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DYNAMICAL DEGREES OF BIRATIONAL TRANSFORMATIONS
OF PROJECTIVE SURFACES

JÉRÉMY BLANC AND SERGE CANTAT

ABSTRACT. The dynamical degree λ( f ) of a birational transformation f
measures the exponential growth rate of the degree of the formulae that de-
fine the n-th iterate of f . We study the set of all dynamical degrees of all bi-
rational transformations of projective surfaces, and the relationship between
the value of λ( f ) and the structure of the conjugacy class of f . For instance,
the set of all dynamical degrees of birational transformations of the complex
projective plane is a closed and well ordered set of algebraic numbers.

1. INTRODUCTION

Given a birational transformation f : X 99KX of a projective surface, defined
over a field k, its dynamical degree λ( f ) is a positive real number that measures
the complexity of the dynamics of f . For instance, if k is the field of complex
numbers, log(λ( f )) provides an upper bound for the topological entropy of
f : X(C) 99K X(C) and is equal to it under natural assumptions (see [3, 23]).
Our goal is to study the structure of the set of all dynamical degrees λ( f ), when
f runs over the group of all birational transformations Bir(X) and X over the
collection of all projective surfaces.

The dynamical degree λ( f ) is invariant under conjugacy. An important fea-
ture of our results may be summarized by the following slogan: Precise knowl-
edge on λ( f ) provides useful information on the conjugacy class of f . In par-
ticular, we shall obtain effective, quantitative bounds for the solutions of certain
equations in Bir(X), like the conjugacy problem asking for a solution h of the
equation h f h−1 = g.

Another motivation of the present paper is to develop the “dictionary” be-
tween groups of birational transformations of projective surfaces and mapping
class groups of higher genus, closed, orientable surfaces. The dynamical de-
gree λ( f ) plays a role which is similar to the dilatation factor λ(ϕ) of pseudo-
Anosov mapping classes (see § 8 below). As we shall see, our main results
should be compared to two theorems proved by W. Thurston. The first one de-
scribes explicitly the set of topological entropies of post-critically finite, con-
tinuous, multimodal transformations of the unit interval as the set of logarithms
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DYNAMICAL DEGREES 2

of “weak Perron numbers”. The second describes the structure of the set of
volumes of hyperbolic manifolds of dimension 3; this set is a countable, non-
discrete, and well ordered subset of the real line.

1.1. Dynamical degrees, Pisot numbers, and Salem numbers.

1.1.1. Dynamical degrees. Let X be a projective surface defined over an al-
gebraically closed field k. In what follows, NS(X) denotes the Néron-Severi
group of X . Given a ring A, NSA(X) stands for NS(X)⊗Z A; hence, NSZ(X)
coincides with NS(X).

Let f be a birational transformation of X defined over k. Then f determines
an endomorphism f∗ : NS(X)→ NS(X) of NS(X). The dynamical degree
λ( f ) of f is defined as the spectral radius of the sequence of endomorphisms
( f n)∗, as n goes to +∞. More precisely, once a norm ‖ · ‖ has been chosen on
the real vector space End(NSR(X)), one defines

λ( f ) = lim
n→∞
‖ ( f n)∗ ‖1/n ;

this limit exists, and does not depend on the choice of the norm. Moreover, for
every ample divisor D⊂ X

λ( f ) = lim
n→∞

(D · ( f n)∗D)1/n ,

where C ·D denotes the intersection number between divisors or divisor classes.
By definition, f is loxodromic if λ( f )> 1.

The dynamical spectrum of X is defined as the set

Λ(X) = {λ( f ) | f ∈ Bir(X)}.

If one wants to specify the field k, one may denote the dynamical spectrum by
Λ(X ,k).

Example 1.1. The Néron-Severi group of P2
k coincides with the Picard group

Pic(P2
k), has rank 1, and is generated by the class e0 of a line:

NS(P2
k) = Pic(P2

k) = Ze0.

Fix a choice of homogeneous coordinates [x : y : z] on the projective plane P2
k.

Let f be an element of Cr2(k). One can then find three homogeneous polyno-
mials P, Q, and R in the variables (x,y,z), of the same degree d, and without
common factor of positive degree, such that

f ([x : y : z]) = [P(x,y,z) : Q(x,y,z) : R(x,y,z)].

This degree d does not depend on the choice of homogeneous coordinates;
it is denoted by deg( f ) and called the degree of f . On Pic(P2

k), f acts by
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multiplication by its degree deg( f ); thus, we have λ( f ) = limdeg( f n)1/n. For
instance, the standard quadratic involution

σ([x : y : z]) = [
1
x

:
1
y

:
1
z
] = [yz : zx : xy].

satisfies deg(σn) = 1 or 2, according to the parity of n; hence λ(σ) = 1.

1.1.2. Pisot and Salem numbers (see [8]). By definition, a Pisot number is
an algebraic integer λ ∈ ]1,∞[ whose other Galois conjugates lie in the open
unit disk; Pisot numbers include integers d ≥ 2 as well as reciprocal quadratic
integers λ > 1. A Salem number is an algebraic integer λ∈ ]1,∞[ whose other
Galois conjugates are in the closed unit disk, with at least one on the boundary;
hence, the minimal polynomial of λ has at least two complex conjugate roots
on the unit circle, and the degree of λ is at least 4. We denote by Pis the set of
Pisot numbers and by Sal the set of Salem numbers.

It is known that Pis is a closed subset of the real line. It is contained in
the closure of Sal, and its infimum is equal to λP ' 1.324717, the unique root
λP > 1 of the cubic equation x3 = x+ 1; this Pisot number is known as the
plastic number, or padovan number. The smallest accumulation point of Pis
is the golden mean λG = (1+

√
5)/2; all Pisot numbers between λP and λG

have been listed.
Our present knowledge of Salem numbers is much weaker. Conjecturally,

the infimum of Sal is larger than 1, and should be equal to the Lehmer number,
i.e. to the Salem number λL ' 1.176280 obtained as the unique root > 1 of the
irreducible polynomial x10 + x9− x7− x6− x5− x4− x3 + x+1.

1.1.3. Dynamical degrees and algebraic stability. One says that f ∈ Bir(X)
is algebraically stable when the endomorphism f∗ of the Néron-Severi group
NS(X) satisfies

( f n)∗ = ( f∗)n (1.1)

for all positive integers n. If f is algebraically stable, then f−1 is also al-
gebraically stable and λ( f ) is the spectral radius of the endomorphism f∗ of
NS(X); in particular, λ( f ) is an algebraic integer. Diller and Favre proved in
[22] that every birational transformation of a projective surface X is conjugate
by a birational morphism π : Y → X to an algebraically stable transformation
π−1 ◦ f ◦ π. From this fact and the Hodge index theorem, they obtained the
following result.

Theorem 1.2 (Diller and Favre). Let k be a field and let f be a birational
transformation of a projective surface defined over k. If λ( f ) is different from
1, then λ( f ) is a Salem or a Pisot number.

In this article we initiate the study of the dynamical spectrum Λ(X). By
Diller-Favre Theorem, Λ(X) splits in two parts, its Pisot part ΛP(X) and its
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Salem part ΛS(X). The problem is to describe which numbers can appear in
each of these sets, as well as the relationship between these two sets.

Example 1.3. When f is an algebraically stable transformation of P2
k, one gets

λ( f ) = deg( f ). For instance, the automorphism h of the affine plane defined
by h(X ,Y ) = (Y,X +Y d) extends to a birational map of the projective plane
such that deg(hn) = dn for all n≥ 0. In particular, Λ(P2

k) contains all integers
d ≥ 1, for all fields k.

Example 1.4. Consider the group GL2(Z) acting by (monomial) automor-
phisms of the multiplicative group k∗×k∗: If

A =

(
a b
c d

)
is an element of GL2(Z) and (X ,Y ) denotes the coordinates on k∗× k∗, the
automorphism associated to A is defined by fA(X ,Y ) = (XaY b,XcY d). This
provides an embedding of GL2(Z) in the automorphism group Aut(k∗×k∗),
and thus in Bir(P2

k(k)).
For every A in GL2(Z), the dynamical degree of fA is equal to the spectral

radius of the matrix A, i.e. to the modulus of its unique eigenvalue λ with
|λ| ≥ 1; this implies that fA is not an algebraically stable transformation of P2

k
as soon as λ( fA)> 1, because λ( fA) is not an integer in that case.

As a byproduct of this example, the dynamical spectrum of the plane con-
tains all reciprocal quadratic integers, i.e. all roots λ > 1 of equations x2 +1 =
tx with t in Z.

1.2. Salem numbers and automorphisms. The dynamical degree of an auto-
morphism, if different from 1, is either a quadratic number or a Salem number
(see [22]). Here we prove a converse statement.

Theorem A. Let k be an algebraically closed field. Let f be a birational
transformation of a projective surface X, defined over k. If λ( f ) is a Salem
number, there exists a projective surface Y and a birational mapping ϕ : Y 99K
X such that ϕ−1 ◦ f ◦ϕ is an automorphism of Y .

Thus, one can decide whether a birational transformation is conjugate to an
automorphism by looking at its dynamical degree, except when this degree is 1
or a quadratic integer. For the quadratic case, Examples 2.2 and 2.3 show that
there are quadratic integers which are simultaneously realized as dynamical
degrees of automorphisms, and of birational transformations that cannot be
conjugate to an automorphism. See Remark 2.4 for birational transformations
with dynamical degree equal to 1.

Once Theorem A is proved, three corollaries can be deduced from results of
McMullen and the second author (see [37] and [17]). The first corollary (see
§ 2.6) is a spectral gap property for dynamical degrees: There is no dynamical
degree in the interval ]1,λL[. The second corollary does not seem to be related
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to values of dynamical degrees, but the simple proof given here makes use
of the spectral gap. It asserts that the centralizer, in the group Bir(X), of a
loxodromic element f is finite by cyclic (see § 4.3). The third consequence
is an effective and explicit bound for the optimal degree of a conjugacy (see
§ 4.4):

Corollary 1.5. Two loxodromic elements f , g ∈ Bir(P2
k) of degree ≤ d are

conjugate if and only if they are conjugate by an element h of degree ≤ (2d)57.

1.3. From projective surfaces to the projective plane. Non rational sur-
faces are easily handled with.

Theorem B. Let k be an algebraically closed field. Let X be a projective
surface defined over k. If X is not rational, then

(1) Λ(X) = {1} if X is not birationally equivalent to an abelian surface, a
K3 surface, or an Enriques surface;

(2) Λ(X)\{1} is made of quadratic integers and of Salem numbers of de-
gree at most 6 (resp. 22, resp. 10) if X is an abelian surface (resp. a
K3 surface, resp. an Enriques surface).

The union of all dynamical spectra Λ(X) where X runs over the set of non-
rational projective surfaces defined over k, and k runs over the set of all fields,
is a closed discrete subset of the real line.

Remark 1.6. When the characteristic of the field k vanishes, the degree bounds
of Assertion (2) become 4, 20, and 10 (in place of 6, 22, and 10).

This result, proved in Section 3, shows that the most interesting case is pro-
vided by rational surfaces. Thus, in the following statements, one can assume
that X is birationally equivalent to the projective plane P2

k; the dynamical spec-
trum is then equal to the set Λ(P2

k) of dynamical degrees of elements of the
Cremona group

Cr2(k) = Bir(P2
k).

1.4. Degrees and conjugacy classes.

1.4.1. Minimal degree in the conjugacy class. Given an element f of Bir(P2
k),

define the minimal degree of f in its conjugacy class as the positive integer

mcdeg( f ) = mindeg(g◦ f ◦g−1)

where g describes Bir(P2
k). The function mcdeg is constant on conjugacy

classes, and
λ( f )≤mcdeg( f )≤ deg( f )

for all birational transformations of the plane. One of our main goals is to
provide the following reverse inequality1.

1In this article, log denotes the neperian logarithm.
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Theorem C. Let k be an algebraically closed field. Let f be a birational
transformation of the plane P2

k.
(1) If λ( f )≥ 106 then mcdeg( f )≤ 4700λ( f )5.
(2) If λ( f )> 1, then mcdeg( f )≤ cosh(18+345log(λ( f ))).

On the other hand, there are sequences of elements fn ∈ Bir(P2
k) such that

mcdeg( fn) goes to +∞ with n while λ1( fn) = 1 for all n.

1.4.2. Well ordered sets. The set Λ(P2
k) is a subset of R+ and, as such, is to-

tally ordered. The following statement, which follows from Theorem C, asserts
that Λ(P2

k) is well ordered: Every non-empty subset of Λ(P2
k) has a mini-

mum; equivalently, it satisfies the descending chain condition (if ( fn)n≥0 is a
sequence of birational transformations of P2

k and the dynamical degrees λ( fn)
decrease with n, then λ( fn) becomes eventually constant).

Theorem D. Let k be an algebraically closed field. The dynamical spectrum
Λ(P2

k)⊂ R is well ordered, and it is closed if k is uncountable.

In Theorem 7.4, we also show that ΛP(P2
k) is contained in the closure of

ΛS(P2
k) if k is algebraically closed and of characteristic 0.

From Theorem B and Theorem D, one obtains the existence of gaps in the
dynamical spectrum of projective surfaces that is, small intervals of real num-
bers that contain infinitely many Pisot and Salem numbers, but do not contain
any dynamical degree.

Corollary 1.7. Let Λ be the set of all dynamical degrees of birational transfor-
mations of projective surfaces, defined over any field. Then,

(1) Λ is a well ordered subset of R+;
(2) if λ is an element of Λ, there is a real number ε > 0 such that ]λ,λ+ ε]

does not intersect Λ;
(3) there is a non-empty interval ε > 0 such that ]λG,λG + ε] on the right

of the golden mean that contains infinitely many Pisot and Salem num-
bers, but does not contain any dynamical degree.

In fact, gaps as in the third assertion of this corollary occur infinitely often,
because there are infinitely many Pisot numbers that are limits of Pisot numbers
from the right.

1.5. Organization of the paper. Section 2 provides a proof of Theorem A
and its first corollary, the absence of dynamical degree between 1 and λL '
1.17628. Theorem B is proved in Section 3; this may be skipped on a first
reading. Section 4 introduces the bubble space and an infinite dimensional
hyperbolic space on which Bir(X) acts by isometries; as a first application,
we obtain two new corollaries of Theorem A. Section 5 contains preliminary
results on the infinite Weyl group W∞: This group is a Coxeter group on an
infinite set of generators, and plays a crucial technical role in the study of the
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Cremona group Cr2(k). The proof of Theorem C is quite difficult even if, in
spirit, it is a variation on Noether-Castelnuovo proof of the fact that PGL3(k)
and the standard quadratic involution σ generate Bir(P2

k). This proof occupies
Section 6, and Section 7 shows how Theorem D follows from Theorem C. The
appendix contain a few complements.
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2. SALEM NUMBERS AND AUTOMORPHISMS

This section is devoted to the proof of Theorem A. On our way, we introduce
basic definitions that are used all along this article.

2.1. Indeterminacy points, homaloidal nets and base points. Let X be a
projective surface defined over an algebraically closed field k. Let f be a bi-
rational transformation of X . We denote by Ind( f ) the set of indeterminacy
points of f ; by convention, it is a proper subset of X and does not include
infinitely near points.

The base points of f are defined as follows. Let D be a very ample divisor
on X and |D| be the complete linear system containing D. The image of |D| by
f is a linear system on X (which, in general, is not complete) ; when f is an
element of the Cremona group and D is a line in P2

k, this linear system f∗|D|
is the homaloidal net of f−1 (see [1]). The set of base points of f−1 (resp. the
base ideal of f−1) is defined as the set (resp. the ideal) of base points of this
linear system: Base points may be infinitely near, and come with a multiplicity.
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The notion of base point does not depend on the choice of a very ample divisor,
but the multiplicities of the base points depend on this choice.

This distinction between base points and indeterminacy points is just used
to emphasis the arguments for which it is important to know whether the point
is a proper point of X or not.

2.2. Algebraic stability and the intersection form. One says that f is al-
gebraically stable if the sequence ( f n)∗ of endomorphisms of NS(X) satisfies
( f n)∗ = ( f∗)n for all integers n (cf. §1.1.3). As explained in [22], f is not
algebraically stable if, and only if there is an indeterminacy point q of f−1 and
a non-negative integer k such that f is well defined at q, f (q), ..., f k−1(q), and
f k(q) is an indeterminacy point of f . Blowing-up q, ..., f k(q), the number of
such points decreases and, in a finite number of steps, one constructs a bira-
tional morphism π : X ′ → X such that π−1 ◦ f ◦ π is algebraically stable (see
[22] for this proof).

Lets us now assume that f is algebraically stable. The dynamical degree
λ( f ) is then equal to the spectral radius of f∗ ∈ End(NS(X)) and also to the
spectral radius of f ∗ = f−1

∗ because these endomorphisms are adjoint for the
intersection form:

f∗C ·D =C · f ∗D

for all pairs (C,D) of divisor classes.
Factorize f as f = ε ◦ π−1 where π : Z → X and ε : Z → X are birational

morphisms. Write π as a composition π1 ◦ . . . ◦πm of (inverse of) point blow-
ups, and denote by Fj ⊂ Z the total transform of the indeterminacy point of π

−1
j

under the map π j ◦ . . . ◦ πm. Then, denote by E j the direct image of Fj by ε,
for 1≤ j ≤ m. Each E j, if not zero, is an effective divisor. According to [22],
Theorem 3.3, one has

f∗ f ∗C =C+
m

∑
j=1

(C ·E j)E j (2.1)

for all curves (resp. divisor class) C in X ; this formula corresponds to the
following fact: The preimage of C goes through the base points p j of f with
multiplicity (C ·E j); thus, the total transform of f−1C by f contains both C
and ∑ j(C ·E j)E j. Taking intersection, and using that f ∗ and f∗ are adjoint
endomorphisms of NS(X) for the intersection form, one gets

f ∗C · f ∗C =C ·C+
m

∑
j=1

(E j ·C)2. (2.2)

In particular, f ∗ increases self-intersections. This property and Hodge index
theorem, according to which the intersection form has signature (1,ρ(X)−1),
are responsible for λ( f ) being a Pisot or Salem number (see [22], Theorem
5.1).
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2.3. Eigenvectors and automorphisms. Since X has dimension 2, one easily
shows that f ∗ and f∗ preserve the pseudo-effective and nef cones of NSR(X).
Assume that the dynamical degree λ( f ) is larger than 1. Perron-Frobenius
theorem assures the existence of an eigenvector Θ

+
X ( f ) for f ∗ in the nef cone

of NSR(X) such that f ∗Θ+
X ( f ) = λ( f )Θ+

X ( f ); moreover, this vector is unique
up to scalar factor (see [22]).

Theorem 2.1 (Diller-Favre). Let X be a projective surface, and f be a bira-
tional transformation of X, both defined over an algebraically closed field k.
Assume that the dynamical degree λ( f ) is larger than 1. Then

(1) Θ
+
X ( f ) ·Θ+

X ( f ) = 0 if and only if Θ
+
X ( f ) ·E j = 0 for all E j;

(2) If Θ
+
X ( f ) ·Θ+

X ( f ) = 0, there exists a birational morphism η : X → Y ,
such that η◦ f ◦η−1 is an automorphism of Y .

