Spatially Regularized Multi-Exponential Transverse Relaxation Times Estimation From Magnitude Magnetic Resonance Images Under Rician Noise - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Spatially Regularized Multi-Exponential Transverse Relaxation Times Estimation From Magnitude Magnetic Resonance Images Under Rician Noise

Résumé

The extraction of multi-exponential decay parameters from multi-temporal images corrupted with Rician noise and with limited time samples proves to be a challenging problem frequently encountered in clinical and food MRI studies. This work aims at proposing a method for the estimation of multi-exponential transverse relaxation times from noisy magnitude MRI images. A spatially regularized Maximum-Likelihood estimator accounting for the Rician distribution of the noise is introduced. To deal with the large-scale optimization problem , a Majoration-Minimization approach coupled with an adapted non-linear least squares algorithm is implemented. The proposed algorithm is numerically fast, stable and leads to accurate results. Its effectiveness is illustrated by an application to a simulated phantom and to magnitude multi spin echo MRI images acquired from a tomato sample.
Fichier principal
Vignette du fichier
ICIP.pdf (533.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02317863 , version 1 (16-10-2019)

Identifiants

Citer

Christian El Hajj, Saïd Moussaoui, Guylaine Collewet, Maja Musse. Spatially Regularized Multi-Exponential Transverse Relaxation Times Estimation From Magnitude Magnetic Resonance Images Under Rician Noise. 26th IEEE International Conference on Image Processing, Sep 2019, Tapei, Taiwan. ⟨10.1109/icip.2019.8804298⟩. ⟨hal-02317863⟩
69 Consultations
135 Téléchargements

Altmetric

Partager

More