Asymptotic model of linearly visco-elastic Kelvin–Voigt type plates via Trotter theory - Archive ouverte HAL
Article Dans Une Revue Advances in Difference Equations Année : 2019

Asymptotic model of linearly visco-elastic Kelvin–Voigt type plates via Trotter theory

Résumé

We confirm the study (Licht in C. R., Méc. 341:697-700, 2013) devoted to the quasi-static response for a visco-elastic Kelvin-Voigt plate whose thickness goes to zero. For each thickness parameter, the quasi-static response is given by a system of partial differential equations with initial and boundary conditions. Reformulating scaled systems into a family of evolution equations in Hilbert spaces of possible states with finite energy, we use Trotter theory of convergence of semi-groups of linear operators to identify the asymptotic behavior of the system. The asymptotic model we obtain and the genuine one have the same structure except an occurrence of a new state variable. Eliminating the new state variable from our asymptotic model leads to the asymptotic model in (Licht in C. R., Méc. 341:697-700, 2013) which involves an integro-differential system.
Fichier principal
Vignette du fichier
Art_Licht_al_Advances_difference_equations_2019.pdf (1.5 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02318639 , version 1 (17-10-2019)

Licence

Identifiants

Citer

Yotsawat Terapabkajornded, Somsak Orankitjaroen, Christian Licht. Asymptotic model of linearly visco-elastic Kelvin–Voigt type plates via Trotter theory. Advances in Difference Equations, 2019, 2019, pp.186. ⟨10.1186/s13662-019-2104-6⟩. ⟨hal-02318639⟩
90 Consultations
67 Téléchargements

Altmetric

Partager

More