Sketch of the proof. Equation (2.2) and the eigenvector property

f ∗Θ+
X ( f ) = λ( f )Θ+

X ( f )

imply that

(λ( f )2−1)Θ+
X ( f ) ·Θ+

X ( f ) =
m

∑
j=1

(E j ·Θ+
X ( f ))2.

Hence, all divisors E j are orthogonal to Θ
+
X ( f ) if, and only if, Θ

+
X ( f ) is an

isotropic vector.
Let us now prove the second assertion. By the first assertion, every E j is

orthogonal to Θ
+
X ( f ); since the E j are effective and Θ

+
X ( f ) is nef, all irre-

ducible components of the E j are orthogonal to Θ
+
X ( f ); in other words, the

Q-vector subset of NSQ(X) generated by the irreducible components of the di-
visors E j is contained in the orthogonal complement Θ

+
X ( f )⊥ of the isotropic

vector Θ
+
X ( f )⊥. On Θ

+
X ( f )⊥, the intersection form is negative and its kernel is

the line generated by Θ
+
X ( f ).

From Equation (2.1), one gets f k
∗Θ

+
X ( f ) = λ( f )−kΘ

+
X ( f ). Since λ( f ) > 1

and f∗ preserves the lattice NSZ(X) one deduces that Θ
+
X ( f ) is irrational: no

scalar multiple of Θ
+
X ( f ) is contained in NSZ(X). Thus, the intersection form

is negative definite on the Q-vector space generated by all classes of irreducible
components of the divisors E j.

From Grauert-Mumford contraction theorem (see [2], thm. 2.1 p. 91), there
is a birational morphism η0 : X → Y0 which contracts simultaneously all these
components. Let f0 be the birational transformation η0 ◦ f ◦η

−1
0 . Since Θ

+
X ( f )

does not intersect the curves which are contracted by η0, the class (η0)∗Θ
+
X ( f )∈

NSR(Y ) is both isotropic and an eigenvector for ( f0)∗ with eigenvalue λ( f ).
One can thus iterate this process until f−1

0 does not contract any curve, i.e. f0
is an automorphism of Y0. If Y0 is singular, and Y is a minimal desingulariza-
tion of Y0, f0 lifts to an automorphism fY of Y ; one can then show that there
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is an intermediate birational morphism η : X → Y such that η ◦ f ◦η−1 = fY .
This concludes the proof. �

Example 2.2. Let E be the elliptic curve associated to the lattice of Gaussian
(resp. Eisenstein) integers:

E = C/Z[i] (resp.C/Z[j])

where i2 = −1 (resp. j3 = 1, j 6= 1). Let A be the abelian surface E×E. The
group GL2(Z[i]) (resp. GL2(Z[j])) acts by automorphisms on A, and commutes
to ν(x,y) = (ix, iy) (resp. ν(x,y) = (jx, jy)). As a consequence PGL2(Z[i])
(resp. PGL2(Z[j])) acts by automorphisms on the (singular) rational surface
X0 = A/ν, and on its minimal desingularisation X . The surface X being ratio-
nal, this construction provides an embedding of PGL2(Z[i]) (resp. PGL2(Z[j]))
into the Cremona group. If M is an element of the linear group GL2(Z[i]) (resp.
GL2(Z[j])), the associated birational transformation gM has dynamical degree

λ(gM) = λ(M)2

where λ(M) is the spectral radius of the matrix M.

Example 2.3. Start with the matrix C defined by

C =

(
1 1
1 0

)
.

Its spectral radius is the Golden mean λG. The square of λG can be realized as
the dynamical degree of the monomial map fC2 associated to the second power
C2 of C, as described in Example 1.4. It is also realized as the dynamical degree
of the transformation gC from Example 2.2. The birational transformation fC2

is not conjugate to an automorphism of a rational surface Y , while gC is.

Remark 2.4. The previous two examples show that Theorem A does not ex-
tend to quadratic integers.

If f is a birational transformation of a projective surface X with λ( f ) = 1,
then ‖ ( f n)∗ ‖ is bounded, or it grows linearly with n, or it grows quadratically.
In the first and third cases, f is conjugate to an automorphism of a projective
surface Y by some birational transformation ϕ : Y 99K X . In the second case, f
is not conjugate to an automorphism (see Section 4.2.2). Thus, again, the “de-
gree growth” determines whether f is, or not, conjugate to an automorphism.

2.4. Proof of Theorem A. Let us now prove Theorem A. Assume λ( f ) is
a Salem number. Let χ(t) ∈ Z[t] be the minimal polynomial of λ( f ). By
assumption, there exists a root α of χ with modulus 1; one can thus fix an
automorphism σ of the field of complex numbers such that σ(λ( f )) = α.

By Diller-Favre Theorem, we may assume that f is algebraically stable. The
eigenvector Θ

+
X ( f ) corresponds to the eigenvalue λ( f ); as such, it may be taken

in NSL(X), where L is the splitting field of χ. Our goal is to show that Θ
+
X ( f )
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is orthogonal to all E j, 1 ≤ j ≤ m; the conclusion will follow from Theorem
2.1.

The automorphism σ of the field C acts on NSC(X), preserving NS(X) point-
wise. Apply σ to both sides of f ∗Θ+

X ( f ) = λ( f )Θ+
X ( f ); since f ∗ is defined over

Z, one obtains
f ∗Ψ = αΨ, with Ψ = σ(Θ+

X ( f )).
Since the divisor classes of the E j are in NS(X), all of them are σ-invariant.
Thus, applying σ to Equation (2.1) we get

f∗ f ∗Ψ = Ψ+
m

∑
j=1

(Ψ ·E j)E j.

Taking intersection with the complex conjugate Ψ̄ of Ψ, and using f ∗Ψ = αΨ,
we get

(αᾱ)Ψ · Ψ̄ = f ∗Ψ · f ∗Ψ̄ = Ψ · Ψ̄+
m

∑
j=1
|E j ·Ψ|2.

Since α has modulus 1, all intersections E j ·Ψ vanish and, applying σ again,
we deduce that Θ

+
X ( f ) ·E j = 0 for all 1≤ j ≤ m. This concludes the proof.

2.5. Salem numbers in Λ(P2
k). Let f be an element of Cr2(k) such that λ( f )

is a Salem number. According to Theorem A, f is conjugate to an auto-
morphism g of a smooth rational surface X ; according to Kantor and Nagata
[39, 40], X is a blow-up of P2

k with Picard number ρ(X)≥ 11. Thus, the study
of ΛS(P2

k) reduces to the following question: Which Salem numbers can be
realized as spectral radii of linear transformations

g∗ ∈ End(NSR(X))

where X describes the set of blow-ups of P2
k and g runs over the group Aut(X)?

Recent results answer this question.
Write X as a blow-up of the plane at n points p1, p2, ..., pn; some of them

can be infinitely near points; we choose indices in such a way that j≥ i if p j is
infinitely near pi. Denote by π : X→P2

k the birational morphism corresponding
to this sequence of blow-ups. Let ei ∈ NS(X) denotes the Néron-Severi class
of the total transform of pi under π (for 1 ≤ i ≤ n), and let e0 ∈ NS(X) be the
class of the total transform of a line in P2

k. Then

NS(X) = Pic(X) = Ze0⊕Ze1⊕ . . .⊕Zen,

and the basis (e0,e1, . . . ,en) is orthogonal with respect to the intersection form
on Pic(X). More precisely, we have

e0 · e0 = 1, ei · ei =−1 if i≥ 1, and ei · e j = 0 if i 6= j.

The canonical class of X is

kX =−3e0 + e1 + e2 + . . .+ en.
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The automorphism group Aut(X) acts linearly on Pic(X), preserves kX , and
preserves the intersection form. As a consequence, Aut(X) preserves the or-
thogonal complement k⊥X of kX in Pic(X). The elements

v0 = e0− e1− e2

vi = ei− ei+1, 1≤ i≤ n−1

form a basis of k⊥X , with respect to which the intersection form is given by the
Dynkin diagram T2,3,n−3:

• • • • • •

•

. . .1 2 3 4 n−2 n−1

0

FIGURE 1. Coxeter-Dynkin diagram of type T2,3,n−3

In other words,

vk · vk = −2, for all indices k,
vi · v j = 0, if the vertices i and j are not linked by an edge,
vi · v j = 1, if the vertices i and j are the endpoints of an edge.

The Weyl (or Coxeter) group WX of X is the group of orthogonal transforma-
tions of Pic(X) generated by the involutions

si : u 7→ u+(u · vi)vi, 0≤ i≤ n−1.

This group preserves the orthogonal decomposition Pic(X) = ZkX ⊕ k⊥X and is
isomorphic to the Coxeter group Wn of the Dynkin diagram T2,3,n−3. It turns
out that the definition of WX does not depend on the choice of the realization
of X as a blow-up of the plane; as an abstract group, WX depends only on the
Picard number of X .

Theorem 2.5 (Nagata, McMullen, Uehara). Let k be an algebraically closed
field.

(1) Let X be a rational surface obtained from the projective plane P2
k by a

sequence of blow-ups. The image of Aut(X) in GL(NS(X)) is contained
in the Weyl group WX .

(2) If char(k) = 0 and if Φ is an element of Wn, there exists a rational
surface Y with Picard number n+ 1 and an element g of Aut(Y ) such
that the dynamical degree λ(g) of g is equal to the spectral radius λ(Φ)
of Φ.

(3) There are Salem numbers which are not contained in Λ(P2
k) (resp. in

Λ(X) for any projective surface X).
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When char(k) = 0, this theorem shows that the Salem part of Λ(P2
k) is de-

scribed in purely algebraic terms: It coincides with the set of spectral radii
λ(Φ)> 1, with Φ in some Wn, n≥ 10, and this set does not exhaust all Salem
numbers.

Remark 2.6. Assertion (1) is due to Nagata (see [39, 40]). Assertion (2) is due
to Uehara, based on previous works by McMullen and Bedford and Kim (see
[42]). When the characteristic p of the field is positive, Harbourne proves a
similar result, but for Φ in a normal subgroup Wn(p) of Wn of finite index (the
index goes to +∞ with n, see Example 3.4 in [31]). Assertion (3) makes use of
Theorem A to extend a former result of McMullen. More precisely, McMullen
proves that there are Salem numbers between λL and λP which are not realized
by eigenvalues of elements in the Coxeter groups Wn (see [36]), and deduce
from this that there are Salem numbers which are not realized by dynamical
degrees of automorphisms of surfaces (see [37]); Theorem A implies that Mc-
Mullen’s result holds for dynamical degrees of birational transformations.

2.6. Gaps in the dynamical spectrum. As announced in the introduction, we
can now prove the following corollary to Theorem A.

Corollary 2.7. Let k be an algebraically closed field.

(1) If f is a birational transformation of a projective surface X defined over
k and λ( f ) is in the interval ]1,λP[, then f is conjugate to an automor-
phism of a projective surface Y by a birational mapping φ : X 99K Y .

(2) There is no dynamical degree in the interval ]1,λL[.
(3) If char(k) = 0, the minimum of the dynamical degree λ( f )> 1 among

all birational transformations of projective surfaces defined over k (resp.
of P2

k) is equal to the Lehmer number λL ' 1.176280.

Proof. Let f be a birational transformation of a projective surface X defined
over an algebraically closed field k. Assume that the dynamical degree λ( f )
is a Salem number. From Theorem A, f is conjugate to an automorphism of a
smooth projective surface. Thus, Assertion (1) follows from the fact that λ( f )
is a Salem number if 1 < λ( f )< λP ' 1.324717.

From Theorem 1.2 in [37], we deduce that λ( f ) ≥ λL, where λL is the
Lehmer number. Since all Pisot numbers are larger than λL, this proves as-
sertion (2).

If char(k) = 0, there is an automorphism g of a rational surface X such that
λ(g) = λL (see [4, 5] and [37]); McMullen recently announced that such an
example also exists on a projective K3 surface (see [38]). In particular, the
infimum of all dynamical degrees is a minimum, and is equal to the Lehmer
number. This proves (3). �
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3. SURFACES WHICH ARE NOT RATIONAL

In this section we prove Theorem B and provide an example of a K3 surface
with automorphisms f whose dynamical degrees λ( f ) are degree 22 Salem
numbers.

Let X be a projective surface defined over an algebraically closed field k. In
order to prove Theorem B, we consider the Kodaira dimension of X and refer
to the classification of surfaces in Kodaira dimension 0 and −∞ (see [2]).

3.1. Ruled surfaces. If the Kodaira dimension of X is −∞ but X is not ra-
tional, then X is ruled in a unique, Bir(X)-invariant way. This implies that
all elements of Bir(X) have dynamical degree 1 (see § 4.2.2 and Theorem 4.4
below).

3.2. Minimal models and automorphisms. If the Kodaira dimension of X is
non negative, X admits a unique minimal model X ′. From now on, we replace
X by X ′, so that we now have Bir(X) = Aut(X). In particular, all elements of
Λ(X) \ {1} are Salem numbers, obtained from eigenvalues of linear transfor-
mations of NS(X) (preserving the intersection form).

3.2.1. Positive Kodaira dimension. If the Kodaira dimension is equal to 2, the
automorphism group is finite, and Λ(X) reduces to {1}. If the Kodaira di-
mension of X is equal to 1, the Kodaira-Iitaka fibration provides an Aut(X)-
equivariant fibration X → B from X to a curve B. The divisor class of the
generic fiber of this fibration is an isotropic vector in NS(X). This vector is
Aut(X)-invariant and, consequently, all elements f in Bir(X) are elliptic or
parabolic. This implies that λ( f ) = 1 for all f in Bir(X).

3.2.2. Vanishing Kodaira dimension. Let us now assume that (X is minimal
and) the Kodaira dimension of X is equal to 0. According to the classification
of surfaces, X is either

(i) an abelian surface;
(ii) a hyperelliptic surface, obtained as a quotient of an abelian surface by

a fixed point free group of automorphisms;
(iii) a K3 surface;
(iv) or an Enriques surface.

Hyperelliptic surfaces don’t have automorphisms with λ( f ) > 1, as shown in
[16]. In cases (i), (iii), and (iv), X has Picard number bounded from above by
4, 22 and 10 respectively. This shows that λ( f ) is a Salem number of degree at
most 22. Moreover, the Picard number is at most 20 if the characteristic of k
vanish, so that λ( f ) is an algebraic integer of degree at most 20 in this case.

Proposition 3.1. In characteristic 2, there are examples of pairs (X , f ) where
X is a K3 surface, f : X→ X is an automorphism, and λ( f ) is a Salem number
of degree 22.



DYNAMICAL DEGREES 15

To construct such an example, we make use of one of the main results of
[24]. Let k be an algebraically closed field of characteristic 2. There exists a
K3 surface X , defined over k, such that

(i) the Picard number of X is equal to 22;
(ii) the automorphism group of X is infinite, and does not preserve any

proper subspace of NSR(X).

Let OR(NS(X)) be the Lie group of orthogonal endomorphisms of the Néron-
Severi space with respect to the intersection form. This group is an algebraic
group, and we denote by O0

R(NS(X)) its irreducible component that contains
the identity. From the second property, we deduce that the image Aut(X)] of
Aut(X) in GLR(NS(X)) intersects O0

R(NSR(X)) on a Zariski dense subgroup;
indeed, if G⊂O0

R(NS(X)) is not Zariski dense, then G preserves a non-trivial,
strict subspace of NSR(X) (see [7] for instance).

As Aut(X)] is Zariski dense, we can now prove that the characteristic poly-
nomial of a “general” element of Aut(X)] is irreducible (over Z), its degree
is equal to 22, and its larger root is a Salem number. The proof relies on the
following remark: If g∗ is an element of Aut(X)], then g∗ preserves the integral
structure of NS(X), and preserves the intersection form, the signature of which
is equal to (1,21); hence,

• if g∗ has no eigenvalue of modulus > 1, the roots of χg∗ are algebraic
integers of modulus at most 1 and, by Kronecker Lemma, are roots of
1; thus χg∗ splits as a product of cyclotomic polynomials;
• if g∗ has an eigenvalue of modulus > 1, it is unique and is either qua-

dratic or a Salem number; hence, if χg∗(t) splits as a product of two
non-constant polynomials q(t) and r(t) in Z[t], then χg∗ is divisible by
a cyclotomic polynomial.

Thus, either there are elements g with the required properties, or χg∗ is divis-
ible by a cyclotomic polynomial of degree at most 22 for every g in Aut(X).
Since their degree is bounded by 22, there are only finitely many cyclotomic
polynomials to consider. Let V22 ⊂ R[t] be the set of all monic polynomials of
degree 22. Given a cyclotomic polynomial r(t), the subset

V22(r) = {χ(t) | r(t) divides χ(t)}

is a proper algebraic subset of positive codimension; moreover, the image of
O0

R(NS(X)) in V22 by the characteristic polynomial mapping is not contained
in this set, because there are elements of O0

R(NS(X)) without any eigenvalue
being a root of unity (here we use that 22 is even). Since Aut(X)] is Zariski
dense in O0

R(NS(X)), we conclude that there are elements f ∗ of Aut(X)] such
that χ f ∗(t) is not contained in any V22(r); the characteristic polynomial of such
an element is irreducible (over Z), its degree is equal to 22, and its larger root
is a Salem number.
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Remark 3.2. This argument has now been extended to other examples of K3
surfaces in positive characteristic by Esnault, Oguiso, and Yu (see [27]).

3.3. Discrete spectrum. To conclude the proof of Theorem B, we need to
show that the union of all dynamical spectra Λ(X) where X runs over the set
of non-rational projective surfaces defined over k, and k runs over the set of all
fields, is a discrete subset of the real line. This follows from the upper bounds
22 for the degrees of Salem numbers in Λ(X) and the following lemma.

Lemma 3.3. Let B be a positive number and SalB be the set of Salem numbers
of degree at most B. Then SalB is a closed discrete subset of the real line.

Proof. Let λ be such a Salem number, contained in the interval [a−1,a], with
a > 1. Its minimum polynomial χ(t) ∈ Z[t] has integer coefficients, and all of
them are symmetric polynomials in λ, 1

λ
and its conjugates of modulus 1. Since

all these numbers have modulus at most a, all coefficients of χ are bounded by
CBaB, where CB depends only on B. Since the coefficients of χ are integers,
there is a finite list of possible coefficients, a finite list of possible minimum
polynomials χ, and therefore a finite list of Salem numbers λ ∈ [a−1,a] of
degree ≤ B.

Thus, the intersection of SalB with any compact interval [a−1,a] ⊂ R∗+ is
finite, and SalB is discrete. �

4. BLOW-UPS, BUBBLES, ISOMETRIES

When X is a projective surface, the group Bir(X) acts faithfully by isometries
on a hyperbolic space HX , the dimension of which is infinite when X is ruled
or rational. This construction is described in [17] and [19] ; in this section, we
summarize the main facts and apply them to control centralizers and conjugacy
classes in Bir(X). The reader may consult [14], [17], [19], and [28] for the
results which are summarized in the paragraphs 4.1 and 4.2.

4.1. Bubbles and Picard-Manin space. Let X be a projective surface, de-
fined over an algebraically closed field k. If π : Y→X is a birational morphism,
one obtains an embedding of Néron-Severi groups π∗ : NS(X)→NS(Y ). Given
two birational morphisms π1 : Y1 → X and π2 : Y2 → X , one says that π2 is
above π1 (or covers π1) if π

−1
1 ◦π2 is regular. Starting with two birational mor-

phisms π1 : Y1 → X and π2 : Y2 → X , one can always find a third birational
morphism π3 : Y3→ X which covers π1 and π2. It follows easily that the induc-
tive limit of all groups NS(Yi), for all surfaces Yi above X , is well defined. This
limit is the Picard-Manin space ZX of X ; the intersection form determines a
scalar product on ZX , which we denote by (v,w) 7→ v ·w.

