What makes zeolitic imidazolate frameworks hydrophobic or hydrophilic? Impact of geometry and functionalization on water adsorption - Archive ouverte HAL
Article Dans Une Revue Physical Chemistry Chemical Physics Année : 2014

What makes zeolitic imidazolate frameworks hydrophobic or hydrophilic? Impact of geometry and functionalization on water adsorption

Résumé

We demonstrate, by means of Grand Canonical Monte Carlo simulation on different members of the ZIF family, how topology, geometry, and linker functionalization drastically affect the water adsorption properties of these materials, tweaking the ZIF materials from hydrophobic to hydrophilic. We show that adequate functionalization of the linkers allows one to tune the host–guest interactions, even featuring dual amphiphilic materials whose pore space features both hydrophobic and hydrophilic regions. Starting from an initially hydrophobic material (ZIF-8), various degrees of hydrophilicity could be obtained, with a gradual evolution from a type V adsorption isotherm in the liquid phase to a type I isotherm in the gas phase. This behavior is similar to what was described earlier in families of hydrophobic all-silica zeolites, with hydrophilic “defects” of various strength, such as silanol nests or the presence of extra-framework cations.
Fichier principal
Vignette du fichier
1904.09508.pdf (2.17 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02310173 , version 1 (05-08-2021)

Identifiants

Citer

Aurélie Ortiz, Alexy Freitas, Anne Boutin, Alain Fuchs, François-Xavier Coudert. What makes zeolitic imidazolate frameworks hydrophobic or hydrophilic? Impact of geometry and functionalization on water adsorption. Physical Chemistry Chemical Physics, 2014, 16 (21), pp.9940-9949. ⟨10.1039/c3cp54292k⟩. ⟨hal-02310173⟩
89 Consultations
205 Téléchargements

Altmetric

Partager

More