..--‘.__ \A
0%} { 10t )
100 | | 1001
—4 1 e - 1 1 : S
10 20 40 60 80 10 30 40 60 80
iteration/k iteration/k
—_—ALS iBPG =---=her ALS LS-ALS —e— Bro-ALS
e ' — 107 T ' :
——
w0l it 2
10%}
10} 1104
10 } 1 107}
L | . g N | .
10 0.02 0.04 0.06 0.08 10 2 4 6 8

Time/sec

Time/sec

Fig. 1. Median error over 20 runs on synthetic data sets plotted
against iterations (top) and time (bottom). On the left is a square
tensor [50,50,50,10], and on the right is an unbalanced tensor
[150,10%,50,10]. For the unbalanced case, ALS improves very
slowly up to the 90th iteration: This phenomenon is often referred to
as a swamp in the literature. The proposed extrapolated algorithms
do not encounter this issue in this experiment.



4.2. Real data sets

We now show the results on real data sets: Wine' (Fig. 2), Hyper
spectral data of Indian Pine” and Blood plasma® (Fig. 4). Again the
curves are the median over 20 initializations. All sub-figures in a
figure share the same y-axis. Minimal pre-processing is carried out:
NaN values (if any) are replaced with zeros.

We observe that herALS performs the best, followed by Bro-
ALS. iBPG does not perform as well as for the synthetic data sets.

— ALS

iBPG === her ALS - LS-ALS —e—BrquLSI_

50 100 150 5 10 15 20
iteration/k Time/sec

Fig. 2. Results on Wine [44, 2700, 200, 15]. iBPG gets stuck on

local minima.

|—ALS

iBPG =-=-=her ALS e LS-ALS —s— Bro-ALS
1012

200 400 600
iteration/k

800 5 10 15 20
Time/sec

Fig. 3. Results on Indian Pines [145, 145, 200, 16].

5. RELATED PRIOR WORK

Although the idea of extrapolation is not new for ALS [10], there has
not been many works tackling extrapolation for speeding up BCD al-
gorithms for aCPD. We are aware of two such works. Bro et al. [20]
extrapolate directly the estimated factor using a heuristic approach
recalled in [24] which we show can be slower than ALS, although it
prevents any appearance of “swamps” in our experiments. Mitchell
et. al. [18] have proposed a similar extrapolation strategy, where
they extrapolate all blocks simultaneously using a shared parameter
Bk. In contrast, in this work, we followed the same scheme to com-
pute [ but the extrapolation is carried out on each block right after
the least-squares update, rather than after all least-squares updates.
This makes the two approaches quite different. Furthermore an ex-
pensive line search (a least square problem) has to be performed to
compute the extrapolation weight 5. The per-iteration cost is higher
than all the other methods in figure 1.

ISee http://www.models.life.ku.dk/Wine_GCMS_FTIR
for data description.

2http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_ Remote_Sensing_Scenes

3See http://www.models.life.ku.dk/anders-cancer
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Fig. 4. Results on Blood [289,301,41] with r = 3 (top), r = 6
(mid) and » = 10 (bottom). Note that the data has many NaN
(data polluted due to Rayleigh scattering), all NaN are replaced by
0. There are therefore many zero fibers in the tensor after such cor-
rection.

6. CONCLUSION AND PERSPECTIVES

We have introduced extrapolation-based alternating algorithms for
solving aCPD. On a limited set of synthetic experiments with ill-
conditioned tensors, the recently proposed iBPG algorithm, which is
alternating gradient-based, outperforms workhorse block-coordinate
descent algorithm such as ALS, and helps escaping “swamps”. The
algorithm proposed in this paper, herALS, is a variant of ALS in
which iterates are extrapolated, and also performs well without a
fine tuning of the hyperparameters. On a few real data sets stem-
ming from fluorescence spectroscopy and remote sensing, herALS
outperform all tested methods while iBPG shows mitigated results.
Further tests and comparison should therefore be performed to fur-
ther assess the performance of both iBPG and herALS in specific
practical cases. Finally, this work provides further practical evidence
that extrapolation helps escaping swamps when computing aCPD.
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