The bubble space B(X) of X is defined as follows. Consider all surfaces Y
above X , i.e. all birational morphisms π : Y → X . Given p1 on Y1 and p2 on
Y2, identify p1 with p2 if π

−1
1 ◦ π2 is a local isomorphism in a neighborhood
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of p2 and maps p2 onto p1. The bubble space B(X) is the union of all points
of all surfaces above X modulo the equivalence relation generated by these
identifications.One can also see a point of B(X) as a divisorial valuation having
a center in X a closed point.If p is a point of the bubble space, represented by
a point p on a surface Y → X , one denotes by E(p) the exceptional divisor of
the blow-up of p, and by e(p) its divisor class, viewed as a point in ZX . These
classes satisfy e(p) · e(p′) = 0 if p 6= p′ and e(p) · e(p) =−1.

Embed NS(X) as a subgroup of the Picard-Manin space. This finite dimen-
sional lattice is orthogonal to e(p) for all p in B(X), and the Picard-Manin
space coincides with the direct sum

ZX = NS(X)⊕
⊕

p
Ze(p)

where p runs over the bubble space. Thus, each element v of the Picard-Manin
space can be written as a finite sum

v = vX +∑
p

a(p)e(p).

The canonical form on ZX is a linear form Ω : ZX → Z, which is defined by

Ω(v) = kX · vX −∑
p

a(p),

where kX is the canonical divisor of X .
There is a completion process, for which the completion ZX of ZX ⊗Z R is

represented by square integrable sums:

ZX = {w+∑
p

a(p)e(p) | w ∈ NSR(X), and ∑
p

a(p)2 < ∞}

The intersection form extends as a scalar product with signature (1,∞) on this
space, but the canonical form Ω doesn’t.

The hyperbolic space HX of X is then defined by

HX = {w ∈ ZX | w ·w = 1, and w ·a > 0 for all ample classes a ∈ NS(X)}.
This space HX is an infinite dimensional analogue of the classical hyperbolic
spaces Hn: The distance dist on HX is defined by

cosh(dist(v,w)) = v ·w
for all pairs of elements of HX ; it is complete. If HX is cut with a subspace
of ZX of dimension n, and the intersection is not empty, the result is a totally
geodesic hyperbolic space of dimension n− 1. In particular, geodesics are
intersections of HX with planes. The projection of HX in the projective space
P(ZX) is one to one, and the boundary of its image is the projection of the cone
of isotropic vectors of ZX . Thus, we denote by ∂HX the set

∂HX = {R+v ∈ ZX | v · v = 0, and v ·a > 0 for all ample classes a ∈ NS(X)}.
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Remark 4.1.
1.– The hyperbolic space HX is log(3)-hyperbolic, in the sense of Gromov (see
[20]).
2.– Since HX is Gromov hyperbolic, one can approximate configurations of
points in HX by configuration of points in metric trees (see [19] for instance).
3.– The set ∂HX coincides with the Gromov boundary of the hyperbolic space
HX (note that HX is not locally compact).

4.2. Isometries and dynamical degrees. The important fact is that Bir(X)
acts faithfully on ZX by continuous linear endomorphisms, preserves the inter-
section form, the effective cone, the nef cone; it also preserves the subset ZX
and canonical form k : ZX → Z (this linear form does not extend to ZX ). In
particular, it preserves the hyperbolic space HX .

Remark 4.2. Intuitively, elements of Bir(X) behave like automorphisms on
ZX , because all points have been blown-up to define ZX , so that all indeter-
minacy points have been resolved. When the Kodaira dimension of X is non-
negative and X is minimal, then Bir(X) coincides with Aut(X). The space HX
can be replaced by the subset of NS(X ,R) of elements v with v · v = 1 and
v · a > 0 for all ample classes a; the action of Bir(X) = Aut(X) is not always
faithful but the kernel coincides with the connected component Aut0(X) up to
finite index (see [34, 18]).

Let f be an element of Bir(X). Denote by f• its action on ZX :

f• : ZX → ZX

is a linear isometry with respect to the intersection form. We also denote by f•
the isometry of HX that is induced by this endomorphism of ZX .

4.2.1. Translation length and types of isometries. The translation length of an
isometry g of HX is defined, as for all hyperbolic spaces, by

L(g) = inf{dist(v,g(v)) | v ∈HX}.

If this infimum is a minimum, either it is equal to 0 and g has a fixed point in
HX , in which case g is elliptic, or it is positive and g is loxodromic (also called
hyperbolic). If g is loxodromic, the set of points x ∈HX such that dist(x,g(x))
is equal to the translation length of g is a geodesic line Ax(g)⊂HX ; its bound-
ary points are represented by isotropic vectors a(g) and b(g) in ZX such that

g(a(g)) = eL(g)a(g) and g(b(g)) = e−L(g)b(g).

The axis of g is the intersection of HX with the plane containing a(g) and b(g).
Normalize the choice of a(g) and b(g) in such a way that a(g) ·b(g) = 1. Let x
be a point of HX , or a point of the isotropic cone of ZX that intersects all ample
classes positively; then, the orbit gn(x) converges to the boundary point R+a(g)
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when n goes to +∞, and to R+b(g) when n goes to −∞. More precisely, in ZX
we have

1
enL(g)

gn(x)→ (x ·b(g))a(g), and
1

enL(g)
g−n(x)→ (x ·a(g))b(g)

as n goes to +∞.
When the infimum is not realized, L(g) is equal to 0, and g is parabolic: g

fixes a unique line in the isotropic cone of ZX ; this line is fixed pointwise, and
all orbits gn(x) in HX accumulate to the corresponding boundary point when n
goes to ±∞ (see [14] for examples of accumulation without convergence).

4.2.2. Types of birational transformations. This classification of isometries
into three types hold for all isometries of HX . For isometries f• induced by
birational transformations of X , there is a dictionary between this classification
and the geometric properties of f . To state it, let us introduce the following
definitions: A birational transformation f of a projective surface X is

(i) virtually isotopic to the identity if there is a positive iterate f n of f
and a birational mapping φ : Z 99KX such that φ−1◦ f n◦φ is an element
of Aut(Z)0;

(ii) a Halphen twist if f preserves a one parameter family of genus one
curves on X but f is not virtually isotopic to the identity;

(iii) a Jonquières twist if f preserves a one parameter family of rational
curves on X but f is not virtually isotopic to the identity.

When f is a Halphen or a Jonquières twist then, after conjugacy by a bira-
tional mapping φ : Z 99K X , f permutes the fibers of a genus one or rational
fibration π : Z→ B. Let z be the divisor class of the generic fiber of this fibra-
tion. Then z is an isotropic vector in ZX that is fixed by f•; in particular, f• can
not be loxodromic.

Remark 4.3. Let f : X 99K X be a Halphen twist, and let φ : Z→ X be a modi-
fication of X on which the f -invariant family of genus one curves form a fibra-
tion π : Z→ B. Let Z′ be a relative minimal model of this genus one fibration
(Z′ is obtained from Z by blowing down exceptional divisors of the first kind
that are contained in fibers of π, and iteration of this process). Then, f becomes
an automorphism of Z′. On the other hand, Jonquières twists are not conjugate
to automorphisms of projective surfaces (see [11]).

Theorem 4.4 (Gizatullin, Cantat, Diller-Favre, see [22, 17]). Let k be an alge-
braically closed field. Let X be a projective surface defined over k. Let f be
birational transformation of X, let f• be the isometry of HX determined by f ,
and let x be a point of HX .

(1) f• is elliptic if and only if f is virtually isotopic to the identity.
(2) If f• is parabolic, either x · f n

• (x) grows linearly with n, and f is a
Jonquières twist, or x · f n

• (x) grows quadratically with n, and f is a
Halphen twist.
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(3) f• is loxodromic if and only if the dynamical degree λ( f ) is > 1.
In all cases, the translation length L( f•) is equal to the logarithm of λ( f ).

Example 4.5. Let f be a birational transformation of the plane P2
k. Let e0 be

the class of a line, viewed as a point in HP2
k
. Then

f•(e0) = deg( f )e0−∑a(p)e(p)

where deg( f ) is the degree of f and a(p) is the multiplicity of the homaloidal
net f∗|O(1)| at the point p (p may be "infinitely near"). Since e0 does not
intersect any of the e(p), one gets

cosh(dist(e0, f•(e0))) = e0 · f•(e0) = deg( f ).

This establishes the link between deg( f n) and dist(e0, f n
p(e0)) which leads to

the equality L( f ) = log(λ( f )) (see § 6.1 for details and complements).

Example 4.6. An element f of the Cremona group is virtually isotopic to the
identity if and only if f has finite order or f is conjugate to an element of
Aut(P2

k) = PGL3(k) (see [11]).

4.3. Centralizers.

Corollary 4.7. Let f be a birational transformation of a projective surface X.
If f is loxodromic, the infinite cyclic group generated by f is a finite index
subgroup of the centralizer of f in Bir(X).

Proof. Let f be a loxodromic birational transformation of the surface X . Then
f acts on the hyperbolic space HX as a hyperbolic isometry, with an invariant
axis Ax( f ). The endpoints of Ax( f ) correspond to two eigenvectors b( f ) and
a( f ) in the isotropic cone of ZX , with

f•(b( f )) =
1

λ( f )
b( f ), and f•(a( f )) = λ( f )a( f ).

These vectors are unique up to scalar multiplication.
Let Cent( f ) denote the centralizer of f in the group Bir(X). It preserves the

eigenlines Rb( f ) and Ra( f ), acting on each of them by scalar multiplication.
This provides a morphism θ : Cent( f )→ R∗+ such that

g•(a( f )) = θ(g)a( f )

for all g in Cent( f ). Moreover, θ(g) or its inverse coincides with the dynamical
degree of g because, if g is loxodromic, then g• has exactly two fixed points on
the boundary of HX .

The image of θ is a subgroup of R∗+ which is contained in Λ(X)∪ {1} ∪
Λ(X)−1. From the spectral gap property, this image does not intersect the
interval ]1,λL[, and is consequently a discrete subgroup of R∗+. Since all infinite
discrete subgroups or R∗+ are cyclic, the image θ(Cent( f )) is cyclic.
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Let Cent( f )0 be the kernel of θ. All we need to prove is that Cent( f )0 is
finite because, then, the exact sequence

1→ Cent( f )0→ Cent( f ) θ→ Z→ 0

proves that Cent( f ) is finite by cyclic.
The group Cent( f )0 preserves Ax( f ) and fixes a( f ). It must therefore fix

Ax( f ) pointwise. Let q be a point of Ax( f ) and let ∆ be its distance to e0 in
HX (where, as above, e0 is the class of a multiple of an ample divisor D on
X with e2

0 = 1). Let h be an element of Cent( f )0. Then dist(e0,h•(e0)) ≤
2dist(e0,q) = 2∆; hence

h•(e0) · e0 ≤ cosh(2∆).

This shows that the degree of h ∈ Cent( f )0 ⊂ Bir(X) with respect to the polar-
ization D is uniformly bounded by some explicit constant M = cosh(2∆).

Assume that the Kodaira dimension Kod(X) is non-negative. Changing X
into its unique minimal model, we assume that X is minimal; this implies
Bir(X) = Aut(X) because Kod(X) ≥ 0. Thus, Aut(X) contains a loxodromic
element (determined by f ) and X is either an abelian surface, a K3 surface, or
an Enriques surface. The group Cent( f )0 is, now, a group of automorphisms
of X with bounded degree with respect to a fixed polarization D on X . This
implies that the intersection of Aut(X)0 with Cent( f )0 is a finite index sub-
group of Cent( f )0. Thus, either Cent( f )0 is finite, or it contains a connected
algebraic subgroup G⊂ Aut(X)0 of positive dimension. In the latter case, X is
an abelian variety and G acts by translations on X , because Aut(X) is discrete
for K3 and Enriques surfaces. Let G1 be a closed, one dimensional subgroup of
G: Its orbits form a fibration of X by elliptic curves. Since f commutes to G1,
it preserves this fibration of X . This contradicts the fact that f is loxodromic,
and proves that Cent( f )0 is finite.

Assume that Kod(X) is negative. Since Bir(X) contains a loxodromic ele-
ment f , the surface X is rational, and we can suppose that X is the projective
plane and e0 is the class of a line in P2

k. The group Cent( f )0 is a subgroup of
Bir(P2

k) of bounded degree. From Corollaries 2.8 and 2.18 of [12], we deduce
that its Zariski closure in Bir(P2

k) is an algebraic subgroup of Bir(P2
k). Denote

by G the connected component of the identity in this group. If Cent( f )0 is
infinite, the dimension of G is positive, and a result of Enriques shows that
G is contained, after conjugation, in the group of automorphisms of a mini-
mal, rational surface (see [9, 26]). As a consequence, G contains a Zariski
closed abelian subgroup A whose orbits have dimension 1 in X . Those orbits
are organized in a pencil of curves that is invariant under the action of f . This
contradicts λ( f )> 1 and shows that Cent( f )0 is finite. �

4.4. Conjugacy between loxodromic transformations. Assertion (1) of Corol-
lary 2.7 can be rephrased as follows: For all loxodromic elements f in Bir(P2

k)
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and all points x in HP2
k
,

dist(x, f•(x))≥ log(λL)

where λL is the Lehmer number.

Lemma 4.8. For all loxodromic elements f in Bir(P2
k) and all points x in HP2

k
,

dist(x,Ax( f•))≤ 28 ·dist(x, f•(x)).

Remark 4.9. The constant 28 is the smallest integer m such that m log(λL) ≥
4log(3), and the occurrence of log(3) comes from the fact that (HP2

k
,dist) is

log(3)-hyperbolic in the sense of Gromov (see Remark 4.1).

Proof. Let y be the projection of the point x on the axis of f•. Let n be the least
positive integer which satisfies

dist(y, f n
• (y))≥ 8log(3).

Consider the geodesic quadrilateral with vertices x, y, f n
• (y), and f n

• (x). By
hyperbolicity, the geodesic segment [x, f n

• (x)] is contained in the (2log(3))-
neighborhood of the other three, and its length is at least 8 log(3); hence, its
middle point m is at most (2log(3))-away from [y, f n

• (y)]. Let m′ be the projec-
tion of m on the segment [y, f n

• (y)]. Then the distance from x to m′ is equal to
the sum of the distances from x to y and from y to m′, up to an error of 2 log(3).
The same estimate in the triangle (m′, f n

• (y), f n
• (x)) provides the inequality :

dist(x, f n
• (x))≥ dist(x,y)+dist(y, f n

• (y))+dist( f n
• (y), f n

• (x))−8log(3).

Since f• is an isometry and y is the projection of x on its axis, the choice for n
implies

n ·dist(x, f•(x))≥ 2dist(x,Ax( f•)).
On the other hand, Corollary 2.7 shows that n can be chosen to be the smallest
integer above 8log(3)/ log(λL)' 54.13, that is n = 55. �

Theorem 4.10. Let f and g be two loxodromic elements of Bir(P2
k). If f is

conjugate to g, one can find an element h of Bir(P2
k) such that f = hgh−1 and

deg(h)≤ 257(deg( f )deg(g))29

Proof. Let x be the projection of e0 on the axis of f , and y be its projection
on the axis of g. Let h0 be an element of Bir(P2

k) that conjugates f to g; it
maps y onto a point z0 := (h0)•(y) of Ax( f•). Let k be an integer such that
dist( f k

p(z0),x) ≤ log(λ( f )). Such a k exists because f• acts by translation of
length log(λ( f )) on its axis. Changing h0 into h = f k ◦ h0, we obtain a new
conjugacy from g to f that maps y onto a point z = h(y) at distance at most
log(λ( f )) from x. Now,

dist(e0,h•(e0))≤ dist(e0,x)+dist(x,h•(y))+dist(h•(y),h•(e0)).
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Since h• is an isometry we get

dist(e0,h•(e0))≤ dist(e0,Ax( f•))+ log(λ( f ))+dist(e0,Ax(g•)).

The previous lemma can then be applied to e0, and gives

dist(e0,h•(e0))≤ log(λ( f ))+28 · (dist(e0, f•(e0))+dist(e0,g•(e0))).

The result follows from log(λ( f•))≤ dist(e0, f•(e0)), cosh(dist(e0, f•(e0))) =
deg( f ) and easy estimates for the reciprocal function of cosh(·). �

Let us add the following complement to Theorem 4.10, which shows that the
hypothesis on f and g (being loxodromic) in the theorem can be checked in a
finite number of steps.

Corollary 4.11. An element f ∈Bir(P2
k) is loxodromic if and only if deg( f 400)≥

319deg( f 200).

Proof. Let us write g = f 200, which is loxodromic if and only if f is.
One direction has been proved by Junyi Xie in [43]: If deg(g2)≥ 319deg(g),

then dist(e0,g2
•(e0))> dist(e0,g•(e0))+18log(3), and this implies that g• is a

loxodromic isometry because HX is log(3)-hyperbolic.
In the other direction, if f• is loxodromic, the translation length of f• is at

least log(λL). Hence, the translation length of g is larger than 200log(λL).
Then, as in the proof of Lemma 4.8,

dist(e0,g2
•(e0))≥ dist(e0,g•(e0))+L−8log(3),

and this implies that deg(g2)≥ 319deg(g) because λ200
L > 38+19. �

Example 4.12. Let m be a positive integer and a be a non-zero element of the
field k. Let (x,y) be affine coordinates of the plane. Consider the transfor-
mation fa : (x,y) 7→ (ax,y). This automorphism is conjugate to ga,m : (x,y) 7→
(ax,amy) by the monomial transformation h(x,y) = (x,xm · y). The degree of
fa and of ga,m is equal to 1, but the degree of h is m+ 1. If aZ is a Zariski
dense subgroup of k∗, one easily shows that there is no conjugacy h′ of degree
< m+1. Thus, the degree of the conjugacy is not bounded by the degree of fa
and ga,m if one does not assume λ( f )> 1.

5. THE WEYL GROUP W∞

We now define, and study, a group of linear transformations of ZP2
k
, with

integer coefficients, preserving the intersection form. This group of isometries
W∞ is a subgroup of Isom(ZP2

k
) that contains the image of Bir(P2

k).
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5.1. Definition of W∞. In what follows, e0 ∈ ZP2
k

is the class of a line. Let p1,
p2, and p3 be the three points of the plane defined by

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1].

The “infinite Weyl group” W∞ is the group of Z-linear automorphisms of ZP2
k

generated by:
(1) the group SymB(P2k)

of permutations of the set B(P2
k), that acts on ZP2

k
by sending e0 to itself and permuting the e(p).

(2) the involution σ0 that sends e0 onto 2e0−e(p1)−e(p2)−e(p3), sends
e(pi) onto e0− e(p1)− e(p2)− e(p3)+ e(pi) for i = 1,2,3 and fixes
e(p) for all p in B(P2

k)\{p1, p2, p3}.
Let p and q be two elements of B(P2

k). The element e(p)− e(q) of ZP2
k

has
self-intersection −2; as a consequence, the linear transformation

τp,q : x 7→ x+(x · (e(p)− e(q)))(e(p)− e(q))

is the orthogonal reflection that maps e(p)− e(q) to its opposite. The group
generated by all these reflections is the subgroup of elements of Sym(B(P2

k))
with finite support. Similarly, σ0 corresponds to the orthogonal reflection as-
sociated to e0− e(p1)− e(p2)− e(p3). This explains why W∞ is called infinite
Weyl group (or Coxeter group).

