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ABSTRACT

The extraction of multi-exponential decay parameters from
multi-temporal images corrupted with Rician noise and with
limited time samples proves to be a challenging problem fre-
quently encountered in clinical and food MRI studies. This
work aims at proposing a method for the estimation of multi-
exponential transverse relaxation times from noisy magnitude
MRI images. A spatially regularized Maximum-Likelihood
estimator accounting for the Rician distribution of the noise
is introduced. To deal with the large-scale optimization prob-
lem, a Majoration-Minimization approach coupled with an
adapted non-linear least squares algorithm is implemented.
The proposed algorithm is numerically fast, stable and leads
to accurate results. Its effectiveness is illustrated by an ap-
plication to a simulated phantom and to magnitude multi spin
echo MRI images acquired from a tomato sample.

Index Terms— Maximum-Likelihood, Spatial Regular-
ization, Majoration-Minimization, Rician noise, Multi-T2.

1 Introduction

Multiple Spin Echo (Multi-SE) is a technique used in MRI
transverse relaxation (T2) relaxometry. Multiple T2-weighted
images, at a fixed sampling rate, are acquired and an expo-
nential decay curve is fitted to the signal at each voxel, in
order to extract the relaxation times T2 (time constants of the
decay curve) and their corresponding amplitude A0 [1]. The
measured decay curve in each voxel can be associated, either
to a mono-exponential decay, or, in more general cases, to a
multi-exponential decay. In the latter case, extracting all the
parameters describing a multi-exponential signal inside each
voxel can provide relevant information on the micro-structure
or composition of the tissue. In plant tissues, the compo-
nents of the multi-exponential signal are assigned to principal
cell compartments (vacuole, cytoplasm and wall) [2]. T2 and
A0 maps can therefore be used to access, respectively, infor-
mation about water status and distribution at the sub-cellular
level, representing a smaller scale than the voxel size. This is
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useful for evaluating cell and tissue structure and functioning,
as for example in the study of the mechanical properties of
the apple fruit [3]. In the brain [4], three major components
can be identified within one voxel: water trapped between
the myelin, the intra/extracellular water and the cerebrospinal
fluid.

The T2 values inside each voxel can be modeled either
by a discretization of a continuous T2 distribution [5], or by
imposing a defined number of T2 components [6, 7]. We will
focus our study to the second case, assuming that the number
of T2 decay components is known.

The acquisition of MRI data is carried out in the complex
domain, where the real and the imaginary signal components
are corrupted by an independent and identically distributed
Gaussian noise. Due to various factors, such as magnetic field
inhomogeneity, thermal noise, eddy currents , the phase of the
complex data presents both time and space dependence. As
a consequence, parameters estimation in the complex domain
becomes a challenging problem. The common approach used
for estimating T2 and A0 maps consists of taking the magni-
tude of the complex data. In the case of single coil acquisi-
tions [8], the noise in the magnitude data is described by a
Rician distribution, which, when not properly accounted for,
introduces a bias on the estimated parameters [9].

A maximum Likelihood (ML) estimator based on the
Rician probability density function can be adopted for the
estimation [10]. Moroever, spatial regularization has been
recently proposed to stabilize the solution by taking advan-
tage of low voxel to voxel variability between different image
structures [5, 7]. However, direct implementation of spa-
tial regularization has not been possible because of the large
amount of memory needed and the considerable computa-
tion time. It has been carried out only under Gaussian noise
assumption either by dividing the image into overlapping
patches [5] either by carrying the estimation on regions of
interest.

In this paper, we propose an efficient algorithm which al-
lows to carry out the estimation on the whole image at once
under Rician noise assumption. In order to minimize the ef-
fect of the Rician noise we employed a ML estimator and
added a penalizing function allowing us to take advantage of
spatial regularity and further reduce the effect of the noise.



The first contribution is to carry out the estimation using a
Majorization-Minimization (MM) approach coupled with a
Levenberg-Marquardt (LM) algorithm adapted to the estima-
tion of all the image parameters simultaneously. The second
contribution is to adopt the Armijo linesearch technique in or-
der to ensure the convergence of the algorithm and a bounded
maximal step-length to guarantee the parameters positivity.
Tests were conducted on simulated phantom and on MRI im-
ages of fruit. The performance of the method is illustrated
through numerical and visual results.

