DYNAMICAL DEGREES OF BIRATIONAL TRANSFORMATIONS OF PROJECTIVE SURFACES - Archive ouverte HAL
Article Dans Une Revue Journal of the American Mathematical Society Année : 2016

DYNAMICAL DEGREES OF BIRATIONAL TRANSFORMATIONS OF PROJECTIVE SURFACES

Jérémy Blanc
  • Fonction : Auteur
  • PersonId : 858821
Serge Cantat

Résumé

The dynamical degree λ(f) of a birational transformation f measures the exponential growth rate of the degree of the formulae that define the n-th iterate of f. We study the set of all dynamical degrees of all bi-rational transformations of projective surfaces, and the relationship between the value of λ(f) and the structure of the conjugacy class of f. For instance, the set of all dynamical degrees of birational transformations of the complex projective plane is a closed and well ordered set of algebraic numbers.
Fichier principal
Vignette du fichier
degrees-web.pdf (436.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02328039 , version 1 (23-10-2019)

Identifiants

Citer

Jérémy Blanc, Serge Cantat. DYNAMICAL DEGREES OF BIRATIONAL TRANSFORMATIONS OF PROJECTIVE SURFACES. Journal of the American Mathematical Society, 2016, 29 (2), pp.415-471. ⟨10.1090/jams831⟩. ⟨hal-02328039⟩
37 Consultations
98 Téléchargements

Altmetric

Partager

More