By construction, W∞ preserves the intersection form, the canonical form Ω,
and extends as a group of isometries of HP2

k
.

Lemma 5.1. Let k be an algebraically closed field. If f is an element of
Bir(P2

k), the linear transformation f• : ZP2
k
→ ZP2

k
is an element of W∞.

Proof. If f has degree 1, it is an element of the group Aut(P2
k), acts by permu-

tation on B(P2
k) and fixes the class e0. In other words, the map f 7→ f• provides

an embedding of Aut(P2
k) into SymB(P2k)

⊂W∞. If f is the standard quadratic
transformation

[x : y : z] 99K [yz : xz : xy]

it has three base-points, namely p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], and p3 = [0 : 0 :
1]. Moreover, f• acts as σ0 on e0 and the e(pi) for i = 1,2,3, and transforms
each e(q), q ∈ B(P2

k) \ {e(p1),e(p2),e(p3)}, to some e(q′) with q′ ∈ B(P2
k) \

{e(p1),e(p2),e(p3)}. This implies that f• is the composition of σ0 with an
element of SymB(P2k)

, so that f• is in W∞. The result follows from Noether-
Castelnuovo theorem, which asserts that Bir(P2

k) is generated by Aut(P2
k) and

the standard quadratic transformation, when k is algebraically closed (see [32]
or [1]). �

Remark 5.2.
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1.– The group W∞ is strictly larger than Cr2(k) because the elements of
Sym(B(P2

k)) fix e0 but most of them are not induced by projective linear trans-
formations of the plane.

2.– Lemma 5.1 is implicitly contained in Noether’s original “proof” of Noether-
Castelnuovo theorem.

5.2. Degrees, multiplicity, base-points. Let h be an element of W∞. We de-
fine the degree deg(h) by deg(h) = e0 · h(e0); the degree is a positive integer
because all elements of W∞ preserve HP2

k
. Writing

h(e0) = deg(h)e0−∑
p

a(p)e(p),

where p runs over B(P2
k), we say that p is a base-point of h−1 if a(p) 6= 0;

the integer a(p) is the multiplicity of the base-point. Since h is an isometry
of HP2

k
, it is either elliptic, parabolic, or loxodromic; moreover, the dynamical

degree
λ(h) = lim

k→+∞
(deg(hk)1/k)

is well defined, and its logarithm is the translation length L(h).
It is not a priori clear that the multiplicities a(p) are non-negative. For exam-

ple, Λ = 3e0 + e(p1)−∑
7
i=2 e(pi) satisfies Λ2 = 1 and intersects the canonical

form as e0 does. To show that such an element cannot be sent onto e0 by an
element of W∞, we need the following lemma.

Lemma 5.3. Let v ∈ ZP2
k

be one of the following vectors:

e0, e(q1), e0− e(q1), 3e0−
l

∑
i=1

e(qi)

for some distinct points q1, . . . ,ql ∈ B(P2
k). For any h ∈W∞, the following

holds:
(1) There exists n≥ 1 and s1, . . . ,sn ∈ Sym(B(P2

k)) satisfying

h(v) = snσ0sn−1σ0 . . .s2σ0s1(v)
(siσ0 . . .σ0s1)(v) · e0 > (si−1σ0 . . .σ0s1)(v) · e0

for all i = 2, . . . ,n.
(2) Either h(v) = e(q) for some q ∈ B(P2

k), or there exists k ≥ 0, non-
negative integers d,a1, . . . ,ak, and a finite set of points r1, . . . ,rk ∈
B(P2

k), such that

h(v) = de0−
k

∑
i=1

aie(ri).
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Remark 5.4. One can list elements of degree 1 or 2 in W∞. This will be useful
for the proof of Lemma 5.3.
• Let h be an element of degree 1 in W∞. This means that h(e0) = e0−

∑a(p)e(p) where a(p) ∈ Z vanishes for all but a finite number of points p ∈
B(P2

k). Since the self-intersection is preserved under the action of h, the sum
∑p a(p)2 is equal to 0; this implies that h(e0) = e0. Let p be an element of
B(P2

k). From
h(e(p)) · e0 = h(e(p)) ·h(e0) = 0

we deduce that h(e(p)) = ∑b(q)e(q) with b(q) ∈ Z, and then that h(e(p)) =
±e(q) for some point q in B(P2

k), because the self-intersection of h(ep) is −1.
Since the canonical linear form is preserved, one concludes that h(ep) = eq. In
other words, h is an element of Sym(B(P2

k)).
• Say that h∈W∞ is quadratic if its degree is equal to 2. Write h(e0)= 2e0−

∑a(p)e(p) with a(p) ∈ Z. The invariance of the self-intersection provides

4−∑
p

a(p)2 = 1;

hence, there are exactly three base points, each with multiplicity 1. Composing
h with an element of Sym(B(P2

k)), one may assume that these three base-points
coincide with the base-points p1, p2, and p3 of σ0. Then σ0h has degree 1.
We conclude that quadratic elements are composition sσ0s′ with s and s′ in
Sym(B(P2

k)).

Proof. The proof of this lemma parallels classical facts from Coxeter group
theory.

We first prove that (1) implies (2). The proof proceeds by induction on the
minimum number n≥ 1 for which h satisfies assertion (1). If n= 1 then h(v) =
s1(v) for some element s1 ∈ Sym(B(P2

k)) , and assertion (2) follows. Let us
now assume that n≥ 2 and apply the induction hypothesis to sn−1σ0 . . .s2σ0s1.
Let w = sn−1σ0 . . .s2σ0s1(v). If w is equal to eq for some q ∈ B(P2

k), we apply
snσ0: h(v) = snσ0(w) is either e(q′) or e0− e(q′)− e(q′′) for some q′,q′′ ∈
B(P2

k), and the first case is in fact impossible by (1). Otherwise, we write w =

de0−∑
k
i=1 cie(ri) for some points r1, . . . ,rk ∈ B(P2

k) and some non-negative
integers d,ci. Ordering the points and adding, if necessary, points with trivial
coefficients ci = 0, we assume that r1, r2, and r3 are the three base-points p1,
p2 and p3 of σ0. By definition of σ0, we find

σ0(w) = (d +d′)e0−
3

∑
i=1

(ci +d′)e(ri)−
m

∑
i=4

cie(ri),

where d′ = d− c1− c2− c3. Since

d +d′ = snσ0 . . .s2σ0s1(v) · e0 > d,
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we obtain d′ > 0 and see that ci +d′ is non-negative for i = 1,2,3. This proves
that (1)⇒ (2) by induction on n.

We now prove assertion (1). By definition of W∞, we can always write h as
a composition smσ0sm−1σ0 . . .s2σ0s1 for some s1, . . . ,sm ∈ Sym(B(P2

k)). For
i = 1, . . . ,m, write

wi = siσ0 . . .σ0s1(v) and di = wi · e0.

Our aim is to replace the sequence (si)
m
i=1, keeping smσ0sm−1σ0 . . .s2σ0s1(v) =

h(v), in order to assure that the sequence (di)
m
i=1 increases strictly.

Let s and s′ be elements of Sym(B(P2
k)). One easily checks, for all possibil-

ities of v, that

s′σ0s(v) · e0 > v · e0 or s′σ0s(v) = s′′(v)

for some s′′ ∈ Sym(B(P2
k)). We can then change the sequence (si)

m
i=1 to assure

that m = 1, in which case the result is obvious, or d2 > d1.
We set S = {i ∈ {2, . . . ,m−1} | di−1 < di ≥ di+1} and write D = max{di|i ∈

S} with the convention D = 0 if S = /0. We then denote by l the number of ele-
ments i ∈ {2, . . . ,m−1} such that di = D and prove assertion (1) by induction
on the pairs (D, l), ordered lexicographically.

If D= 0 or l = 0, then S = /0 and we have d1 < d2 < · · ·< dm, which achieves
the proof. We can thus assume that there is some k ∈ S such that dk = D > 0.
Let us recall that

dk−1 < dk ≥ dk+1.

Since k < m, the induction hypothesis and the proof of (1)⇒ (2) yield the
existence of points p1, . . . , pr such that

wk = skσ0 . . .s2σ0s1(v) = dke0−
r

∑
i=1

aie(pi)

for some non-negative integers a1, . . . ,ar. We again assume that p1, p2, p3 are
the three base-points of σ0. Since wk+1 = sk+1σ0(wk) and wk−1 =σ0(sk)

−1(wk),
we find

dk+1 = e0 ·σ0(wk) = σ0(e0) ·wk = 2dk−
3

∑
i=1

e(pi) ·wk = 2dk−
3

∑
i=1

ai,

and

dk−1 = e0 ·σ0(sk)
−1(wk) = skσ0(e0) ·wk = 2dk−

3

∑
i=1

e(qi) ·wk,

where qi = sk(pi) for i = 1,2,3. This implies

3

∑
i=1

e(qi) ·wk > dk and
3

∑
i=1

e(pi) ·wk ≥ dk.
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Let t + 2 be the number of points of the set {p1, p2, p3,q1,q2,q3}. We can
define t sets of 3 points P1, . . . ,Pt ⊂ B(P2

k), such that P1 = {q1,q2,q3}, Pt =
{p1, p2, p3}, and

• Pi∩Pi−1 contains 2 points and
• ∑x∈Pi wk · e(x)> dk for i = 1, . . . , t−1.

For each i= 1, . . . , t, we fix an element s′i ∈ Sym(B(P2
k)) that sends {p1, p2, p3}

onto Pi; for i = 1, we choose s′1 to be sk and for i = t we choose s′t = Id. We
then write w′i = σ0(s′i)

−1(wk) and gi = σ0(s′i+1)
−1s′iσ0. To illustrate this, we

make a picture in the case where t = 4:

wk
σ0(s′4)

−1

**

σ0(s′1)
−1

ss
σ0(s′3)

−1

��

σ0(s′2)
−1

��

wk−1 = w′1 g1

((

w′4

w′2
g2 // w′3

g3
99

For i = 1, . . . , t − 1, the inequality ∑x∈Pi wk · e(x) > dk yields e0 ·w′i < dk.
Moreover, the fact that Pi∩Pi−1 contains two points implies that gi is an ele-
ment of W∞ of degree 2; as such, it is equal to aiσ0bi for some ai,bi ∈ SymB(P2k)
(see Remark 5.4).Because s′t preserves Pt = {p1, p2, p3}, sk+1σ0s′tσ0 is equal
to some at ∈ SymB(P2k)

. We can then write sk+1σ0skσ0 ∈W∞, that sends wk−1
onto wk+1, as

sk+1σ0skσ0 = (sk+1σ0s′tσ0)σ0(s′t)
−1s′1σ0

= at(σ0(s′t)
−1s′t−1σ0) . . .(σ0(s′3)

−1s′2σ0)(σ0(s′2)
−1s′1σ0)

= atgtgt−1 . . .g1.
For i = 1, . . . , t − 1, gi . . .g1(wk−1) = w′i, which has intersection with e0

smaller than dk. The replacement above in the decomposition (writing each
gi as aiσ0bi and rearranging the terms) either decreases D or decreases l, with-
out changing D. �

5.3. Noether inequality. Let h be an element of W∞ of degree d. By Lemma 5.3,
there is a finite subset of points qi ∈ B(P2

k) i = 2, . . . ,k such that

h(e0) = de0−
k

∑
i=1

aie(qi),

where the ai are positive integers. Computing h(e0)
2 = e2

0 = 1 and applying
the canonical form Ω to h(e0), we get the classical Noether equalities

k

∑
i=1

(ai)
2 = d2−1,

k

∑
i=1

ai = 3d−3. (5.1)

Lemma 5.5 (Noether inequality). Let h be an element of W∞ of degree d ≥ 2,
and let a1, . . . ,ak be the multiplicities of the base-points of h.
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(1) The following equality is satisfied.

(d−1)(a1 +a2 +a3− (d +1)) = (a1−a3)(d−1−a1)+
(a2−a3)(d−1−a2)+

∑
k
i=4 ai(a3−ai)

(2) For any i, j with 1≤ i < j ≤ k, we have ai +a j ≤ d.
(3) Ordering the ai such that a1 ≥ a2 ≥ a3 ≥ a4 . . . we have

a1 +a2 +a3 ≥ d +1.

Proof. To prove assertion (1), multiply the second Noether relation by a3 and
subtract it from the first; then rearrange the terms.

Assertion (2) is equivalent to (e0− e(qi)− e(q j)) · (h−1(e0)) ≥ 0. Take an
element s∈ SymB(P2

k)
that sends qi and q j onto p1 = [1 : 0 : 0] and p2 = [0 : 1 : 0].

This implies that σ0s maps e0−e(qi)−e(q j) onto e(p3), where p3 = [0 : 0 : 1].
The inequality is now equivalent to (σ0sh−1)(e0) ·e(p3)≥ 0, and follows from
Lemma 5.3.

Assertion (2) implies that d−1−ai ≥ 0 for all i, since the number of base-
points is bigger than 2. Then, assertion (3) follows from the first one, because
the right-hand side of the equality is non-negative. �

5.4. Jonquières elements. An element of W∞ is called a Jonquières element
with respect to e0−e(p) (or to the point p∈B(P2

k)) if h(e0−e(p)) = e0−e(p).
Jonquières twists f in Bir(P2

k) are conjugate to Jonquières elements within
Bir(P2

k) if k is algebraically closed.

Lemma 5.6. Let h ∈W∞, and let p1,q1 be points of B(P2
k) such that h(e0−

e(p1)) = e0− e(q1). Let m be the degree of h. There exists two subsets of
2m−2 points {p2, . . . , p2m−1} and {q2, . . . ,q2m−1} in B(P2

k), such that q1 6= qi
and p1 6= pi for i≥ 2, and such that the following hold:

h(e0) = me0− (m−1)e(q1)−∑
2m−1
i=2 e(qi);

h−1(e0) = me0− (m−1)e(p1)−∑
2m−1
i=2 e(pi);

h(e(p1)) = (m−1)e0− (m−2)e(q1)−∑
2m−1
i=2 e(qi);

h−1(e(q1)) = (m−1)e0− (m−2)e(p1)−∑
2m−1
i=2 e(pi);

h(e(pi)) = e0− e(q1)− e(qi) for i = 2, . . . ,2m−1;
h−1(e(qi)) = e0− e(p1)− e(pi) for i = 2, . . . ,2m−1.

Proof. Write h(e0) = me0−∑
k
i=1 aie(qi), where the ai are positive integers.

Since m− a1 = (e0− e(q1)) · h(e0) = (e0− e(p1)) · e0 = 1, we obtain a1 =
m−1. From Noether equalities, one obtains ∑

k
i=2 ai = ∑

k
i=2(ai)

2 = 2m−2. In
particular, all ai are equal to 1 and k = 2m−2:

h(e0) = me0− (m−1)e(q1)−
2m−2

∑
i=2

e(qi).
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From h(e(p1)) = h(e0)− (e0−e(q1)) we deduce h(e(p1)) = (m−1)e0− (m−
2)e(q1)−∑

2m−2
i=2 e(qi).

Apply now Lemma 5.3 for the elements e(qi), i = 1, . . . ,2m−2. One finds a
subset {p1, . . . , pl} of B(P2

k) and non-negative integers bi,ci1, . . . ,cil such that

h−1(e(qi)) = bie0−
l

∑
j=1

ci je(p j).

Since e0 · h−1(e(qi)) = h(e0) · e(qi) = 1 and e(p1) · h−1(e(qi)) = h(e(p1)) ·
e(qi)= 1, we get bi = ci1 = 1. From (h−1(e(qi)))

2 =−1 follows that h−1(e(qi))=
e0− e(p1)− e(pi) for some point pi ∈ B(P2

k) distinct from p1. Doing this for
each i, this defines 2m−1 points p2, . . . , p2m−1. Then

h(e(pi)) = h(e0− e(p1))−h(e0− e(p1)− e(pi)) = e0− e(q1)− e(qi).

It remains to observe that mh(e0)− (m−1)h(e(p1))−∑
2m−1
i=2 h(e(pi)) = e0, so

h−1(e0) = me0− (m−1)e(p1)−∑
2m−1
i=2 e(pi); the value of h−1(e(q1)) follows

now directly from h(e0− e(p1)) = e0− e(q1). �

Lemma 5.7. Let h1,h2 ∈W∞ be Jonquières elements with respect to the same
point p ∈ B(P2

k). Then

deg(h1h2)< deg(h1)+deg(h2).

In particular, the sequence {deg(h1)
n}n∈N grows at most linearly and h1 is not

loxodromic.

Remark 5.8. Let m ≥ 2 be an integer and h be an isometry of a finite dimen-
sional hyperbolic space Hm; here, Hm is one of the two connected components
of the affine quadric x2

0 = x2
1+ . . .+x2

m in Rm+1, and h is the restriction of an el-
ement of O1,m(R) preserving Hm. Assume that h is parabolic ; this means that
the linear transformation h is not contained in a compact subgroup of O1,m(R)
but does not have any eigenvalue of modulus > 1. Then, ‖ hn ‖ grows quadrat-
ically with n. In other words, given any base point e0 in Hm, the sequence of
distances dist(e0,hn(e0)) grows like cosh(cn2) for some positive constant c.

Lemma 5.7 shows that the behavior of parabolic transformations may be
different if Hn is replaced by its infinite dimensional sibling. For instance,
consider the birational transformation f : (x,y) 7→ (xy,y). Then f• determines
a Jonquières element of W∞ with deg( f n

• ) = n; equivalently, dist(e0, f n
p(e0))

grows like cosh(cn).

Proof. Note that deg(h1h2) = h1h2(e0) ·e0 = h2(e0) · (h1)
−1(e0). Let q2, . . . ,qk

be the base-points of h1 or (h2)
−1 which are distinct from p. Because (e0−

e(p)) · (hi)
±1(e0) = (e0− e(p)) · e0 = 1, we get

(h1)
−1(e0) = d1e0− (d1−1)e(p)−∑

k
i=2 aie(qi),

h2(e0) = d2e0− (d2−1)e(p)−∑
k
i=2 bie(qi),
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for some non-negative integers d1, d2, ai, and bi. Moreover, d1 = deg(h1),
d2 = deg(h2). Hence,

deg(h1h2) = d1d2− (d1−1)(d2−1)−∑aibi ≤ deg(h1)+deg(h2)−1.

�

Proposition 5.9. Let h be an element of W∞ of degree d ≥ 3. Let q1, . . . ,qk
be the points which are base-points of either h or h−1. Let ai and bi be the
multiplicities of the base points: ai = e(qi) · h−1(e0) and bi = e(qi) · h(e0).
Then one of the following properties holds:

(1) d < 3(d−ai)(d−bi);
(2) ai = d− 1 = bi for at least one base-point qi; in that case h is a Jon-

quières element with respect to e0− e(qi).
In particular if h is not a Jonquières element of W∞, then

d− (ai +bi)/2 >
√

d/3

for all i = 1, . . . ,k.

