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Abstract—Recently, methods based on Data Augmentation
(DA) strategies have shown their efficiency for dealing with high-
dimensional Gaussian sampling within Gibbs samplers compared
to iterative-based sampling (e.g., Perturbation-Optimization).
However, they are limited by the feasibility of the direct sampling
of the auxiliary variable. This paper reviews DA sampling
algorithms for Gaussian sampling and proposes a DA method
which is especially useful when direct sampling of the auxiliary
variable is not straightforward from a computational viewpoint.
Experiments in two vibration analysis applications show the good
performance of the proposed algorithm.

Index Terms—Data augmentation, Auxiliary variables,
MCMC, Gaussian, Correlation, Bayesian.

I. INTRODUCTION

This paper deals with the problem of sampling from a high

dimensional Gaussian distribution1 with mean m ∈ R
Q and

precision matrix G =
∑J

j=1
Gj ∈ R

Q×Q such that

(∀j ∈ {1, . . . , J}) Gj = H⊤
j ΛjHj , (1)

where for j ∈ {1, . . . , J}, Λj ∈ R
Nj×Nj is a positive semi-

definite matrix and Hj ∈ R
Nj×Q. Very often, we do not

have direct access to the mean m but only to the potential

vector p = Gm. We further assume that the latter reads

p =
∑J

j=1
Gjmj where for j ∈ {1, . . . , J}, mj ∈ R

Q.

Gaussian sampling arises in linear inverse problems involving

Gaussian or hierarchical Gaussian models. In such situations,

Gaussian simulation is mostly needed as a sampling step at

each iteration of a Markov Chain Monte Carlo algorithm e.g.,

Gibbs samplers. Typical applications are image deconvolution

[1], super-resolution [2], inpainting [3], [4], weather forecast-

ing [5], etc.

The problem of high dimensional Gaussian sampling has

been widely addressed in the literature and several solu-

tions have been proposed. Typical approaches for large scale

Gaussian simulation are inspired from deterministic iterative

optimization techniques. The most known ones are samplers

1Note that the degenerate Gaussian distribution case (i.e., whose covariance
matrix is positive semi-definite but not with full rank) is considered as
a proper distribution w.r.t. the restriction of the Lebesgue measure to the
image subspace of this covariance matrix. This amounts to replacing inverse
with generalized inverse and determinant with pseudo-determinant in the
computation of the density function. Throughout this article, for deficient rank
positive semi-definite matrices, (···)−1 will denote the generalized inverse.

derived from the Perturbation-Optimization strategy [2], [3],

[6] and matrix splitting optimization [4], [7]. These two

families of methods are good candidates for efficient Gaussian

sampling in large scale problems since they avoid the storage

and the factorization of large matrices. However, they both

require solving a linear system at each iteration which can

be computationally expensive. Thereby, when implemented

through a Gibbs sampler, they may turn out to be less efficient;

in particular, when G depends on some target parameters

evolving along the algorithm. Recently, new sampling strate-

gies have been proposed as alternatives to optimization based

Gaussian sampling [8], [9], [10]. By adding some auxiliary

variables, the authors demonstrate, in several inverse problems

applications, that sampling becomes much easier in the new

augmented space. In the following, we will use the term

Data Augmentation (DA) sampling to designate any sampling

algorithm that introduces auxiliary variables [11].

In this paper, we are interested in DA strategies for Gaussian

sampling in large scale problems. Section II reviews recent DA

Gibbs algorithms that allow to separate heterogeneous correla-

tions in the covariance matrix. The DA Gibbs sampler, initially

introduced in [9], is extended to handle the limitation of state-

of-the-art techniques. Section III compares the performance of

the different DA samplers in vibration analysis applications.

Finally, some conclusions are drawn in Section IV.