2 Problem statement

MRI data, measured with a Multi-SE sequence, is composed
of Nτ images, of size [Nx × Ny] (Nv voxels). The mini-
mum time ∆TE between two successive signal samples τt
and τt+1, also called echoes, depends on the image acquisi-
tion sequence. The measured signal yj(τt) in each voxel j,
can be represented by a multi-exponential decay model:

M (τt,θj) =

Nc∑
c=1

A0(c,j)e
− τt
T2(c,j) , for t = 1, ..., Nτ (1)

where Nτ represents the number of echoes and the vector
θj = [A0(1,j) , T2(1,j) ... A0(Nc,j)

, T2(Nc,j) ] the vector of
unknown parameters of length Np = 2Nc. Nc represents the
number of T2 relaxation times that corresponds to different
signal components inside each voxel. By accounting for the
Rician probability density function PR, the Maximum Likeli-
hood estimator is obtained by maximizing the following like-
lihood function:

L (θ) =

Nv∏
j=1

Nτ∏
t=1

PR (yj (τt) |M (τt,θj) , σ) =

Nv∏
j=1

Nτ∏
t=1

yj (τt)

σ2
e
−
[
yj(τt)

2+M(τt,θj)
2

2σ2

]
I0 (∆jt) , (2)

where θ = [θ1 ... θj ], I0 is the modified Bessel function
of the first kind and order 0 and σ is the standard devia-
tion of the Gaussian noise in the real and imaginary parts.
∆jt =

yj(τt)M(τt,θj)
σ2 . At high SNR, the Rician probability

function approaches the Gaussian distribution. However, low
SNR inevitably occurs in relaxometry for high values of τt
which implies the need to take the Rician distribution into
account. In the background region no signal is present, the
Rician distribution can be approximated by the Rayleigh dis-
tribution and σ can thus be estimated using the mean value of
the voxels in this region [11].

Maximizing the log of the likelihood function expressed
by equation (2) comes down to minimizing the ML criterion

given by:

JML(y,θ) =

Nv∑
j=1

Nτ∑
t=1

[
M (τt,θj)

2σ2

2

− log (I0 (∆j))

]
, (3)

where y is the vector containing the measured signals for all
the voxels. We can consider that there exists some similar-
ity from one voxel to its neighbor. Spatial regularity can be
accounted for by adding a penalizing function to the JML cri-
terion. For each voxel j we define a neighboring voxels set Vj
(for example using a window of 3 × 3 voxels) and impose a
penalty function ψ on the difference between the parameters:

Jreg(θ) =

Np∑
p=1

β(p)

Nv∑
j=1

∑
k∈Vj

ψ (θj (p)− θk (p)) . (4)

Here β is a weight vector attributed to the parameters of the
penalty function to balance the minimization with the general
estimation criterion. By adding the penalizing term to the ML
criterion we obtain the following penalized ML criterion:

JPML(y,θ) = JML(y,θ) + Jreg(θ). (5)

3 Proposed algorithm

There exists no analytical solution for estimating the pa-
rameters using the penalized ML criterion, hence, iterative
approach must be adopted. The algorithm that we are propos-
ing in this section allows the use of the Levenberg-Marquardt
(LM) algorithm in order to minimize JPML criterion by
adopting a MM approach. The MM algorithm is based on
a technique that can be used in order to solve differential
optimization problems by using a quadratic surrogate func-
tion. Let us consider a convex objective function C(x), at
each iteration i of the MM algorithm, there exists a function
Maj

(
x|x(i)

)
tangent to C(x) at point x(i) such as C(x)

is smaller than Maj
(
x|x(i)

)
for all the values of x [12].

Maj
(
x|x(i)

)
is called a tangent majorant of C(x). By us-

ing this approach, the minimization of a non quadratic, non
convex and multidimensional criterion can be transformed
into quadratic criteria.