Proof. To simplify the notation, write ei = e(qi) for i = 1, . . . ,k. Suppose that
one of the ai is equal to d−1, and order the points to assume a1 = d−1. Since
a1 = h(e1) ·e0, we have h(e0−e1) ·e0 = 1; this implies that h(e0−e1) = e0−e j
for some j and we deduce b j = d−1. If j = 1, then h is a Jonquières element
with respect to e0− e1. Assume now that j 6= 1. Lemma 5.6 implies that the
ai for i 6= 1 and the bi for i 6= j are equal all to 0 or 1. In particular, for each
i, we get (d− ai)(d− bi) ≥ d− 1 > d/3. This proves that either (1) or (2) is
satisfied when some ai is equal to d−1.

Assume now that a j < d − 1 for all indices j. In particular h(e0− e j) is
distinct from e0− e j. One only needs to show that d < 3(d− ai)(d− bi) for
all i. Reordering the points one may assume i = 1.

We have

h(e0− e1) · e0 = (e0− e1) ·h−1(e0) = d−a1 ≥ 2

and we can write

h(e0− e1) = (d−a1)e0−∑
k
i=1 riei

for some coefficients ri ≥ 0. Moreover

1≤ h(e0− e1) · (e0− e1) = d−a1− r1.

because e0− e1 and h(e0− e1) are two isotropic elements of ZP2
k

in the bound-
ary of HP2

k
that are not orthogonal (hence their intersection is a positive inte-

ger). As h preserves the canonical linear form,
k

∑
i=1

ri = 3(d−a1)−2.



DYNAMICAL DEGREES 32

From h(e0) ·h(e0− e1) = e0 · (e0− e1) = 1 we get

d(d−a1)−b1r1 = ∑
k
i=2 biri +1

where bi = ei · h−1(e0) ≥ 0 is the multiplicity of pi as a base-point of h. Ap-
plying Lemma 5.5 to h we have b1 + bi ≤ d for i = 2, . . . ,k, so bi ≤ d− b1.
Because d(d−a1)−b1r1 = d(d−a1− r1)+(d−b1)r1 ≥ d, we get

d ≤ 1+(d−b1)
k

∑
i=2

ri ≤ 1+(d−b1) · (3(d−a1)−2)< 3(d−b1)(d−a1).

This concludes the proof of the alternative. Then, assertion (1) implies

(d− (ai +bi)/2) = (d−ai)+(d−bi)
2

≥
√
(d−ai)(d−bi)

>
√

d/3.

This concludes the proof of the proposition. �

5.5. Halphen elements. Given nine distinct points qi in B(P2
k), the class

K = 3e0−
9

∑
i=1

e(qi)

is an isotropic vector of ZP2
k
. An element h of W∞ is an Halphen element with

respect to such a class K if h(K) = K.

Lemma 5.10 (Growing of Halphen type maps). If h1 and h2 are Halphen ele-
ments of W∞ with respect to the same isotropic class K then√

deg(h1h2)<
√

deg(h1)+
√

deg(h2).

In particular, the sequence {deg(h1)
n}n∈N grows at most quadratically and h1

is not loxodromic.

Proof. Note that deg(h1h2) = h1h2(e0) · e0 = h2(e0) · (h1)
−1(e0). For i = 1,2,

write di = deg(hi) and define vi by

(hi)
−1(e0) =

di

3
K + vi.

This decomposition satisfies e0 · vi = 0,

3 = K · e0 = K · (hi)
±1(e0) = K · vi

because K ·K = 0, and

1 = hi(e0)
2 = (vi)

2 +2
di

3
(K · vi) = (vi)

2 +2di.

Writing v1 = ∑a(p)e(p) and v2 = ∑b(p)e(p), one gets

(v1 · v2)
2 = (∑a(p)b(p))2 ≤∑a(p)2 ·∑b(p)2 = (v1)

2 · (v2)
2.
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Hence,

deg(h1h2) = (
d1

3
K + v1) · (

d1

3
K + v2)

= d1 +d2 + v1 · v2

≤ d1 +d2 +
√
(2d1−1)(2d2−1)

< (
√

d1 +
√

d2)
2.

�

Lemma 5.11. Let h be an element of W∞, let p1, . . . , pm the points which are
base-points of either h or h−1. Let ak and bk be the multiplicities of the base
points: ak = h(e0) · e(pk), bk = h−1(e0) · e(pk). If

d/3≥ 3+(3+
m

∑
j=10

b j)

(
9

max
i=1
|3ai−d|+

m

∑
j=10

a j

)
.

then h is an Halphen element with respect to K = 3e0−∑
9
i=1 e(pi).

Proof. To simplify the notation, we write ek = e(pk) for k = 1, . . . ,m. Thus,

h(e0) = de0−
9

∑
i=1

aiei−
m

∑
j=10

a je(q j)

h−1(e0) = de0−
9

∑
i=1

biei−
m

∑
j=10

b je(q j)

where the multiplicities ak and bk are non-negative integers (1≤ k ≤ m).
Denote by K ∈ ZP2

k
the element 3e0−∑

9
i=1 ei, and write

h(K) = ne0−
m

∑
i=1

ckek ;

to obtain such a formula, we may have to allow new base points, and thus
increase the number m. By Lemma 5.3, n is a positive integer, and the ck are
non-negative integers.

The canonical form Ω vanishes on K. The invariance of Ω gives

3n =
m

∑
k=1

ck

and h(K) 6= e0− ek for all k (because Ω(e0− ek) = 2 6= 0). From Lemma 5.3
we get K · (e0− ek) = h(K) ·h(e0− ek)> 0 for all indices k:

ck ≤ n−1, ∀1≤ k ≤ m.

Since h preserves the intersection form, Hodge index theorem implies that
h(K) = K if and only if h(K) ·K = 0, if and only if h(K) is proportional to
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K. We now assume that h does not fix K; this implies that h(K) ·K is positive,
hence that

1≤ 3n−
9

∑
i=1

ci and
9

∑
i=1

ci ≤ 3n−1

Since h(K) · e0 = K ·h−1(e0), Noether equalities imply

n = 3d−
9

∑
i=1

bi = 3+
m

∑
j=10

b j ≥ 3.

We now compute h(e0) ·h(K), and get

3 = dn−
9

∑
i=1

aici−
m

∑
j=10

a jc j =
d
3
(3n−

9

∑
i=1

ci)−
9

∑
i=1

(ai−
d
3
)ci−

m

∑
j=10

a jc j.

Then

d/3 ≤ 3+
9

∑
i=1

(ai−
d
3
)ci +

m

∑
j=10

a jc j

≤ 3+

(
9

∑
i=1

ci

)
9

max
i=1

∣∣∣∣ai−
d
3

∣∣∣∣+max
j≥10

(
c j
) m

∑
j=10

a j

≤ 3+(3n−1)
9

max
i=1
|ai−

d
3
|+(n−1)

m

∑
j=10

a j

≤

(
3+

m

∑
j=10

b j

)(
3(

9
max
i=1
|ai−

d
3
|)+

m

∑
j=10

a j

)
+R

where

R = 3− 9
max
i=1
|ai−

d
3
|−

m

∑
j=10

a j < 3.

This concludes the proof. �

5.6. Base points of Jonquières transformations: From W∞ to Bir(P2
k). El-

ements of Jonquières type in W∞ are not all realized by birational transforma-
tions of the plane. The precise constraints that the base points must satisfied
are listed in the following proposition. Both the statement and its proof are
necessary to obtain Theorem D.

Proposition 5.12. Let p1, . . . , p2m−1 ∈ B(P2
k) be 2m−1 distinct points. There

exists a Jonquières element f ∈ Bir(P2
k) whose base-points are p1, . . . , p2m−1,

and such that

f•−1(e0) = me0− (m−1)e(p1)−
2m−1

∑
i=2

e(pi)
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if and only if the points pi can be ordered so as to satisfy the following proper-
ties:

(1) p1 is a proper point of P2
k;

(2) for any i≥ 2, pi is either a proper point of P2
k or in the first neighbour-

hood of p j for some j < i;
(3) for all i > j ≥ 2, there is no line of P2

k which passes through p1, pi, p j;
(4) for all triples k > j > i ≥ 2, at least one of the two points p j, pk does

not belong, as proper or infinitely near point, to the exceptional divisor
associated to pi;

(5) the number of points in {p2, . . . , p2m−1} that belong, as proper or infin-
itely near points, to the exceptional divisor associated to p1, is at most
m−1 (these are points "proximate" to p1);

(6) for any k≥ 1, each curve of P2
k of degree k with multiplicity k−1 at p1

passes through at most k+m−1 of the points {p2, . . . , p2m−1}.

Proof. This result is well known to specialists (see [30, 1]), but it is hard to
extract this precise statement from the literature.

We first verify that the six properties are necessary. The case m = 1 cor-
responds to linear projective transformations and is easily handled with. So,
assume that f is a Jonquières transformation with base points pi, degree m≥ 2,
and

f•−1(e0) = me0− (m−1)e(p1)−
2m−1

∑
i=2

e(pi).

Let C be a curve of degree k with multiplicity k− 1 at p1. Let I be the set of
indices i with pi ∈ C. The class ke0− (k− 1)e(p1)−∑i∈I pi is effective, and
the class f−1

• (e0) is numerically effective; their intersection is equal to

mk− (m−1)(k−1)−|I|= m+ k−1−|I|.
Since this number is non-negative, Property (6) is satisfied. Properties (3) and
(4) are proved along the same lines. To prove (2), assume that pi is not a proper
point of the plane, and is not in the first neighbourhood of any other base point
pi. Then we find a point q which is not a base point such that e(q)− e(pi) is
effective. Intersecting with f•−1(e0) one gets−1≥ 0, a contradiction. Property
(1) and (5) are proved in a similar way (for Property (1), the case m = 2 is
special: there are three base points of multiplicity 1, and at least one of them is
a proper point of the plane; we chose such a point and call it p1).

We now prove that Properties (1) to (6) are sufficient to construct such a
Jonquières transformation. Denote by π : X2 → P2

k the blow-up of p1. The
surface X2 is the Hirzebruch surface F1: it admits a morphism η2 : X2 → P1,
whose fibres correspond to the lines of P2

k through the point p1.
By property (2), the point p2 is a proper point of X2. Consider the fiber

F2 = (η2)
−1(η2(p2));
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since this curve is the strict transform of the line through p1 and p2, property (3)
implies that F2 does not contain any of the pi, i≥ 3, as proper or infinitely near
point. Denote by X2 99K X3 the birational map which consists of the blow-up of
p2, followed by the contraction of the strict transform of F2. By construction X3
is a Hirzebruch surface F0 or F2, and p3 is now a proper point of X3 by property
(2). The pencil of lines through p1 correspond to the ruling η3 : X3→ P1 and
the assumptions (3) and (4) imply that the fiber F3 of η3 through p3 does not
contain any pi with i≥ 4.

Iterating this process, one constructs a sequence of maps X3 99K X4 99K
· · · 99K X2m−1. For j = 2, . . . ,2m− 1, the surface X j is a Hirzebruch surface
and comes with a morphism η j : X j → P1, the fibers of which correspond to
the lines of P2

k through p1. Moreover, the point p j is a proper point of X j,
and no other point of the fibre Fj = (η j)

−1(η j(p j)) is one of the pi; this latter
condition is given by (3) and (4).

By construction, X2m−1 is isomorphic to Fr, for some odd integer r. We
claim that r = 1; this amounts to show that no section of η2m−1 has self-
intersection ≤ −3. If this section corresponds to the curve of X2 = F1 con-
tracted by π onto p1 (its exceptional curve), it implies that at least m of the
points p2, . . . , p2m−1 belong, as proper or infinitely near, to the section, con-
tradicting hypothesis (5). We can thus assume that the hypothetic section
of self-intersection ≤ −3 corresponds to a curve of P2

k of degree k passing
through p1 with multiplicity k−1. Such a curve has self-intersection 2k−1 on
X2 = F1. It must pass through l of the points p2, . . . , p2m−1 and it must have
self-intersection (2k−1)− l+(2m−2− l) = 2(k+m− l)−3 on X2m−1 = Fr.
Assumption (6) implies that l < k+m: this shows that the self-intersection is
≥−1.

Therefore, X2m−1 is isomorphic to F1. Contracting the exceptional divisor,
we obtain a birational morphism X2m−1 on a surface which is isomorphic to P2

k;
hence, we can identify this surface with the initial plane P2

k and assume that the
section is contracted to the point p1. The composition of the maps P2

k = X1 99K
X2 99K · · · 99K X2m−1 → P2

k is a birational map that preserves the pencil of
lines through p1, and whose base-points are exactly p1, . . . , p2m−1. Classical
Noether equalities imply that the degree of the map is m, the multiplicity of p1
is m−1 and the other multiplicities are 1. This achieves the proof. �

6. DYNAMICAL DEGREES AND CONJUGACY CLASSES

Our goal is to prove Theorem C from the introduction. Thus, given a bi-
rational transformation f of the projective plane with large dynamical degree
λ( f ), we want to conjugate f by an element g of Bir(P2

k) to obtain deg(g f g−1)≤
Cstλ( f )5 (where the constant Cst does not depend on f and will be here 4700).

Given f ∈ Bir(P2
k) with λ( f ) > 1, the main arguments may be summarized

as follows. The degree of f is large, compared to λ( f ), if and only if the axis
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Ax( f•) is far away from the base point e0 of the hyperbolic space HP2
k
. Thus,

we want to conjugate f by g so that the axis g•(Ax( fp)) of g f g−1 becomes
closer to e0. A similar problem occurs in the proof of Noether-Castelnuovo
theorem. When one wants to prove that quadratic transformations of the plane
generate Bir(P2

k), one starts with an element f in Bir(P2
k) and then looks for a

quadratic map h such that deg(h f ) < deg( f ); on HP2
k
, the problem is to find

a quadratic map such that g•( f•(e0)) is closer to e0 than f•(e0) is. We follow
the same strategy as in Noether’s proof. In other words, we first work with
elements of W∞, and produce elements h ∈W∞ such that h(Ax( f•)) is close to
e0; then, as Castelnuovo did to correct Noether’s error, we have to modify h
slightly in order to realize it as g• for some g in Bir(P2

k). Proposition 5.12 is
used for this purpose.

Remark 6.1. The proof makes use of basic ideas from hyperbolic geometry
(on the metric space (HP2

k
,dist)). The distance is given by cosh(dist(u,v)) =

u ·v, and it becomes rapidly annoying to transfer inequalities from distances to
intersection numbers, and vice versa. This is the reason why, there is minimum
reference to dist in what follows.

6.1. Axis, degree, distance to e0.

6.1.1. Isotropic eigenvectors of loxodromic elements. Let h be a loxodromic
element of W∞, and let λ(h) be its dynamical degree. We refer to Section 4.2.1
for the basic properties of loxdromic isometries of hyperbolic spaces.

Write
h(e0) = de0−∑

i
aie(pi)

where the ai ≥ 0 are the multiplicities of the base points pi ∈ B(P2
k). The

positive integer d is the degree of h: d = h(e0) · e0. As explained in § 4.2.1, h
preserves two isotropic lines Rv+ and Rv−, where v+ and v− are elements of
ZP2

k
and

h(v+) = λ(h)v+, h(v−) = v−/λ(h).

With the normalization v+ ·e0 = v− ·e0 = 1, the vectors v+ and v− are uniquely
defined. Moreover, one has

v+ = lim
n→∞

hn(e0)

λn , v− = lim
n→∞

h−n(e0)

λn .

Thus, we can write

v+ = e0−∑
i

αie(pi), v− = e0−∑
i

βie(pi)

where the pi form a countable subset of B(P2
k) ; the set {pi} is contained in

the union of base points of all iterates hn for n ∈ Z. The canonical form Ω
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is h-invariant, hence Ω(v+) = Ω(v−) = 0; since v+ and v− are isotropic, we
obtain

∑
i

α
2
i = ∑

i
β

2
i = 1 and ∑αi = ∑βi = 3.

Since v+ and v− are limits of sequences hn(e0)λ
−|n|, Lemma 5.3 implies the

following positivity statement.

Lemma 6.2. If u ∈ ZP2
k

is equal to one of the following:

e0,e(p1),e0− e(p1),3e0−
l

∑
i=1

e(pi)

for some distinct points p1, . . . , pl ∈B(P2
k), then u·v≥ 0 for all v∈Ax(h),where

Ax(h) is here given by the intersection of the plane generated by v± and HP2
k
.

If h = f• for some element f ∈ Bir(P2
k) and C ∈ ZP2

k
is an effective divisor,

then C · v≥ 0 for any v ∈ Ax(h).

6.1.2. Axis, and translation length. The proof of the following lemma is straight-
forward (see [19, 14]).

Lemma 6.3. Let h be a loxodromic element of W∞ of degree d and dynamical
degree λ. Denote by v+ and v− the eigenvectors of h in ZP2

k
for the eigenvalues

λ and λ−1, such that v+ · e0 = v− · e0 = 1. Then

(i) d = h(e0)·e0 = e0 ·h−1(e0) and this degree is equal to cosh(dist(h(e0),e0))
and cosh(dist(e0,h−1(e0)));

(ii) log(λ(h)) is the translation length of h, i.e. to the minimum of dist(x,h(x))
for x in HP2

k
.

(iii) The set of points of HP2
k

that realize the translation length is the axis of
h; it coincides with the geodesic line

Ax(h) =
{

1√
2v+ · v−

(
tv++

v−
t

) ∣∣∣∣ t ∈ R>0

}
⊂HP2

k
.

(iv) The distance δ from e0 to the axis Ax(h) satisfies

cosh(δ) =

√
2

v+ · v−
.

It is realized by the projection of e0 on the axis, i.e. by the point

E =
√

2
v+·v− ·

v++v−
2 .
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6.1.3. Approximation of the points of the axis. Denote by ‖·‖ the Euclidean
norm on ZP2

k
, defined by

‖u‖= a2
0 + ∑

p∈B(P2
k)

a2
p.

for u = a0e0 +∑ape(p). If the degree of h is large, the euclidean norm of
h(e0)/d− v+ must be small:

Lemma 6.4 (Approximation of the axis). Let h ∈W∞ be a loxodromic element
of degree d and dynamical degree λ. Then∥∥ 1

d h−1(e0)− v−
∥∥ <

√
2

λd ;
∥∥ 1

d h(e0)− v−
∥∥ <

√
2λ

d∥∥ 1
d h−1(e0)− v+

∥∥ <
√

2λ

d ;
∥∥ 1

d h(e0)− v+
∥∥ <

√
2

λd .

Moreover, ∥∥∥∥(h(e0)+h−1(e0)

2d

)
−
(

v++ v−
2

)∥∥∥∥<
√

2
λd

,

and
(λ− 1

λ
)2

2d2 < v+ · v− <
1
d

(
1
λ
+λ+2

)
.

In particular, Lemma 6.3 implies√
2d

1
λ
+λ+2

< cosh(dist(e0,Ax(h)))<
2d

λ− 1
λ

. (6.1)

Remark 6.5. Note that the middle points (v++ v−)/2 or (h(e0)+h−1(e0))/2
are not contained in HP2

k
. From a geometric point of view, it would be better

to scale them (by the square root of their self-intersection), but the formulas
would be difficult to read.

Proof. Let us derive the top four inequalities. From bi = ei ·h−1(e0) = h(ei) ·e0
we get

λ
−1 = h(v−) · e0 = v− ·h−1(e0) = d−∑

i
biβi.