II. DATA AUGMENTATION STRATEGY FOR GAUSSIAN

SAMPLING

A. Principle

The difficulty of Gaussian sampling arises particularly when

the matrices (Hj ,Λj)1≤j≤J cannot be diagonalized in the

same basis. Therefore, it is desirable to separate heterogeneous

matrices in order to facilitate sampling. This has been success-

fully achieved using DA strategies [8], [9], [10]. Specifically,

auxiliary variables u ∈ R
P , are added to the model2 with

a predefined joint distribution with density q(x,u). The key

requirement is that q(x,u) should define a valid probability

density function (i.e. non-negative whose integral with respect

2Initially, the model contains the main variable x ∼ N (m,G−1) and
possibly other latent variables controlling m and/or G.



TABLE I: Conditional distributions of x and of the auxiliary variables.

DA Conditions on parameters First auxiliary variable Second auxiliary variable Resulting conditional distribution

u|v,x ∼ N (mu,Qu) v|u,x ∼ N (mv,Qv) x|u,v ∼ N (G−1
x px,G

−1
x )

SP 0 < µ Qu =
(

1
µ
Id+G1

)−1
Gx = 1

µ
Id +

∑J
j=2 Gj

mu = Qu

(

1
µ
x+G1m1

)

px = 1
µ
u+

∑J
j=2 Gjmj

SPA 0 < η < µ Qu =
(

1
η
Id +G1

)−1
Qv =

η(µ−η)
µ

Id Gx = 1
η
Id +

∑J
j=2 Gj

mu = Qu

(

1
η
(x+ v) +G1m1

)

mv = µ−η

µ
(u− x) px = 1

η
(u− v) +

∑J
j=2 Gjmj

EDA 0 < µ‖G1‖ < 1 Qu = 1
µ
Id −G1 Gx =

1

µ
Id+

∑J
j=2 Gj

mu = 1
µ
x−G1x px = u+

∑J
j=1 Gjmj

GEDA 0 < µ‖G1‖ < 1 Qu = µId Qv = Λ
−1
1 Gx =

1

µ
Id+

∑J
j=2 Gj

mu = (Id− µG1)x+ µH⊤

1 Λ1v mv = H1u px = 1
µ
u−G1u+

∑J
j=1 Gjmj

to u and x equals 1). This is ensured if the marginalization of

q(x,u) with respect to u and x gives rise to valid marginal

probability density functions q(x) =
∫

RM q(x,u) du and

q(u) =
∫

RQ q(x,u) dx [11]. At each iteration of the new

Gibbs sampler, the Gaussian sampling step is replaced by

two sampling steps from the conditional distributions of the

two variables and in an arbitrary order. The DA strategy is

said to be exact if the introduction of auxiliary variables does

not alter the initial model. This is achieved if the marginal

distribution q(x) is equal to the target distribution (being in

our case the Gaussian distribution of mean m and covariance

matrix G−1). Hereafter, examples of recently proposed DA

methods are reviewed. These methods can be categorized into

approximate and exact DA samplers.

B. Related works

Without loss of generality, we consider the problem of

eliminating the coupling induced by G1 in the precision matrix

(the methods can be easily generalized to other coupling

matrices following the same lines). To this end, q(x,u) is

selected, so as, in the new augmented space, G1 is no more

coupled directly with x but only intervenes through auxiliary

variables. Table I summarizes the state-of-the-art DA strategies

proposed for the aforementioned purpose.

1) Approximate DA: The split (SP) sampler [10], is derived

from the deterministic variable splitting optimization strategy.

The main idea is to split the initial model into the product

of a pair of density functions, for example the likelihood and

the prior distribution. Each function is expressed with respect

to one variable namely the main variable x and the splitting

variable u. A quadratic function φ(x,u;µ) = 1

µ
‖x − u‖2

with µ > 0, is added to the model to control the discrepancy

between the two parameters. This function can be particularly

interpreted as the minus-logarithm of their joint distribution.

Consequently, for the purpose of eliminating G1 in the

distribution of x, the resulting conditional distributions are

summarized in Table I. It can be noticed that the additional

splitting variables make the different precision matrices appear

in two separate distributions q(x|u) and q(u|x). However, this

splitting strategy is not exact which means that the resulting

distribution of x is only an approximation of the target one.

The two distributions only coincide in the limiting case when

the variance µ of the Gaussian splitting variable goes to zero.