Actually, the JML criterion is the sum of two terms, a
strictly convex quadratic function and a function which is
proven to be strictly concave − log (I0 (∆j)) [13]. A strictly
concave function can be majorized by its tangent. Thus:

− log
(
I0

(
∆

(i)
jt

))
−
yj (τt)

σ2
R
(

∆
(i)
jt

)(
M

(
τt,θj

)
−M

(
τt,θ

(i)
j

))
≥ − log (I0 (∆jt)) ,

(6)

where R(x) = I1(x)
I0(x)

. The quadratic ML criterion to be mini-
mized at step i of the MM algorithm can be expressed as:

S
(i)
ML(θ) =

1

2σ2

Nv∑
j=1

Nτ∑
t=1

(
yj (τt)R

(
∆

(i)
j

)
−M (τt,θj)

)2
(7)



Moreover, by adding the spatial regularization, the voxel
wise independence of the solution is lost. We propose to use
the MM algorithm in order to obtain a voxel wise separable
regularization criterion. Based on Erdogan and Fesslers’s
work [14], if we consider a convex penalizing function ψ, we
can compute a majorant function that reestablishes the vari-
able separability. For each iteration i of the MM algorithm
we can establish the following relation [14, 15, 16]:

ψ (zj − zk) =

ψ

(
1

2

(
2zj −

(
z
(i)
j + z

(i)
k

))
+

1

2

(
−2zk +

(
z
(i)
j + z

(i)
k

)))
≤ 1

2

[
ψ
(

2zj −
(
z
(i)
j + z

(i)
k

))
+ ψ

(
2zk −

(
z
(i)
j + z

(i)
k

))]
(8)

for z ∈ [θ(1), .., θ(Np)]. The majorant function is thus a
sum of the two initial convex functions ψ that are now voxel
wise independent at each iteration i of the MM algorithm.
We can thus construct a new penalizing criterion by taking
advantage of the symmetry of the majorant function:

S(k)
reg(θ) =

np∑
p=1

β(p)

Nv∑
j=1

∑
k∈Vj

ψ
(

2θj (p)−
(
θ
(i)
j (p) + θ

(i)
k (p)

)) (9)

We propose to minimize S(k)
PML(θ) = S

(k)
ML(θ)+S

(k)
reg(θ)

criterion by using the LM algorithm. It is an iterative estima-
tion method that interchanges between the gradient descent
method and the Gauss-Newton method. At each iteration l
of the LM algorithm the parameters are updated in the direc-
tion dLM that is a function of the residual r and the Jacobian
matrix J given by :

d
(l)
LM =

[
J(l)TJ(l) + λ(l)

]−1

J(l)Tr(l) (10)

r is expressed such that S(i)
PML(θ) = 1

2 ‖ r ‖
2
2. λ is a diago-

nal matrix that contains the LM parameters for each voxel.
It is updated at each iteration, with an initial value that is
large enough to take a small step in the steepest descent di-
rection. As the residue r gets smaller, λ is decreased and the
LM update direction approaches that of the Gauss-Newton al-
gorithm. Once the direction of descent is obtained, we adopt
a backtracking technique based on the Armijo condition in
order to compute the step size per voxel j that ensures a suffi-
cient descent and the positivity of the parameters. In the LM
algorithm the heaviest computation step is the inversion of the
first term in equation (10).

Actually, by applying the LM algorithm on the whole im-
age at once, we obtain a Jacobian of size Nτ × (NpNv), thus
a matrix of sizeNpNv×NpNv to inverse. However, by using
the MM approach, the parameters are independent from voxel
to another, thus, this matrix is block diagonal. By taking ad-
vantage of this structure, we adopt the inversion of Nv blocks
of size Np × Np. The proposed Minimization-Majorization

for the Penalized Maximum Likelihood (MM-PML) approach
is summarized by the following algorithm:

Initialize θ(0) ;
for i← 0 to imax or until convergence do

Compute
(
θ
(i)
j (p) + θ

(i)
k (p)

)
for all j and k ;

Compute M̃(τt) = M(τt)R
(
D

(i)
jt

)
;

for l← 0 to lmax do
Update λ(l) and Compute d(l)LM ;
Compute the maximum step size αM ;
set α(0) = αM ;
for k ← 0 to kmax or until Armijo condition

is satisfied do
Set α(k+1) ← α(k) ∗ c with 0 < c < 1;
Compute the Armijo condition

end
update θ(l+1) = θ(l) + αd

(l)
LM ;

end
Set θi+1 = θlmax

end
Output θ(i+1)