With Noether equality ∑(bi)
2 = d2−1 and the relation ∑(βi)

2 = 1 we deduce
that

∑
i

(
bi

d
−βi

)2

=
∑(bi)

2

d2 − 2∑biβi

d
+∑(βi)

2

=
2

λd
− 1

d2 <
2

λd
.

This means that
∥∥∥h−1(e0)

d − v−
∥∥∥ <√ 2

λd . If one replaces v− by v+, then λ−1 is

changed into λ; replacing h with h−1 yields the three other inequalities.
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The fifth inequality follows by the triangular inequality. We now estimate
the intersection product v+ · v−. On one hand,

‖v+− v−‖2 = 2v+ · v− = 2−2∑αiβi

because v+ and v− are isotropic. On the other hand, the above inequalities
yield

‖v+− v−‖2 <

(√
2

λd
+

√
2λ

d

)2

=
2
d

(
1
λ
+λ+2

)
.

Thus, altogether, one gets

v+ · v− = 1−∑αiβi <
1
d

(
1
λ
+λ+2

)
.

In the other direction, note that 1
λ
= d −∑i aiαi and λ = d −∑i aiβi, and

deduce λ− 1
λ
= ∑ai(αi−βi). Cauchy-Schwarz inequality yields

(λ− 1
λ
)2 ≤∑(ai)

2 ·∑(αi−βi)
2 = (d2−1) · (2v+ · v−),

so that

v+ · v− ≥
(λ− 1

λ
)2

2(d2−1)
.

This concludes the proof. �

6.2. Decreasing the distance from e0 to the axis. We keep the same notation,
h being a loxodromic element of degree d, dynamical degree λ, ... In particular,
E is the projection of e0 to the axis Ax(h), ai = e(pi) · h(e0) and bi = e(pi) ·
h−1(e0). The middle point of h(e0) and h−1(e0) is

de0−∑
i

cie(pi), with ci =
ai +bi

2
.

6.2.1. Strategy. The following lemma provides a strategy to decrease the dis-
tance between Ax(h) and e0 by conjugacy with a quadratic element g of W∞.
Similarly, if γi = (αi +βi)/2 then

1
2
(v++ v−) = e0−∑γie(pi).

Lemma 6.6. Let p1, p2, p3 be three distinct points of B(P2
k). If

3

∑
i=1

ci ≥ d +
5
2

√
d
λ
,

then

(1) (e(p1)+ e(p2)+ e(p3)− e0) ·E >
√

2( 5
2−
√

6)√
λ( 1

λ
+λ+2)
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(2) cosh(dist(e0,g(E)))< cosh(dist(e0,E))−
√

2( 5
2−
√

6)√
λ( 1

λ
+λ+2)

,

for any quadratic element g ∈W∞ with base-points at p1, p2, p3.

Proof. If necessary, we enlarge the set of base points {pi} ⊂ B(P2
k) to in-

clude the three points p1, p2, and p3 (allowing multiplicities equal to 0). From
Lemma 6.4 we know that∥∥∥∥(h−1(e0)+h(e0)

2d

)
−
(

v++ v−
2

)∥∥∥∥<
√

2
λd

,

which may be written as

∑

(ci

d
− γi

)2
<

2
λd

.

Apply Cauchy-Schwarz inequality for the scalar product between the vector
(1,1,1) ∈ R3 and the vector ((ci/d)− γi)

3
i=1, to get

3

∑
i=1
|ci

d
− γi|<

√
6

λd
.

By assumption, we have (∑3
i=1

ci
d )−1≥ 5

2
√

λd
; hence

γ1 + γ2 + γ3−1 >
5
2 −
√

6
√

λd
.

Since E =
√

2
v+·v−

v++v−
2 and v+ · v− < 1

d

( 1
λ
+λ+2

)
(Lemma 6.4), we obtain

(e(p1)+e(p2)+e(p3)−e0)·E >

√
2

1
d

( 1
λ
+λ+2

) ( 5
2 −
√

6
√

λd

)
=

√
2(5

2 −
√

6)√
λ
( 1

λ
+λ+2

)
If g is a quadratic element of W∞ with base-points p1, p2, p3, then g−1(e0) =
2e0− e(p1)− e(p2)− e(p3). Consequently,

cosh(dist(e0,E))− cosh(dist(e0,g(E))) = e0 ·E− e0 ·g(E)
= e0 ·E−g−1(e0) ·E
= (e(p1)+ e(p2)+ e(p3)− e0) ·E

and the conclusion follows from the previous inequality. �

6.2.2. Noether inequality for the axis of h.

Lemma 6.7. The coefficients ci = (ai +bi)/2 of (h(e0)+h−1(e0))/2 satisfy

∑
k
i=1 ci = 3d−3;

∑
k
i=1(ci)

2 > (d2−1)− d
2

(
λ−1 +λ+2

)
;
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and

(d−1)(c1 + c2 + c3− (d +1)) > (c1− c3)((d−1)− c1)+
(c2− c3)((d−1)− c2)+

∑
k
i=4 ci(c3− ci)

−d
2

(
λ−1 +λ+2

)
Proof. The first equality directly follows from Lemma 5.5, which asserts that
∑

k
i=1 ai = ∑

k
i=1 bi = 3d−3. By Lemma 6.4, we have

k

∑
i=1

(
ai

d
− bi

d

)2

<

(√
2

λd
+

√
2λ

d

)2

=
2
d

(
1
λ
+λ+2

)
.

Since ∑(ai)
2 = ∑(bi)

2 = d2−1, we get d2−1−∑aibi < d
( 1

λ
+λ+2

)
, hence

∑(ai +bi)
2 = 2(d2−1)+2∑aibi

> 4(d2−1)−2d
( 1

λ
+λ+2

)
.

Dividing by 4, we obtain the first inequality. Then, subtract c3 ∑ci = c3 ·3(d−
1) to obtain successively

k

∑
i=1

(ci)
2− c3

k

∑
i=1

ci > (d−1)((d +1)−3c3)−
d
2
(
λ
−1 +λ+2

)
and

(d−1)(3c3− (d +1))+
3

∑
i=1

ci(ci− c3)>
k

∑
i=4

ci(c3− ci)−
d
2
(
λ
−1 +λ+2

)
.

The inequality follows by rearranging the terms as in the proof of Noether’s
inequality. �

6.2.3. Decreasing the distance to the axis by conjugacy in W∞.

Proposition 6.8. Let h∈W∞ be of degree d and dynamical degree λ > 106. Let
p1, . . . , pk the base-points of h or h−1, and ci = (ai + bi)/2 be the average of
their multiplicities. Order the ci in such a way that c1 ≥ c2 ≥ c3 ≥ ·· · ≥ ck. If
d > 24λ3, then

c1 + c2 + c3 ≥ d +
5
2

√
d
λ
.

Remark 6.9. Together with Lemma 6.6, Assertion (2), this proposition pro-
vides a way to conjugate a loxodromic element h of W∞ by a quadratic involu-
tion g ∈W∞ so as to decrease the distance from e0 to the axis.

Proof. We use the inequality of Lemma 6.7 and observe that (c2− c3)(d −
1− c2) can be removed, as it is non-negative. Indeed, by hypothesis we have
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c2≥ c3, and Noether equalities (5.1) imply that a2≤ d−1 and b2≤ d−1. This
yields

∑
3
i=1 ci−d > 1+ (c1−c3)(d−1−c1)

d−1 + ∑
k
i=4 ci(c3−ci)

d−1 − d(λ−1+λ+2)
2(d−1) . (6.2)

As a consequence, the result follows from

(c1− c3)(d−1− c1)+
k

∑
i=4

ci(c3− ci)>
1
2

d(λ−1 +λ+2)+(d−1)
5
2

√
d
λ
.

The hypothesis on λ implies 5
2

√
d
λ
<
√

d/400; thus, it suffices to prove that

(c1− c3)((d−1)− c1)+
k

∑
i=4

ci(c3− ci)>
d
√

d
200

. (6.3)

Note that 2(d− 1− c1) = ((d− 1)− a1)+ ((d− 1)− b1) is non-negative be-
cause d−1≥ a1 and d−1≥ b1 (this follows, for instance, from Lemma 5.5).
Since c1 ≥ c3 ≥ ci for i≥ 4, every term of the left sum is non-negative.

We do a case by case study, and show that Inequality (6.3) holds in each
case.
Step 1.– Assume, first, that c3 ≥ ((d +

√
d/400)− c1)/2. In this situation, the

result directly follows:

c1 + c2 + c3 ≥ c1 +2c3 ≥ d +
√

d/400≥ d +
5
2

√
d
λ

because λ > 106.
Step 2.– Hence, we assume c3 < ((d+

√
d/400)−c1)/2 in what follows. This

yields

(c1− c3)(d−1− c1)>
1
2
(3c1− (d +

√
d/400))(d−1− c1).

The right-hand side is a quadratic polynomial in the variable c1; it vanishes at
d/3+

√
d/1200 and d− 1, and is positive between these two roots. If c1 ≥

d/3+
√

d/100 Proposition 5.9 implies that

c1 ∈ [d/3+
√

d/100,d−
√

d/3].

Both extremities of this interval are between the two roots of the above qua-
dratic polynomial; thus, the infimum of this polynomial function on this inter-
val is equal to its value at d/3+

√
d/100 or at d−

√
d/3. One easily estimates

these two values from below; the first one is

11
800

√
d · (2/3d−

√
d/100−1)>

d
√

d
200
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because d > 24 ·1018, and the second one is

(2d− (
√

3+1/400)
√

d)/2 · (
√

d/
√

3−1)>
d
2
·
√

d
2

>
d
√

d
200

for the same reason. This implies Inequality (6.3).
Step 3.– We can then assume that

c1 < d/3+
√

d/100. (6.4)

In particular, we have d−1−c1 ≥ 2d/3−
√

d/100−1 > (0.6) ·d. If c1−c3 ≥√
d/100, we obtain Inequality (6.3); hence, we may add the assumption

c3 > c1−
√

d/100. (6.5)

Lemma 6.4 provides the inequality

1
d2

k

∑
i=1

(ai−bi)
2 <

(√
2

λd
+

√
2λ

d

)2

=
2
d

(
1
λ
+λ+2

)
.

In particular (ar−br)
2 < 2d

( 1
λ
+λ+2

)
< 2.01 ·λd for all indices r. Choosing

r such that ar ≥ a j for all j, we know from Noether inequality that ar ≥ d/3
(see Lemma 5.5); this leads to br > d/3−1.42

√
λd, cr = (ar +br)/2 > d/3−

0.71
√

dλ, and c3 > c1−
√

d/100≥ cr−
√

d/100 > d/3−(3/4) ·
√

dλ. Hence,

c3 > d/3− (3/4) ·
√

dλ > 3d/10, (6.6)

where the last inequality follows from d > 24λ3 > 1012λ.
For each i ≥ 4, define εi = min{c3− ci,ci}, and note that ci · (c3− ci) ≥

εi · c3/2. This gives
k

∑
i=4

ci · (c3− ci)≥ (
k

∑
i=4

εi) · c3/2.

If ∑
k
i=4 εi >

√
d/15, Inequality (6.3) follows from c3 > 3d/10 (Inequality (6.6)).

Step 4.– We can now add the inequality
k

∑
i=4

εi ≤
1
15

√
d (6.7)

to our assumptions. Our goal is to derive a contradiction from these assump-
tions.

Denote by l the largest index such that cl ≥ c3/2. For i = 4, . . . , l, the in-
equality ci ≥ c3/2 corresponds to ci ≤ c3− ci, hence εi = c3− ci. This yields,
together with Inequality (6.7), the following estimates for ∑

l
i=4 ci:

(l−3)c3−
√

d/15 < (l−3)c3−
l

∑
i=4

εi =
l

∑
i=4

ci ≤ (l−3)c3.
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Moreover, c1 < c3 +
√

d/100 (Inequality 6.5), so 3c3 ≤ c1 + c2 + c3 < 3c3 +√
d/50. Adding the two estimates yields

lc3−
√

d/15 <
l

∑
i=1

ci < lc3 +
√

d/50.

Because ∑
l
i=1 ci≤∑

k
i=1 ci = 3d−3 (Lemma 6.7) and c3 > 3d/10 (Equation 6.6),

we have l(3d/10)−
√

d/15 < 3d−3, that gives l < 10, hence l ≤ 9.
From ∑

k
i=l+1 ci = ∑

k
i=l+1 εi <

√
d/15 (Inequality (6.7)), one gets 3d− 3 =

∑
k
i=1 ci < lc3 +

√
d/50+

√
d/15. Together with c3 ≤ c1 < d/3+

√
d/100 (In-

equality (6.4)), we get 3d−3 < l(d/3+
√

d/100)+
√

d/50+
√

d/15, so l ≥ 9.
Since l = 9, Inequality (6.7) yields

k

∑
i=10

ci =
k

∑
i=10

εi <
√

d/15.

In other words, there is a concentration of the multiplicities on the 9 points
p1, . . . , p9: h behaves like a Halphen element of W∞.

Step 5.– To derive a contradiction, we apply Lemma 5.11:

d/3 < (3+
k

∑
i=10

ai)

(
(3max{bi}9

i=1−d)+
k

∑
j=10

b j

)
+3, (6.8)

because h is loxodromic.
Let us estimate ∑

k
i=10 ci from below. For i = 1, . . . ,9, write µi = d/3−ci and

observe that Inequality (6.4) implies

−
√

d/100 < µ1 ≤ µ2 ≤ ·· · ≤ µ9.

Lemma 6.7 yields 3d−3 = ∑
k
i=1 ci = 3d−∑

9
i=1 µi +∑

k
i=10 ci, so that

9

∑
i=1

µi = 3+
k

∑
i=10

ci < 3+
√

d/15 <
√

d/14,

and

µ9 <
√

d/14−
8

∑
i=1

µi <
√

d/14+8
√

d/100 <
√

d/6.

In particular, ∑
9
i=1(µi)

2 < 9(
√

d/6)2 = d/4.
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We also have ∑
k
i=10(ci)

2 ≤ (∑k
i=10 ci)

2 < d/225. We compute
k

∑
i=1

(ci)
2 =

9

∑
i=1

(d/3−µi)
2 +

k

∑
i=10

(ci)
2

= d2− 2
3

d
9

∑
i=1

µi +
9

∑
i=1

(µi)
2 +

k

∑
i=10

(ci)
2

< d2− 2
3

d(3+
k

∑
i=10

ci)+
1
4

d +
1

225
d

< d2− 2
3

d(
k

∑
i=10

ci)−
3
2

d.

On the other hand, Lemma 6.7 yields
k

∑
i=1

(ci)
2 > d2−1− d

2
(
λ
−1 +λ+2

)
> d2− (0.501) · (λd),

and we obtain

d2− (0.501) · (λd)< d2− 2
3

d(
k

∑
i=10

ci)−
3
2

d,

hence
k

∑
i=10

ci < (0.501)
3
2

λ− 9
4
< 0.7516λ.

In particular, either ∑
k
i=10 ai < 0.7516λ or ∑

k
i=10 bi < 0.7516λ. We assume the

first (otherwise we apply Lemma 5.11 to h−1 instead of h).
For each i, recall that (ai − bi)

2 < 2d
( 1

λ
+λ+2

)
< 2.01dλ and, conse-

quently, |ai−bi|< 1.42
√

λd, hence

bi < ci +0.71
√

λd < d/3+
√

d/100+0.71
√

λd < d/3+0.72
√

λd.

This yields (3max{bi}9
i=1−d)< 2.16

√
dλ. Equation 6.8 implies

d < 3(∑k
i=10 ai)

(
(3max{bi}9

i=1−d)+∑
k
j=10 b j

)
< 3 · (0.7516) ·λ(2.16

√
dλ+2 ·0.7516λ)

< 4.88
√

dλ3/2.

In particular,
√

d < 4.88λ3/2, contradicting the hypothesis d > 24λ3. �

6.3. From W∞ to the Cremona group. We can now prove Theorem C, Asser-
tion (1), which we rephrase as follows.

Theorem 6.10. Let f ∈ Bir(P2
k) be a loxodromic element of dynamical degree

λ > 106. There exists a birational map g ∈ Bir(P2
k) such that deg(g f g−1) <

4700λ5.
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To prove Theorem 6.10, we denote by Ax( f•) the axis of f and by E the
projection of the point e0 onto Ax( f•) (see Lemma 6.3). We fix a point p1 ∈
B(P2

k) such that e(p1) ·E ≥ e(q) ·E for each q ∈ B(P2
k). We can choose p1 so

that it is a proper point of the plane.

6.3.1. The involutions σΩ. For each q ∈ B(P2
k)\{p1}, the vector

wq :=
e0− e(p1)

2
− e(q) ∈ ZP2

k
⊗Q

has self-intersection −1; we denote by νq the orthogonal reflection of ZP2
k
⊗Q

with respect to the hyperplane orthogonal to wq. The Q-linear automorphism
νq is given by

u 7→ u+2(u ·wq)wq = u−2
(u ·wq)

(wq ·wq)
wq.

The transformations νq, for q in B(P2
k)\{p1}, constitute a family of commuting

involutions because wq is orthogonal to wq′ if q 6= q′.
For any finite set Ω⊂B(P2

k)\{p1} consisting of an even number 2m−2≥ 0
of points, we denote by σΩ the composition of all νq for q in Ω. By induction,
the transformation σΩ is the automorphism of ZP2

k
given by

σΩ(e0) = me0− (m−1)e(p1)−∑q∈Ω e(q)
= e0 +∑q∈Ω(

e0−e(p1)
2 − e(q));

σΩ(e(p1)) = (m−1)e0− (m−2)e(p1)−∑q∈Ω e(q)
= e(p1)+∑q∈Ω(

e0−e(p1)
2 − e(q));

σΩ(eq) = e0− e(p1)− e(q) if q ∈Ω;
σΩ(eq) = eq if q ∈ B(P2

k)\({p1}∪Ω).

The following statement is easily proved. It implies that the σΩ form a sub-
group of W∞.

Lemma 6.11. For all pairs Ω, Ω′ of subsets of B(P2
k)\{p1} with an even num-

ber of elements, and for all pairs (q,q′) of distinct points in B(P2
k)\{p1}, we

have:
(i) σΩ of ZP2

k
is the product of all νq, q ∈Ω, and, as such, is an involution;

(ii) σΩ ·σΩ′ = σΩ∪Ω′\Ω∩Ω′;
(iii) σ{q,q′} is conjugate to the composition of σ0 ∈W∞ with a transposition

η ∈ SymB(P2k)
.

(iv) σΩ is an element of W∞.

6.3.2. Minimal sets. To simplify the notation, we define

δ =

√
2(5

2 −
√

6)√
λ
( 1

λ
+λ+2

) = 5−2
√

3√
2(λ+1)

.
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We denote by S the collection of all finite subsets Ω⊂ B(P2
k)\{p1} consist-

ing of an even number of points, and satisfying the following properties:

(1) Each point q ∈ Ω is either a proper point of P2
k or is in the first neigh-

bourhood of a point q′ ∈Ω.
(2) There is no line of P2

k passing through p1 and through two distinct
points of Ω (taking here also infinitely near points).

(3) For any three distinct points qi,q j,qk ∈ Ω, the points q j,qk cannot si-
multaneously belong, as proper or infinitely near points, to the excep-
tional curve obtained by blowing-up qi (this means that q j,qk are not
both "proximate" to qi).

(4) Either Ω = /0 or

cosh(dist(e0,σΩAx( f•)))< cosh(dist(e0,Ax( f•)))−δ.