However, the smaller µ, the higher the correlation between

samples. Such a scenario can jeopardize the mixing properties

of the samples. In [10], the authors propose to introduce an

additional auxiliary variable v in the SP Gibbs sampler to

decrease the correlation between x and u. This allows the use

of higher values for µ, with the aim to better approach the

exact target distribution. The resulting sampler is known as

the Split And Augmented (SPA) sampler. It is worth noting

that SPA Gibbs sampler reduces to SP Gibbs sampler by

integrating out v. Further discussions and theoretical results on

approximate DA Bayesian approaches can be found in recent

works [12], [13].

2) Exact DA: Exact DA (EDA) strategies have been derived

in [8], [9], [14] to cope with both the high dimensionality and

the strong correlation existing between the target parameters

in high dimensional Gaussian models. These methods are

related to half-quadratic optimization approaches proposed in

[15], as established in [8]. The resulting hierarchical Gibbs

scheme is summarized in the third row of Table I. Note that

only the matrices (Gj)j 6=1 are still directly coupled to the

main variable in the new augmented space, similarly to the

splitting DA methods. Eventually, the advantage of this DA

method compared to SP and SPA, is that the former is exact.

Nevertheless, contrary to the EDA sampler, the splitting DA

strategies are not restricted to Gaussian models (see [10] for

examples).

C. A generalized exact DA strategy for Gaussian models

The main interest of DA strategies is that, in the new

augmented space, the sampling task is much easier than direct

sampling from the initial model. This can be achieved provided

that the sampling step from q(u|x) does not introduce a

too high computational cost in the algorithm. Ultimately,

the reviewed DA methods fail when direct sampling is not

feasible. The feasibility depends on the structure of matrix

G1. To alleviate these limitations, we propose a new DA Gibbs

sampler that will be designated as the GEDA algorithm. More

precisely, two auxiliary variables u ∈ R
Q and v ∈ R

N1 are

introduced according to the following hierarchical model:



• x ∼ N
(

m,G−1
)

,

• u|x ∼ N
(

x,Γ−1
)

,

• v|u ∼ N
(

H1u,Λ
−1

1

)

,

where G and m take the form presented in Section I and

Γ =
1

µ
Id−G1, 0 < µ‖G1‖ < 1. (2)

Since v is independent from x conditionally to u, the joint

density distribution of these variables reads q(x,u,v) =
q(v|u)q(u|x)q(x). In particular, its minus logarithm can be

expressed up to an additive constant as follows:

J (x,u,v) =
1

2µ
‖x− µG1m1‖

2 +
1

2

J
∑

j=2

x⊤Gj (x−mj)

+
1

2µ
‖u‖2 − x⊤Γu− v⊤Λ1H1u+

1

2
v⊤Λ1v.

(3)

The resulting conditional distributions of x, u and v are given

in Table I. It can be seen that the interest behind introducing

the variable u is to eliminate G1 in the covariance matrix of

x conditionally to u while the introduction of the variable v

aims at facilitating the sampling of u so that this variable can

be drawn directly without requiring intensive computations.

Similarly, the sampling step for v can be performed efficiently

for a large instance of inverse problems for which Λ1 is

diagonal or has a simple structure.

Table II compares the different DA methods with respect to

the feasibility of a direct sampling of the auxiliary variables

when Λ1 = αId with α > 0. This may particularly arises

in linear inverse problems with decorrelated Gaussian noise.

It can be noted that, in contrast with the approximate DA

samplers, EDA sampler makes direct sampling possible when

the matrix H1 is the product of two matrices belonging to

diagonal, tight frame [16] or circulant families [9, Section 3.4].

This may arise for example in image recovery applications

when H1 = PM where P is a tight frame analysis operator

and M is a convolution matrix with periodic boundary con-

dition. Non-trivial forms of H1 arise in several applications

such as compressive sensing [17], spectroscopy [18], image

reconstruction [16], etc. In such situations, only the GEDA

algorithm enables efficient sampling of all variables (see

Section III-B for an example).

TABLE II: The feasibility of direct sampling if Λ1 = αId.

