Multi-Lingual Dialogue Act Recognition with Deep Learning Methods - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Multi-Lingual Dialogue Act Recognition with Deep Learning Methods

Résumé

This paper deals with multilingual dialogue act (DA) recognition. The proposed approaches are based on deep neural networks and use word2vec embeddings for word representation. Two multilingual models are proposed for this task. The first approach uses one general model trained on the embeddings from all available languages. The second method trains the model on a single pivot language and a linear transformation method is used to project other languages onto the pivot language. The popular convolutional neural network and LSTM architectures with different setups are used as classifiers. To the best of our knowledge this is the first attempt at multilingual DA recognition using neural networks. The multilingual models are validated experimentally on two languages from the Verbmobil corpus.
Fichier principal
Vignette du fichier
1904.05606.pdf (366.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02319818 , version 1 (18-10-2019)

Identifiants

Citer

Jiří Martínek, Pavel Kral, Ladislav Lenc, Christophe Cerisara. Multi-Lingual Dialogue Act Recognition with Deep Learning Methods. Interspeech 2019, Sep 2019, Graz, Austria. ⟨10.21437/Interspeech.2019-1691⟩. ⟨hal-02319818⟩
77 Consultations
244 Téléchargements

Altmetric

Partager

More