(note that σΩ(Ax( f•)) = Ax(σΩ f•σ−1
Ω
)))

We put a partial order on S , defined by Ω′ < Ω if and only if

cosh(dist(e0,σΩ′Ax( f•)))< cosh(dist(e0,σΩAx( f•)))−δ.

The set S is of course not empty, since it contains the set Ω = /0. The
definition of the order implies that there is no infinite decreasing sequence
Ω1 > Ω2 > .. . in S , so S contains minimal elements. We now prove the fol-
lowing assertion:

(?) Let Ω be a minimal element of S , and let E be the projection of e0
onto σΩAx( f•). Either

deg(σΩ f•σ−1
Ω
)≤ 24λ

3

or there exists q ∈ B(P2
k) which satisfies e(q) ·E > e(p1) ·E.

To prove (?), we take an element Ω of S , we assume that deg(σΩ f•σΩ) >
24λ3 and that e(p1) ·E ≥ e(q) ·E for all q ∈ B(P2

k), and we show that Ω is not
minimal in S .

• Proposition 6.8 and Lemma 6.6 provide three distinct points q1, q2, and q3
such that (e(q1)+e(q2)+e(q3)−e0) ·E > δ. Because e(p1) ·E ≥ e(qi) ·E for
all indices i, we can assume that q1 = p1. Since

(σ{q2,q3})
−1(e0) = 2e0− e(p1)− e(q2)− e(q3),

we obtain E ·e0−σ{q2,q3}(E) ·e0 =E ·e0−E ·(σ{q2,q3})
−1(e0)> δ; this implies

that

e0 ·σ{q2,q3}(E)< cosh(dist(e0,σΩAx( f•)))−δ.

As a consequence, if we define Ω′ = Ω∪{q2,q3}\(Ω∩{q2,q3}), then σΩ′ =
σ{q2,q3} ·σΩ, and the point E ′ = (σΩ)

−1(E) ∈ Ax( f•) satisfies σ{q2,q3}(E) =
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σΩ′(E ′); thus, the inequalities

cosh(dist(e0,σΩ′Ax( f•))) ≤ e0 ·σΩ′(E
′)

< cosh(dist(e0,σΩAx( f•)))−δ

imply that Ω′ does not satisfy one of the assertions (1), (2), (3) in the definition
of S , because Ω is minimal.
•We now replace Ω′ by a new set Ω′′ such that σΩ′′(e0) ·E ′ does not increase

and Ω′′ satisfies the defining properties of S . From § 6.3.1 we know that

e0 ·σΩ′(E
′) = σΩ′(e0) ·E ′ = (e0 + ∑

q∈Ω′
((e0− e(p1))/2− e(q))) ·E ′

If there are two distinct points q,q′ ∈Ω′ such that

(e0− e(p1)− e(q)− e(q′)) ·E ′ ≥ 0,

we can replace Ω′ with Ω\{q,q′}, and this does not increase σΩ′(e0) ·E ′. We
can thus assume that (e0−e(p1)−e(q)−e(q′)) ·E ′ < 0 for all pairs of distinct
points (q,q′) of Ω′.

If q ∈ Ω is in the first neighborhood of a point q′, the divisor e(q)− e(q′) is
effective, and intersects E ′ non-negatively, because E ′ is on the axis Ax( f•) of
f ∈ Cr2(k) (Lemma 6.2). If q′ does not belong to Ω′, we can thus replace Ω′

with Ω′∪{q′}\{q}; again, this does not increase σΩ′(e0) ·E ′.
These replacements down, we get a new set Ω′′. Let us show that Ω′′ belongs

to S . Property (4) is obviously satisfied. The fact that (e0− e(p1)− e(q)−
e(q′)) ·E ′ < 0 for all pairs of distinct points (q,q′) in Ω′′ implies that p1, q, q′

are not collinear (Assertion (2)). Similarly, the second family of modifications
of Ω′ shows that Ω′′ satisfies Assertion (1). It remains to show that Assertion
(3) holds for Ω′′. Let qi, q j, and qk be three distinct points of Ω′′ such that q j
and qk are proximate to qi; then, the divisor e(qi)− e(q j)− e(qk) is effective
and intersects thus E ′ non-negatively (Lemma 6.2). This yields

0 > (e0− e(p1)− e(q j)− e(qk)) ·E ′ ≥ (e0− e(p1)− e(qi)) ·E ′,

which is impossible. Indeed, this implies that (e0 − e(p1)− e(q)) · E ′ < 0,
where q 6= p1 is a point which is either a proper point of P2

k or in the first
neighbourhood of p1 (choose either q = qi or q such that qi is infinitely near
to q), and this is impossible because e0− e(p1)− e(q) is effective, as it corre-
sponds to a line of P2

k. This concludes the proof of (?).

6.3.3. Strategy. To prove Theorem 6.10, we provide an algorithm which runs
as follows. Start with f and choose a minimal configuration Ω ∈ S . If there is
an element g in Bir(P2

k) such that g•(e0) = σΩ(e0), we prove that the distance
from e0 to the axis is decreased by a multiplicative factor that depends only on
δ; we can thus replace f by g f g−1. If this is not the case, it is proved that a
conjugate of f satisfies deg(g f g−1)< 4700λ5, and the algorithm stops.
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6.3.4. Algorithm: first case. We now take an element Ω⊂ S , which is minimal
in S . By Property (?), the set Ω is not empty (otherwise the Theorem is proved,
with g equal to the identity), hence we have

cosh(dist(e0,Ax(σΩ f•σΩ))< cosh(dist(e0,Ax( f•)))−δ.

We write now explicitly Ω = {p2, . . . , p2m−1}, we denote by E the projection
of e0 on σΩAx( f•), and we denote by E ′ ∈ Ax( f•) the element (σΩ)

−1(E); in
general, this point differs from the projection of e0 onto Ax( f•).

Suppose that there exists an element g∈Bir(P2
k) with (g•)−1(e0)=σ

−1
Ω
(e0)=

σΩ(e0). The point g•(E ′) ∈ Ax((g f g−1)•) satisfies

e0 ·g•(E ′) = (g•)−1(e0) ·E ′ = σΩ(e0) ·σΩ(E) = e0 ·E,
and this implies

cosh(dist(e0,Ax((g f g−1)•)))< cosh(dist(e0,Ax( f•)))−δ. (6.9)

We can thus replace f with g f g−1 and repeat the process (see below § 6.3.6).

6.3.5. Algorithm: second case. Suppose now that such a birational transfor-
mation g does not exist. Denote by pi the elements of Ω (including the point
p1).
•An inequality.– Recall that p1 is a proper point of P2

k. Since Ω is in the
family S , properties (1) to (4) of Proposition 5.12 are fulfilled. Thus, if there
is no birational transformation g such that

g−1(e0) = σ
−1(e0) = me0− (m−1)e(p1)−∑

i
e(pi),

one of the two assumptions (5)–(6) of Proposition 5.12 is not satisfied. We
now study these two possibilities.

Write
E = α0e0−∑αie(pi),

where p1, . . . , p2m−1 are as above and the remaining points pk, k ≥ 2m, are
elements of B(P2

k); the αi’s are real non-negative numbers (apply Lemma 6.2).
If Assumption (5) is not fulfilled, the number of points in {p2, . . . , p2m−1}

which belong, as proper or infinitely near points, to the exceptional divisor
associated to p1 is equal to m+ l with 0 ≤ l ≤ m− 2; we write these points
as pi1, . . . , pim+l . The divisor e(p1)−∑

m+l
j=1 e(pi j) is thus effective; hence, it

intersects E ′ non-negatively.
Applying σΩ, we see that E = σΩ(E f ) intersects non-negatively

σΩ(e(p1)−
m+l

∑
j=1

e(pi j)) = (m−1)e0− (m−2)e(p1)−

2m−1

∑
i=2

e(pi)−
m+l

∑
j=1

(e0− e(p1)− e(pi j)).
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This gives (−1− l)α0 +(l +2)α1 ≥ 0, i.e.
α1

α0
≥ l +1

l +2
. (6.10)

If Assumption (6) of Proposition 5.12 is not satisfied, we obtain the exis-
tence of a curve of degree k ≥ 1 with multiplicity k− 1 at p1 which passes
through k+m+ l of the points {p2, . . . , p2m−1}, for some l ≥ 0; note that this
curve is unique because it corresponds to the exceptional section of the Hirze-
bruch surface obtained by blowing-up p1 and performing elementary links at
p2, . . . , p2m−2. As before, this implies that

ke0− (k−1)e(p1)−
k+m+l

∑
j=1

e(pi j) = k(e0− e(p1))+ e(p1)−
k+m+l

∑
j=1

e(pi j)

intersects non-negatively E ′. Applying σΩ, we see that E intersects non-nega-
tively

k(e0−e(p1))+(m−1)e0−(m−2)e(p1)−
2m−1

∑
i=2

e(pi)−
k+m+l

∑
j=1

(e0−e(p1)−e(pi j)),

and this leads again to (−1− l)α0 +(l +2)α1 ≥ 0 and to Equation (6.10).
•Upper bound on the degree.– Coming back to the proof of Proposi-

tion 5.12 we know that, in both cases, the problem is that the Hirzebruch sur-
face obtained after blowing-up p1 and performing elementary links at p2, . . . , p2m−2
is equal to a new Hirzebruch surface F1+2l which does not coincide with F1;
so the map σΩ does not correspond to a geometric Jonquières map.

To recover a well defined birational transformation of the plane, we choose
2l general points of P2

k, that we call p2m, . . . , p2m+2l−1. Then, we obtain the
existence of a Jonquières transformation g ∈ Bir(P2

k) such that

(g•)−1(e0) = (m+ l)e0− (m+ l−1)e(p1)−
2m+2l−1

∑
i=2

e(pi).

We now estimate the degree of g f g−1 from above. The bound comes from
the computation of the intersection of g•(E ′) ∈ Ax((g f g−1)•) with e0, a num-
ber which is smaller than, or equal to cosh(dist(e0,Ax((g f g−1)•))). First,

g−1
• (e0) = σΩ(e0)+ l(e0− e(p1))−

2m+2l−1

∑
i=2m

e(pi),

and therefore

σΩ(g−1
• (e0)) = e0 + l(e0− e(p1))−

2m+2l−1

∑
i=2m

e(pi).

In particular, we obtain

e0 ·g•(E ′) = σΩ(g−1
• (e0)) ·E ≤ α0 + l(α0−α1).
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Inequality (6.10) provides the estimate α1 ≥ α0 · l+1
l+2 , and therefore

e0 ·g•(E ′)≤ α0 · (1+ l− l · l +1
l +2

) = 2α0 ·
l +1
l +2

< 2α0 = 2e0 ·E.

Since E is the projection of e0 on σΩAx( f ), one gets

cosh(dist(e0,Ax((g f g−1)•)))< 2α0 = 2cosh(dist(e0,σΩAx( f ))).

Remark 6.12. We have αi +α j ≤ α0 for all indices i 6= j. Indeed, one can
choose pi, p j proper points and obtain that e0−e(pi)−e(p j) is effective, hence
has non-negative intersection with E. This also follows from Lemma 6.2, as
e0− e(pi)− e(p j) is in the same W∞-orbit as e(pi).

From Equation (6.10), we get α1 ≥ α0
2 ; hence the remark shows that α1 ≥ αi

for all i≥ 2. By (?), this implies that deg(σΩ f σΩ)≤ 24λ3.
According to the Inequality (6.1) we have

α0 = cosh(dist(e0,σΩAx( f )))<
2deg(σΩ f•σΩ)

λ− 1
λ

and √
2deg(g f g−1)

1
λ
+λ+2

< cosh(dist(e0,Ax((g f g−1)•))).

As a consequence, √
2deg(g f g−1)

1
λ
+λ+2

<
4deg(σΩhσΩ)

λ− 1
λ

and

deg(g f g−1)<
8deg(σΩhσΩ)

2

(λ− 1
λ
)2

(
1
λ
+λ+2)< 4700λ

5.

Thus, we may stop the algorithm, since deg(g f g−1)< 4700λ5.

6.3.6. Conclusion. Thus,

• either § 6.3.4 apply, which means that we can find an element g in the
Cremona group such that the hyperbolic cosine of the distance from e0
to the axis of g f g−1 decrease by δ. We can then repeat the process for
g f g−1 as long as deg(g f g−1)> 24λ3;
• or the process stops, which means that § 6.3.4 does not apply, and then

§ 6.3.5 shows that there exists an element g in Bir(P2
k) with deg(g f g−1)<

4700λ5.

To sum up, the theorem 6.10 is proved in at most cosh(dist(e0,Ax( f )))/δ steps.
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6.4. Proof of Theorem C. To conclude the proof of Theorem C, we need to
prove the second assertion (using the first one, provided by Theorem 6.10).
Let f be a loxodromic element of Bir(P2

k). By the spectral gap property (see
§ 2.6), λ( f ) ≥ λl ' 1.176280; hence, λ( f 86) > 106 and the first assertion of
Theorem C provides an element g in Bir(P2

k) such that

deg(g f 86g−1)≤ 4700λ( f 86)5.

Let h be equal to g f g−1; we have λ(h) = λ( f ). Both h and h86 have the same
axis, and we denote by L the distance from e0 to it (see Figure 2). By definition,
the distance from e0 to (h86)•(e0) is at most equal to log(2deg(h86)) and, by
hyperbolicity of HP2

k
, it is bounded from below by 86log(λ( f ))+2L−8log(3).

From the last inequality, we get

log(2deg(h86)≤ log(9400)+5 ·86log(λ( f ));

hence,

2L≤ 8log(3)+ log(9400)+4 ·86log(λ( f ))≤ 18+344log(λ( f )).

With this upper bound in hands, we estimate

dist(e0,(h)•e0) ≤ 2L+ log(λ( f ))
≤ 18+345log(λ( f ))

and we obtain the inequality mcdeg( f )≤ cosh(18+345log(λ( f ))). This con-
cludes the proof of Theorem C.

7. ALGEBRAIC FAMILIES OF BIRATIONAL TRANSFORMATIONS AND
DECREASING SEQUENCES OF DYNAMICAL DEGREES

In this section, we prove the main corollaries of Theorem C. This includes
Theorem D, which states that Λ(P2

k) is well ordered and that is is closed if k is
uncountable and algebraically closed.

7.1. The dynamical spectrum is well ordered.

7.1.1. Well ordered subsets of R. Let Λ be a subset of the real line R. By
definition, Λ is well ordered if every subset Λ0 of Λ has a minimum min(Λ0) ∈
Λ0; equivalently, Λ is well ordered if it satisfies the descending chain condition:
Every decreasing sequence (λn) of elements of Λ becomes eventually constant.

Example 7.1. Consider the set of volumes of all compact riemannian mani-
folds of dimension 3 with a metric of constant curvature −1. According to
Jorgensen and Thurston, this set is infinite, well ordered, and contains accumu-
lation points.
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L

L
Ax(h)

e0

h(e0)
h

λ( f )

H

FIGURE 2. Axis and distances.– The blue points are the base
point e0 and its image by h = g f g−1; the green points are the
projections of these blue points onto the axis of h.

7.1.2. Dynamical degrees are well ordered.

Theorem 7.2. Let k be a field. The subset Λ ⊂ R of dynamical degrees of all
birational transformations of projective surfaces defined over k is well ordered.

Proof. We may assume that k is algebraically closed. Let λn, n ≥ 1, be a
sequence of dynamical degrees. Suppose that λn+1 < λn for all indices n. Our
goal is to prove that the number of terms in this sequence is bounded.

Each element λn of this sequence is the dynamical degree of some birational
transformation fn : Xn 99K Xn. The subsequence of dynamical degrees λn for
which Xn is not geometrically rational is bounded, because the set of dynamical
degrees of birational transformations of irrational surfaces is discrete. Thus, in
what follows, we assume that Xn is equal to the projective plane P2

k for all
n≥ 1.

If λn0 = 1 for some index n0, the sequence contains n0 terms, because all
dynamical degrees are larger than or equal to 1. Thus, we assume that λn > 1
for all n. Let λ∞ be the limit of the sequence (λn); by Corollary 2.7,

λ∞ +1≥ λn ≥ λ∞ ≥ λL ' 1.17628

if n is large enough (n ≥ n0). Theorem C provides conjugates gn of f M
n , such

that
deg(gn)≤ cosh(18+345log(λ∞ +1)).
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Hence, the degree of gn is bounded and, extracting a subsequence, we may
assume that the degree of gn does not depend on n: There exists a degree d such
that gn is contained in the algebraic variety Bird(P2

k) of elements of Bird(P2)
of degree d, for n≥ n0. Junyi Xie proved in [43] that the dynamical degree

λ : Bird(P2
k)→ [1,+∞[

is lower semi-continous for the Zariski topology. In other words, the level
subsets

L(β) = {h ∈ Bird(P2
k)| λ(h)≤ β}

is Zariski closed (for all β≥ 1). As the sequence of dynamical degrees (λM
n ) is

strictly decreasing, we deduce that the sequence of Zariski closed sets L(λM
n )⊂

Bird(P2
k) decreases strictly. Since the Zariski topology is Noetherian, the se-

quence (λn) contains only finitely many terms. �

7.2. Small Pisot numbers and spectral gaps. Theorem 7.2 implies that there
are gaps in the dynamical spectrum on the right of every dynamical degree; the
first gap occurs after the Lehmer number λL, the first gap on the right of a
Pisot number occurs on the right of the plastic number λP. If one restricts the
study to dynamical degrees in the Pisot family, one can prove the following
properties as a corollary of our previous results, known facts on Pisot numbers
(see [8]), and a systematic study of quadratic birational transformations of the
plane (see [21] and [10] for assertion (b)):

(a) The Golden mean λG is the smallest accumulation point in the set of
Pisot numbers; it is an accumulation point from below, and from above.

(b) All Pisot numbers below the Golden mean are realized as dynamical
degrees of quadratic birational transformations of the plane.

(c) There is an ε > 0 such that ]λG,λG+ε[ does not contain any dynamical
degree; hence, the infimum of the set

{λ ∈ Pis | λ is not a dynamical degree}
is equal to λG.

7.3. The dynamical spectrum is closed. We now prove that the dynamical
spectrum Λ(P2

k) is closed if k is uncountable and algebraically closed.
Let ( fi)i≥0 be a sequence of birational transformations of the projective plane

such that λ( fi) converges towards a real number λ∞. Our goal is to construct
an element h in Bir(P2

k) such that λ(h) = λ∞. Thus, we may (and do) assume
that the numbers λi := λ( fi) form a strictly increasing sequence converging to
λ∞ > 1. Theorem C applies: Changing each fi into a conjugate element of
Bir(P2

k), we assume that
deg( fi)≤ D

where D depends on sup(λi) but does not depend on i. Replacing ( fi) by a
subsequence, we assume that the fi have the same degree d (with 2≤ d ≤ D).
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The set Bird(P2
k) of all birational transformations of degree d is naturally

endowed with the structure of an algebraic variety (see [12]); we denote by
F the Zariski closure of the set { fi}i≥0 in Bird(P2

k). The dimension of F is
positive because the λi are pairwise distinct and, extracting a new subsequence,
we assume that F is irreducible.

For each positive integer n, consider the set

Xn = {g ∈ Bird(P2
k) | deg(gn)≤max

i
(deg( f n

i ))}.