H1 SP SPA EDA GEDA

Diagonal X X X X

Tight frame X X X X

Circulant X X X X

Product X X

Non-trivial form X

It is worth noting that, the EDA algorithm can be viewed

as a particular instance of the proposed Gibbs algorithm by

marginalizing with respect to v. Thus, one might prefer to use

the EDA sampler rather than the GEDA if direct sampling

of the auxiliary variables is tractable. Indeed, it is expected

that this marginalization improves the mixing properties of

the samples. The proposed GEDA method can be used as an

alternative to the EDA algorithm when direct sampling of the

auxiliary variable is not feasible. In Section III, we show that

the GEDA sampler still performs well when compared to the

reviewed DA strategies even if direct sampling of the auxiliary

variable is feasible. Interestingly and following the same lines

as for the EDA sampler in [9], the GEDA algorithm can be also

easily generalized to cases when the distribution of interest

is non-Gaussian but its minus-logarithm density comprises a

quadratic function with respect to some variables controlling

the mean and/or the variance (e.g., location or scale mixture

of Gaussian, Gaussian Markov random fields etc) by including

these variables in the Gibbs scheme.

III. APPLICATION TO VIBRATION ANALYSIS

A. Order tracking

In a rotating machine, each mechanical component gener-

ates unique vibration patterns as the machine operates. It is a

common practice to monitor these components by analyzing

their vibratory level, provided that the system kinematic is

known (i.e. the frequencies of the monitored components).

This reduces to an amplitude and phase modulations estima-

tion problem. Such problem is known in the literature as order

tracking [19].

1) Problem formulation: The order tracking problem can

be addressed with the following dynamic model [20]:

y(n) =

K
∑

k=1

sk(n) +w(n) (4)

where n ∈ {1, . . . , N} denotes time index, k ∈ {1, . . . ,K}
labels the sinusoidal components sk. In model (4), y(n) ∈
R

2 contains the real and the imaginary part of the

Hilbert transform of the measured vibration data, sk(n) =
Ck(n)xk(n) where Ck(n) ∈ R

2×2 is given by Ck(n) =
[Ψ(φk(n)),Ψ(φk(n) + π

2
)], φk(n) is the instantaneous

phase of the kth component, Ψ(.) = [cos(.), sin(.)]⊤ and

w(n) is assumed to be a zero-mean Gaussian noise with

variance σ2. Let y = [y(1)⊤, . . . ,y(N)⊤]⊤ and x =
[x⊤

1 , . . . ,x
⊤
K ]⊤ where xk = [xk(1)

⊤, . . . ,xk(N)⊤]⊤. Fur-

thermore, let ak = [[xk(1)]1, . . . , [xk(N)]1]
⊤ and bk =

[xk(1)]2, . . . , [xk(N)]2]
⊤. Note that ak and bk can be ex-

tracted from xk using some suitable sparse matrices P1 and

P2 i.e. ak = P1xk and bk = P2xk. To perform the

estimation, it is advantageous to consider the low-frequency

or, equivalently, the slow-varying part of the amplitude and

phase modulations profiles. This can be practically made by

adding the following smoothing prior:

(∀k ∈ {1, . . . ,K}) g(xk) ∝ γN
k exp

(

−γkx
⊤
k Bxk

)

(5)

where B = P⊤
1 L

⊤LP1+P⊤
2 L

⊤LP2 such that L = δId+∇,

∇ ∈ R
N×N is a circulant matrix associated to a discrete

Laplacian filter, δ > 0 is a small constant that ensures the

positive definiteness of L⊤L, and γk > 0 is a regularization

parameter. Furthermore, we use an inverse Gamma prior



distribution for σ2 and Gamma prior distributions for the

regularization parameters i.e., σ2 ∼ IG(a, b) and for every

k ∈ {1, . . . ,K}, γk ∼ G(ak, bk) where a, b, ak, bk are

positive constants that are set in practice to small values to

ensure weakly informative priors. From the observation and

the prior models, the posterior of the target signal x reduces

to a Gaussian one with precision matrix and potential given

respectively by

G =
1

σ2
C⊤C+M, p =

1

σ2
C⊤y (6)

where C = [C1, . . . ,CK ], Ck is a block matrix formed by the

matrices Ck(1) . . . ,Ck(N) and M is a block matrix formed

by the matrices γ1B, . . . , γKB. Note that the precision matrix

in (6) reduces to (1) by setting J = 3, H1 = C, Λ1 = 1

σ2 Id,

and, for every j ∈ {2, 3}, Λj is the diagonal matrix containing

γk and Hj is the block matrix formed by K blocks of LPj .