Algorithm 1: The MM algorithm for the penalized ap-
proach

4 Results

The evaluation was divided into two parts, the first one is
based on a simulated phantom and the second one consisted in
in applying the algorithm on experimental tomato MRI data.
In order to simulate a phantom, a circular phantom was con-
structed, on an image of 128 × 128 voxels, with an outside
ring and 9 inner disks with different sizes. A tri-exponential
model was generated for the different parts of the phantom
with settings that are close to parameters typically found in
tomato fruits as seen in figure 5. We then added a Rician
noise with a σ = 7 in order to obtain a SNR value close to
that found in MRI images.

For the experimental MRI settings, we used a Multi-
SE sequence on a 1.5T MRI scanner (Magnetom, Avanto,
Siemens, Erlangen, Germany), with inter-echo spacing (∆TE)
of 6.5 ms, bandwidth of 260 Hz/pixel, 512 echoes per echo
train and a repetition time of 10s. The median planes of fruit
(transverse section at middle height of fruit) were imaged
with a total of 128 × 128 voxels and a slice thickness of
5 mm, resulting in voxel size of 1.19× 1.19× 5 mm3. Two
scans were made, the first one with 32 accumulations in order
to obtain higher SNR and to serve as a reference, and the
second one with only 1 accumulation in order to verify the
stability of the algorithm at the lowest SNR.

In order to implement the regularization, we had to choose
the penalizing function ψ and the penalizing weight vector β.
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Fig. 5. T2 and A0 values used for generating the phantom.

The choice of the penalizing function affects the inter-tissues
smoothness, whilst the penalizing weight affects the degree
of smoothness on the whole image. In this study, we used
an L1-L2 penalizing function with a weight β chosen by trial
and error so as to preserve a good separation between edges.
As seen in figure 1, the results on the phantom show that the

reconstruction was made with satisfying edge preserving and
that using the proposed MM-PML method allows to detect
the different structures even in low contrast situations. For a
sake of comparison the non-regularised version (β=0) is also
represented. This illustrates the importance of the regulariza-
tion without which the maps were very noisy with even no
contrast between certain regions. Furthermore, we obtained
a normalized root mean square error (NRMSE) of 4.47% per
voxel and per parameter compared to a value of 22.85% for
the non regularized version. The NRMSE was computed as:

NRMSE = 100

√
1

NvNp

∑Nv
j=1

∑Np
p=1

(θj(p)−θ∗j (p))
2

θ∗j (p)
2 , with

θ∗j (p) the reference parameters at voxel j for parameter p. In
figure 2 the scan with 32 acquisitions had an SNR of 687.7
whilst the images acquired with only 1 acquisition had an

SNR of 145.74 (here SNR =
∑Nv
j=1 yj(τ1)

σNv
). We used the pa-

rameters estimated from the high SNR image as a reference
in order to compute the NRMSE which was equal to 5.56%.
Also, visually we were able to validate the robustness of the
method by comparing the reconstructed maps from low and
high SNR data for the different parameters which were quite
similar. The evolution of the JPML criterion during each step

of the MM algorithm is shown in figure, it is clearly shown
that by decreasing the surrogate criterion SML the descent
of the majorized criterion is guaranteed which validate the
choice of the majorant functions.
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Fig. 1. Reference and estimatedA0 and T2 maps on the phan-
tom using a non-regularized (second columns) and the pro-
posed regularized algorithm (third columns).
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Fig. 2. A0 and T2 maps reconstructed from MRI images of a
tomato acquired with 32 acquisitions and 1 acquisition.

5 Conclusion

In this paper we proposed an efficient method for the recon-
struction of T2 andA0 maps from noisy MRI magnitude data.
We showed that visually and numerically we obtained good
results both on a simulated phantom and on real scans of a
tomato. We were able, for the first time as far as our knowl-
edge, to reconstruct multi-exponential maps with a voxel level
information while incorperating both the Rician noise and the
special regularity of the parameters. The proposed MM-PML
algorithm showed both stability and accuracy. Furthermore,
the estimated parameters can be used as features of a classifi-
cation algorithm in order to characterize different fruit tissues.
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