By [12], this set is Zariski closed2; hence F is contained in Xn for all n ≥ 1.
Similarly, the set

Yn = {g ∈ F | deg(gn)≤max
i
(deg( f n

i ))−1}

is a Zariski closed subset of F , and is a strict subset of F because its comple-
ment contains at least one f j. Since k is not countable, there is at least one
element h in F \∪n≥1Yn. This birational transformation satisfies

deg(hn) = max
i
(deg( f n

i ))

for all n ≥ 1. This implies that deg( f n
i ) ≤ deg(hn) for all indices i and n; in

particular, λ( fi)≤ λ(h) for all i, and

1 < λ∞ ≤ λ(h).

Thus, h is a loxodromic transformation of degree d.

Lemma 7.3. Let k be a field and d ≥ 2 be an integer. There exists a constant
∆(d) such that, for all loxodromic element g ∈ Bir(P2

k) of degree d,

dist(e0,Ax(g)) ≤ ∆(d)/2 (7.1)
| log(deg(gm))−m log(λ(g))| ≤ m log(λ(gm))+∆(d) (7.2)

for all m≥ 1.

Proof. From the spectral gap property λ(g)≥ λL = 1.176280. Thus, hyperbolic
geometry implies that dist(e0,g•(e0)) goes to infinity with dist(e0,Ax(g)); more
precisely, there is a uniform constant ε > 0 such that

dist(e0,g•(e0))≥ 2dist(e0,Ax(g))+ log(λ(g))− ε.

2With the notation of [12], consider the set H̃d of triples (p,q,r) of homogeneous polyno-
mials of degree d such that f : [x : y : z] 7→ [p : q : r] is a birational map; let Hd be the quotient
of H̃d by the equivalence relation for which two triples are equivalent if they are multiple of
each other by a non-zero constant. Then (p,q,r) 7→ f is a map from Hd to the set of birational
transformations of degree≤ d. Denote by Hd,d the subset of Hd made of triples of (p,q,r) that
give rise to a birational map of degree d exactly; this set is a Zariski open subset of Hd , and the
projection πd : Hd,d → Bird(P2

k) is an isomorphism. The map Hd →Hdn that applies f to f n is
a morphism. Since Bir≤`(P2

k) is closed in Bir(P2
k) (see Corollary 2.8 of [12]), one deduces that

Xn is closed.
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Since dist(e0,g•e0) is bounded from above by log(2deg(g)), the first upper
bound follows.

The triangular inequality implies

dist(e0,(gm)•(e0))≤ 2dist(e0,Ax(g•))+m log(λ(g))

and hyperbolicity implies

dist(e0,(gm)•(e0))≥ m log(λ(g))+2dist(e0,Ax(g•))−δ

where δ is a uniform constant (δ < 100). The result follows. �

Apply this lemma to h and to the fi:

m log(λ(h))−∆(d)≤ log(deg(hm))≤ m log(λ(h))+∆(d),

m log(λ( fi))−∆(d)≤ log(deg( f m
i ))≤ m log(λ( fi))+∆(d).

Let ε be a positive real number, and m be a positive integer such that ε ≥
2∆(d)/m. Then, there exists i such that deg( f m

i ) = deg(hm), and we get

m log(λ(h))−∆(d)≤ log(deg(hm)) = log(deg( f m
i ))≤ m log(λ( fi))+∆(d).

Hence, log(λ(h)) ≤ log(λ( f∞))+ ε. Since this inequality holds for all ε > 0,
we obtain λ(h)≤ λ∞, and thus λ(h) = λ∞, as desired.

7.4. Increasing approximation by Salem dynamical degrees. The set Pis is
contained in the closure of the set Sal. In this section, we show that the same
property holds for dynamical degrees:

Theorem 7.4. Let k be an algebraically closed field of characteristic 0. Let β

be an element of ΛP(P2
k). There exists a strictly increasing sequence (αn)n≥0

of elements of ΛS(P2
k) that converges towards β.

Corollary 7.5. Let k be an algebraically closed field of characteristic 0 and
let X be a projective surface defined over k. The dynamical spectrum Λ(X) is
contained in the closure of the set of dynamical degrees λ( f ) of automorphisms
of surfaces which are birationally equivalent to X.

Proof of the corollary. If X is rational, this is a consequence of Theorem 7.4
and Theorem A. If X is not rational, all dynamical degrees are realized by
dynamical degrees of automorphisms of surfaces which are birationally equiv-
alent to X (see Section 3). �

The proof of Theorem 7.4 is given in §7.4.1 when β is not a reciprocal
quadratic integer. The case of reciprocal quadratic integers is dealt with in
§7.4.2.
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7.4.1. Pisot numbers which are not reciprocal quadratic integers. Let β ∈
ΛP(P2

k) be a Pisot number which is not a reciprocal quadratic integer; thus,
β is the dynamical degree of a birational transformation of P2

k, but is not the
dynamical degree of an automorphism of rational projective surface.

Choose f ∈ Bir(P2
k) with λ( f ) = β, denote by d the degree of f , by pi and

qi the base points of f and f−1 (1≤ i≤ m), and write

f•(e0) = de0−
m

∑
i=1

aie(qi)

f•(e(pi)) = die0−
m

∑
i=1

ci, je(q j).

The multiplicities ai are positive integers; the ci, j are non-negative integers.
Say that qi has an infinite length if f l(qi) is not a base point of f for all

l ≥ 0, and say that qi has a finite length (equal to `i) if f l(qi) is not a base
point of f for 0≤ l ≤ `i−1 but f `i(qi) is one of the base points p j of f . If all
the base points qi, 1 ≤ i ≤ m, have a finite length, one can blow up the points
f l(qi), 1 ≤ l ≤ `i to get a new surface on which f is an automorphism. Since
f is not conjugate to an automorphism, at least one of the base points qi has an
infinite length.

Order the base points qi in such a way that q1, ..., qn have infinite length and
qn+ j has finite length `n+ j for j = 1, . . . ,m−n. Then, number the p j in such a
way that pn+ j = f ` j(qn+ j) for all j ≥ 1. We shall now construct a sequence of
birational transformations fk such that

• each fk is conjugate to an automorphism ;
• λ( fk) converges to λ( f ) = β as k goes to +∞.

The idea is to transform the points qi into base points of finite length `i for
i≤ n, but with length `i = k going to +∞.

For this purpose, define

A = {e0}∪
m⋃

i=n+1

(
li−1⋃
j=0

{
f j
• (e(qi))

})

B j =
n⋃

i=1

{
f j
• (e(qi))

}
for any j ≥ 0

C =
n⋃

i=1

{e(pi)}.

The elements of these three sets are linearly independent in ZP2
k
. In particular,

A is a basis of the sub-module VA spanned by A in ZP2
k
. Similarly, B j (resp. C)

is a basis of the sub-module VB j spanned by B j (resp. C) for all j ≥ 0. The
map f• restricts to an isomorphism between VC⊕VA and VA⊕VB0 , and also to
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an isomorphism

VC⊕VA⊕VB0⊕·· ·⊕VBk

f∗−→VA⊕VB0⊕·· ·⊕VBk+1.

Writing Vk =VC⊕VA⊕VB0⊕·· ·⊕VBk , we define a linear transformation Fk ∈
Aut(Vk) by

Fk = πk ◦ f•,

where πk : Vk+1→ Vk is the isomorphism defined by πk( f k+1
• (e(qi))) = e(pi)

for i = 1, . . . ,n and πk(x) = x for x ∈VA⊕VB0⊕·· ·⊕VBk =Vk∩Vk+1.
Since f• preserves the intersection form of ZP2

k
, Fk preserves the intersection

form of Vk. This latter space is of Minkowski type: An orthonormal basis
is given by e0 (of self-intersection +1) and by the other elements of A,B j,C
(each of self-intersection −1). Since f• satisfies the Noether equalities (5.1),
so does Fk:

m

∑
i=1

a2
i = d2−1;

m

∑
i=1

ai = 3d−3.

For a fixed integer k ≥ 1, denote by r+1 the dimension of Vk. Then, denote
by Wr the subgroup of W∞ generated by

• the finite group of permutations of the set e(q), where e(q) runs over
the elements of A\{e0}, of B j ( j ≤ k), and of C;
• the involution σ0 (with base points p1, p2, p3 chosen among the base

points p j);
• the involutions τp,q for e(p) and e(q) in the sets A \ {e0}, B j ( j ≤ k)

and C.
This group is isomorphic to the Coxeter group of the Dynkin diagram T2,3,r−3
introduced in Section 2.5. Since Fk satisfies the Noether equalities, Fk is an ele-
ment of the Coxeter group Wr (this is a version of Nagata’s Theorem mentioned
in § 2.5; see [25] and the proof of Lemma 5.3).

By Uehara’s theorem (see [42]), there is an element fk ∈ Bir(P2
k) for which

λ( fk) is equal to the spectral radius of the linear transformation Fk; moreover,
fk is conjugate to an automorphism of a projective rational surface Xk.

Lemma 7.6. If β is not a reciprocal quadratic integer, the sequence (λ( fk))
converges towards β as k goes to +∞, and it contains a sub-sequence that
increases strictly towards β.

This lemma concludes the proof of Theorem 7.4 when β is not a reciprocal
quadratic integer. Indeed, λ( fk) is not a quadratic integer if k is large, because
the set of reciprocal quadratic integers is discrete; hence, (λ( fk)) contains a
strictly increasing sequence of Salem numbers that converges towards β.

Proof of Lemma 7.6. Let λk = λ( fk). This number is the largest real eigenvalue
of Fk ∈ Aut(Vk⊗R).
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The map f• preserves VC⊕VA
∞⊕

i=1
VBi and its matrix can be written as a matrix

by blocks as follows: 
0 0 0
M N 0
P Q 0

0 0 I . . .
. . .


Let v be an eigenvector of f• with eigenvalue λ( f ); such a vector exists (and

is isotropic) in ZP2
k
. Decompose v as v = 0+ vA + vB1 + vB2 + . . . with respect

to the direct sum VC⊕VA
∞⊕

i=1
VBi . We obtain the system of equations

0
λ( f ) · vA
λ( f ) · vB1

λ( f ) · vB2

. . .

= λ( f ) · v = f∗(v) =


0

NvA
QvA
vB1

. . .

 ,

from which we deduce that vA is an eigenvector of N ∈ GL(VA), and vBi =
QvA/λ( f )i for i≥ 1. Moreover, vA 6= 0 because v intersects e0 positively. Thus,
β is a root of the characteristic polynomial det(tI−N).

The matrix of Fk, acting on Vk =VC⊕VA⊕VB1⊕·· ·⊕VBk , is

MFk



0 0 I
M N
P Q 0

I . . .
. . . 0

I 0


.

Its characteristic polynomial det(xI−MFk) is equal to

det



xI 0 −I
−M xI−N 0
−P −Q xI x2I . . . xkI

−I 0 0
. . . . . . ...
−I 0



= det

 xI 0 −I
−M xI−N 0
−P −Q xkI

= det

 0 0 −I
−M xI−N 0

−P+ xk+1I −Q xkI
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Let P(s, t) be the polynomial function in two variables that is defined by

P(s, t) = det

 0 0 −I
−M tI−N 0
−sP+ tI −sQ I


The characteristic polynomial of Fk is equal to xkP(1/xk,x). Hence,

P(λ( fk)
−k,λ( fk)) = 0.

Moreover, P(0, t) = t l det(tI−N) for some integer l. Hence, the biggest real
root of the polynomial P(0, t) is β, and this root is simple.

We choose real numbers β−,β+ with 1 < β− < β < β+ and define δk to be

δk = max
t∈[β−,β+]

|P(0, t)−P(1/tk, t)|.

By construction, limk→∞ δk = 0. Hence, for large k the rational function P(1/tk, t)
has a real root βk near β, and limk→∞ βk = β. Since Fk is an element of the Cox-
eter group Wr, it has at most one real root bigger than 1. Hence, βk = λ( fk).

Thus, λ( fk) converges towards β. Since β is a Pisot number and is not a
reciprocal quadratic integer, it is not equal to the dynamical degree of an au-
tomorphism. Thus, λ( fk) 6= β for all k, and one can extracts a sub-sequence
from (λ( fk)) whose members are pairwise distinct. Theorem D implies that
the sequence is strictly increasing. �

7.4.2. Reciprocal quadratic integers. It remains to prove Theorem 7.4 for re-
ciprocal quadratic integers.

We fix integers m,k ≥ 2 and choose a set ∆ ⊂ B(P2) of 2m− 1+(m− 2)k
distinct points that we denote by

∆ = {qi}2m−1
i=1 ∪{ai, j}i=1,...,m−2, j=1,...,k.

We choose 2m−1 from these points, that we write p1, . . . , p2m−1. These are
pi = ai,k for i = 1, . . . ,m−2, pi = qi for i = m−1, . . . ,2m−1.

Then we construct an element h ∈W∞ defined by

h(e0) = me0− (m−1)e(q1)−∑
2m−1
i=2 e(qi);

h(e(p1)) = (m−1)e0− (m−2)e(q1)−∑
2m−1
i=2 e(qi);

h(e(pi)) = e0− e(q1)− e(qi) for i = 2, . . . ,2m−1;
h(e(qi)) = e(ai,1) for i = 1, . . . ,m−1;

h(e(ai, j)) = e(ai, j+1) for i = 1, . . . ,m−1, j = 1, . . . ,k−1.
h(e(r)) = e(r) for r ∈ B(P2)\∆.

Note that h preserves the Z-module W generated by e0 and the {e(r)}r∈∆. It
corresponds then to an element of the Coxeter group associated to these points.
By Uhehara (see [42]), there is an element fm,k ∈ Bir(P2

k) for which λ( fm,k) is
equal to the spectral radius λm,k of the linear transformation h; moreover, fm,k
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is conjugate to an automorphism of a projective rational surface. Hence, The-
orem 7.4 follows from the following lemma in the case of reciprocal quadratic
integers.

Lemma 7.7. For integers m≥ 2, the sequence (λm,k)k≥1 converges towards the
largest root λm,∞ of Pm(x) = x2− (m+1)x+1, and λm,k is a Salem number if
k is large enough.

Proof. Denote by W ′ ⊂W the sub-Z-module whose basis is

e(p1),
m−2
∑

i=2
e(pi), e0,

2m−1
∑

i=m−1
e(pi) =

2m−1
∑

i=m−1
e(qi), e(q1),

m−2
∑

i=2
e(qi),

e(a1,1),
m−2
∑

i=2
e(ai,1), . . . , e(a1,k−1),

m−2
∑

i=2
e(ai,k−1).

Then, W ′ is invariant by h, and the matrix of h relative to the above basis is

Mh =



0 0 0 0 0 . . . 0 1 0
0 0 0 0 0 . . . 0 0 1

m−1 m−3 m m+1 0 . . . 0 0 0
−1 0 −1 −1 0 . . . 0 0 0

−(m−2) −(m−3) −(m−1) −(m+1) 0 . . . 0 0 0
−1 −1 −1 0 0 . . . 0 0 0

0 0 0 0 1 0 0 0
...

...
...

... . . . ...
...

0 0 0 0 1 0 0


A computation similar to the one done in the proof of Lemma 7.6 shows that
its characteristic polynomial det(xI−Mh) is equal to

det


x 0 0 0 −1 0
0 x 0 0 0 −1

−(m−1) −(m−3) x−m −(m+1) 0 0
1 0 1 x+1 0 0

m−2 m−3 m−1 m+1 xk 0
1 1 1 0 0 xk


and is therefore equal to

x2k+2(x2−x(m−1)+1)+xk+1((m−1)x2−4x+(m−1))+(x2−(m−1)x+1)

Fixing m, we see that the sequence (λm,k)k converges towards λm,∞, and that
λm,k 6= λm,∞ for k large. Each λm,k being the spectral radius of an element in
a Coxeter group Wrk , it is either equal to 1, to a quadratic integer or a Salem
number. The set of quadratic integers being discrete, and λm,k being different
from λm,∞, the λm,k are all Salem numbers for k large enough. �
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8. APPENDIX: MODULAR GROUPS, DILATATIONS, AND VOLUMES

8.1. The Cremona group Bir(P2
k) acts faithfully on the hyperbolic space HP2

k
;

this space contains all classes
1√

C ·C
[C]

where C is a curve with positive self-intersection on some rational surface.
Similarly, the modular group (or mapping class group) Mod(g) of the closed,
connected, and orientable surface Σg of genus g≥ 2 acts by isometries on sev-
eral metric spaces, for instance on the Teichmüller space, endowed with its
Teichmüller metric. 3

The comparison of those two isometric actions provides a fruitful anal-
ogy between Bir(P2

k) and Mod(g) for g ≥ 2 (see [17, 15]). In this analogy,
loxodromic elements f ∈ Bir(P2

k) correspond to pseudo-Anosov classes ϕ ∈
Mod(g). The dynamical degree λ( f ) may be compared to the dilatation factor
λ(ϕ) of ϕ; both λ( f ) and λ(ϕ) are algebraic numbers: The degree of λ( f ) is
bounded from above by the Picard number of a surface on which f is conjugate
to an algebraically stable transformation, while the degree of λ(ϕ) is at most
6g−6.

Theorem A may be compared to Franks and Rykken result, according to
which a pseudo-Anosov homeomorphism Φ : Σg→ Σg with a quadratic dilata-
tion factor and with orientable stable and unstable foliations is semi-conjugate,
via a ramified cover, to a linear automorphism of a torus (see [29]). As for
birational transformations, the infimum of λ(ϕ) when ϕ describes the set of
pseudo-Anosov classes that are composition of Dehn-multitwists is the Lehmer
number (see [33]).

8.2. Another measure of the complexity of a pseudo-Anosov isotopy class ϕ is
obtained as follows. According to Thurston and Mostow, the three-dimensional
manifold

Mϕ = (Σg× [0,1])/(x,0) = (Φ(x),1)
(where Φ is a diffeomorphism of Σg in the isotopy class ϕ) admits a unique
hyperbolic metric (a riemannian metric of constant curvature−1). The volume
of Mϕ with respect to this riemannian metric is a positive real number vol(ϕ);
this volume is, up to a bounded multiplicative error, the translation length of ϕ

on the Teichmüller space with respect to the Weil-Petersson metric (see [13]).
Jorgensen and Thurston proved that the set of all volumes vol(M) of all com-
pact hyperbolic three-manifolds is infinite countable, contains accumulation
points, and is well ordered (see [6]). Thus, the set {vol(ϕ)} where ϕ describes
the set of pseudo-Anosov classes of some higher genus surface is well ordered

3It also acts on the complex of curves of the surface, a metric space which is Gromov
hyperbolic (see [35]).
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too; moreover, this set is not discrete (consider sequences vol(φ ◦ τn) where τ

is a Dehn twist). This parallels Theorem C. Moreover, as shown in Section 7.4,
accumulation points in Λ(P2

k) are obtained by replacing orbits of base points
with an infinite length by orbits with finite length. For volumes of hyperbolic
manifolds, one obtains accumulation points by Dehn fillings of cusps. Thus,
cusps correspond to base points of infinite length in this dictionary.

8.3. It may also be interesting to compare our results to the description ob-
tained by Thurston of the possible topological entropies of multimodal contin-
uous maps of the interval [0,1] into itself which are postcritically finite (see
[41]). Those entropies are logarithms of Perron numbers, and all Perron num-
bers λ > 1 are realized. Thus, in this setting, there is no gap phenomenon
similar to the gaps in the dynamical spectrum Λ(P2

k).
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