The posterior distributions of the remaining parameters are

given by:

• σ2|x,y ∼ IG
(

a+N, b+ 1

2
‖Cx− y‖2

)

,

• ∀k ∈ {1, . . . ,K} γk|xk ∼ G
(

ak +N, bk + x⊤
k Bxk

)

2) Gibbs samplers: Since M and C cannot be diagonalized

in the same basis, direct sampling from the Gaussian distri-

bution with parameters (6) is intractable. Thus, we propose to

resort to DA strategies. In particular, we aim at eliminating the

coupling induced by C⊤C in the posterior precision matrix

of x. Since CC⊤ =
∑K

k=1
CkC

⊤
k = K Id, ‖CC⊤‖ = K

and direct sampling of the Gaussian auxiliary variables in the

EDA Gibbs sampler is straightforward. For the SP and SPA

algorithms, an explicit expression of the covariance matrix of

the auxiliary variable u can be found by using the Woodbury

matrix identity so that, similarly to EDA, direct sampling of

the auxiliary variables can be fulfilled easily. Regarding the

sampling step of the target signal, it can be noted that for

all the DA strategies, the different components a1, . . . , aK ,

b1, . . . ,bK are uncorrelated given the auxiliary variables

and their covariance matrices are circulant so that they can

be drawn easily, in an independent manner, in the Fourier

domain. As it is complicated to sample from the conditional

distributions of the parameters σ2, γ1, . . . , γK subject to the

auxiliary variables, we follow [9] i.e., we instead sample from

their marginalized distributions by partially collapsing all the

auxiliary variables.

3) Performance comparison on synthetic data: We consider

a synthetic signal containing 3 components with time-varying

instantaneous amplitudes and frequencies and their 4 first

integer multiple harmonics over a duration of 4 seconds and

at a sampling frequency of 3, 000Hz. Thus, K = 15 and

N = 12, 000. A Gaussian noise with variance σ2 = 7605
is artificially added to the signal so that the initial signal-

to-noise ratio is equal to 0 dB. The hyperparameters a, b,

ak, bk, k ∈ {1, . . . ,K} are set to zero to ensure non-

informative priors. Simulations were performed on an Intel(R)

Core(TM) i5-6300U CPU @ 2.40 GHz, using a Matlab 2014

implementation. The spectrogram of the noisy signal and the

estimated one (using the empirical average of 1, 000 samples

generated by the GEDA algorithm after convergence) are

shown in Figure 1.
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Fig. 1: Spectrogram. (a) Noisy signal (b) Estimated signal.

Figure 2 shows the evolution of the parameter σ2 with

respect to the computational time for the considered DA

sampling algorithms for different values of µ and η (given

here up to a multiplicative factor σ2). One can see that the best

convergence speed is achieved by the different samplers for

very small value of µ while SP appears to converge towards a

wrong distribution for higher values of µ (i.e., µ > 0.1). These

results are consistent with the findings highlighted in [10]. The

remaining samplers share a roughly similar convergence speed.
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Fig. 2: Evolution of σ2 with respect to time.

Table III shows the mixing results for the DA algorithms

in terms of time per iteration after the burn-in period, Mean

Square Jump (MSJ) in stationarity and MSJ per second. Note

that the MSJ is estimated with an empirical average over 1, 000
samples after convergence similarly to [9]. It can be noted

that all algorithms have the same iteration cost and share

good mixing properties except SP and SPA for low values

of µ. Compared to SP, the addition of auxiliary variables in

SPA enhances slightly the mixing but the two algorithms still

explore less efficiently the parameter space compared to exact

DA samplers. In particular EDA is twice more efficient than SP

and SPA. Moreover, it appears that the best mixing properties

for EDA and GEDA are achieved for large values of µ. It is

worth noting that EDA shows mixing properties slightly better

than GEDA which is expected since EDA is a marginalized

version of GEDA. However, one should recall that GEDA

covers a wider scope of Gaussian sampling problems than

EDA. It follows that GEDA seems to be a good candidate

to replace EDA in Gaussian sampling when the covariance

matrix does not satisfy the requirements in [9].



