A Data Augmentation Approach for Sampling Gaussian Models in High Dimension - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

A Data Augmentation Approach for Sampling Gaussian Models in High Dimension

Yosra Marnissi
  • Fonction : Auteur
Dany Abboud
  • Fonction : Auteur
Emilie Chouzenoux
Mohamed El-Badaoui

Résumé

Recently, methods based on Data Augmentation (DA) strategies have shown their efficiency for dealing with high-dimensional Gaussian sampling within Gibbs samplers compared to iterative-based sampling (e.g., Perturbation-Optimization). However, they are limited by the feasibility of the direct sampling of the auxiliary variable. This paper reviews DA sampling algorithms for Gaussian sampling and proposes a DA method which is especially useful when direct sampling of the auxiliary variable is not straightforward from a computational viewpoint. Experiments in two vibration analysis applications show the good performance of the proposed algorithm.
Fichier principal
Vignette du fichier
main.pdf (17.85 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02314418 , version 1 (12-10-2019)

Identifiants

Citer

Yosra Marnissi, Dany Abboud, Emilie Chouzenoux, Jean-Christophe Pesquet, Mohamed El-Badaoui, et al.. A Data Augmentation Approach for Sampling Gaussian Models in High Dimension. EUSIPCO 2019 - 27th European Signal Processing Conference, Sep 2019, La Corogne, Spain. ⟨10.23919/eusipco.2019.8902496⟩. ⟨hal-02314418⟩
104 Consultations
86 Téléchargements

Altmetric

Partager

More