TABLE III: Mixing results of DA samplers.

T[s] MSJ MSJ/T

SP (µ = 10−6) 0.14 12.86 86.39

SP (µ = 10−2) 0.14 415.48 2836.19

SPA (µ = 10−6, η = 10−12) 0.15 12.93 80.63

SPA (µ = 10−2, η = 10−6) 0.15 433.64 2776.62
EDA (µ = 0.01K) 0.12 153.02 1275.16
EDA (µ = 0.9K) 0.12 817.32 6438.12
GEDA (µ = 0.01K) 0.14 149.48 1067.71
GEDA (µ = 0.9K) 0.13 598.01 4326.98

B. A more complex illustrative scenario

For illustrative purpose, we consider the compressive sens-

ing model in Section 4.2 of [17] to reconstruct a vibration

signal of length Q = 30, 000 acquired in a spur Gearbox

from a low number of measurements N = 5, 000. The recon-

struction requires to specify a sparse representation operator

for the vibration signal which is here achieved by the Fast

Fourier transform. Following [17], to promote compressible

solutions, the Fourier coefficients of the signal are assumed

to be i.i.d according to a zero mean scale mixture of Gaus-

sian distributions with a Gamma mixing density, which is

equivalent to the Student’t distribution. Thus, the problem

amounts to a Gaussian sampling problem where the precision

matrix is of the form (1) with J = 2, H1 = SΨ where

Ψ is the inverse Fast Fourier transform operator and S is a

random Gaussian projection matrix with a reduced dimension

N = 5, 000, and Λ1 and G2 are diagonals. It is clear that as

H1 has a non-trivial form, in particular because S is neither

diagonal, nor circulant nor a tight frame, the state-of-the-art

DA techniques fail to sample directly the target variables,

while the proposed GEDA method can still be applied. Figure

3 shows the initial and the reconstructed spectra with the

GEDA sampler (µ = 0.9‖G1‖
−2) in the frequency band

(1, 000, 4, 000)Hz. The algorithm needs about 1, 000 iterations

to converge which is equivalent approximately to 500 seconds.
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Fig. 3: Target and reconstructed spectra.

IV. CONCLUSION

This paper has reviewed recent DA strategies for Gaussian

sampling and proposed a new one that can be used as an alter-

native to the method introduced in [9] when direct sampling of

the auxiliary variable is not feasible. It relies on adding two

auxiliary variables: while the first auxiliary variable aims at

facilitating the sampling of the target signal, the second one

enables direct sampling of the first auxiliary variable. Simula-

tion results in two vibration analysis applications indicate the

good performance of the considered DA Gibbs samplers.

REFERENCES

[1] C. Fox and R. A. Norton, “Fast sampling in a linear-Gaussian inverse
problem,” SIAM-ASA J. Uncertain., vol. 4, no. 1, pp. 1191–1218, 2016.

[2] C. Gilavert, S. Moussaoui, and J. Idier, “Efficient Gaussian sampling for
solving large-scale inverse problems using MCMC,” IEEE Trans. Signal

Process., vol. 63, no. 1, pp. 70–80, 2015.
[3] G. Papandreou and A. L. Yuille, “Gaussian sampling by local perturba-

tions,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS 2010), (Vancouver,
Canada), pp. 1858–1866, 6-11 Dec 2010.

[4] A.-C. Barbos, F. Caron, J.-F. Giovannelli, and A. Doucet, “Clone
MCMC: Parallel High-Dimensional Gaussian Gibbs Sampling,” in Proc.

Adv. Neural Inf. Process. Syst. (NIPS 2017), (Long Beach, CA),
pp. 5020–5028, 4-9 Dec 2017.

[5] Y. Gel, A. E. Raftery, and T. Gneiting, “Calibrated probabilistic
mesoscale weather field forecasting: The geostatistical output pertur-
bation method,” J. A. Stat. Assoc., vol. 99, no. 467, pp. 575–583, 2004.

[6] O. Féron, F. Orieux, and J.-F. Giovannelli, “Gradient Scan Gibbs Sam-
pler: an efficient algorithm for high-dimensional Gaussian distributions,”
IEEE Journal of Selected Topics in Signal Process., vol. 10, no. 2,
pp. 343–352, 2016.

[7] M. Johnson, J. Saunderson, and A. Willsky, “Analyzing Hogwild Parallel
Gaussian Gibbs sampling,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS

2013), (Harrahs and Harveys, Lake Tahoe), pp. 2715–2723, 5-10 Dec
2013.

[8] Y. Marnissi, E. Chouzenoux, J.-C. Pesquet, and A. Benazza-Benyahia,
“An auxiliary variable method for langevin based MCMC algorithms,”
in Proc. IEEE Stat. Signal Process. Workshop (SSP 2016), (Palma de
Mallorca, Spain), pp. 297–301, 26-29 Jun. 2016.

[9] Y. Marnissi, E. Chouzenoux, A. Benazza-Benyahia, and J.-C. Pesquet,
“An Auxiliary Variable Method for Markov Chain Monte Carlo Algo-
rithms in High Dimension,” Entropy, vol. 20, no. 2, 2018.

[10] M. Vono, N. Dobigeon, and P. Chainais, “Split-and-augmented Gibbs
sampler-Application to large-scale inference problems,” arXiv preprint

arXiv:1804.05809, 2018.
[11] D. A. Van Dyk and X.-L. Meng, “The art of data augmentation,” J.

Comput. Graph. Stat., vol. 10, no. 1, pp. 1–50, 2001.
[12] M. Vono, N. Dobigeon, and P. Chainais, “Asymptotically exact

data augmentation: models, properties and algorithms,” arXiv preprint

arXiv:1902.05754, 2019.
[13] S. Sisson, Y. Fan, and M. Beaumont, “Overview of approximate

Bayesian computation,” arXiv preprint arXiv:1802.09720, 2018.
[14] R. Cavicchioli, C. Chaux, L. Blanc-Féraud, and L. Zanni, “ML estima-

tion of wavelet regularization hyperparameters in inverse problems,” in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP 2013),
(Vancouver, Canada), pp. 1553–1557, 26-31 May 2013.

[15] J. Bect, L. Blanc-Féraud, G. Aubert, and A. Chambolle, “A l1-unified
variational framework for image restoration,” in Proc. European Con-

ference on Computer Vision (ECCV 2004), (Prague, Czech Republic),
pp. 1–13, 11-14 May 2004.

[16] N. Pustelnik, A. Benazza-Benhayia, Y. Zheng, and J.-C. Pesquet,
“Wavelet-based image deconvolution and reconstruction,” Wiley Ency-

clopedia of Electrical and Electronics Engineering, 2016.
[17] R. Fuentes, C. Mineo, S. G. Pierce, K. Worden, and E. J. Cross,

“A probabilistic compressive sensing framework with applications to
ultrasound signal processing,” Mech. Syst. Signal Process., vol. 117,
pp. 383–402, 2019.

[18] P. J. Brown, T. Fearn, and M. Vannucci, “Bayesian wavelet regression
on curves with application to a spectroscopic calibration problem,” J. A.

Stat. Assoc., vol. 96, no. 454, pp. 398–408, 2001.
[19] H. Vold, H. Herlufsen, M. Mains, and D. Corwin-Renner, “Multi axle

order tracking with the Vold-Kalman tracking filter,” Sound Vib., vol. 31,
no. 5, pp. 30–35, 1997.

[20] R. Turner and M. Sahani, “Probabilistic amplitude and frequency
demodulation,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS 2011),
(Granada Spain), pp. 981–989, 12-17 Dec 2011.


