FROM BOLTZMANN TO INCOMPRESSIBLE NAVIER-STOKES IN SOBOLEV SPACES WITH POLYNOMIAL WEIGHT - Archive ouverte HAL
Article Dans Une Revue Analysis and Applications Année : 2018

FROM BOLTZMANN TO INCOMPRESSIBLE NAVIER-STOKES IN SOBOLEV SPACES WITH POLYNOMIAL WEIGHT

Résumé

We study the Boltzmann equation on the d-dimensional torus in a perturbative setting around a global equilibrium under the Navier-Stokes lineari-sation. We use a recent functional analysis breakthrough to prove that the linear part of the equation generates a C 0-semigroup with exponential decay in Lebesgue and Sobolev spaces with polynomial weight, independently on the Knudsen number. Finally we show a Cauchy theory and an exponential decay for the perturbed Boltzmann equation, uniformly in the Knudsen number, in Sobolev spaces with polynomial weight. The polynomial weight is almost optimal and furthermore, this result only requires derivatives in the space variable and allows to connect to solutions to the incompressible Navier-Stokes equations in these spaces.
Fichier principal
Vignette du fichier
BEtoINSpolynomial_pdf.pdf (520.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02307954 , version 1 (08-10-2019)

Identifiants

Citer

Marc Briant, S Merino-Aceituno, C. Mouhot. FROM BOLTZMANN TO INCOMPRESSIBLE NAVIER-STOKES IN SOBOLEV SPACES WITH POLYNOMIAL WEIGHT. Analysis and Applications, 2018, ⟨10.1142/S021953051850015X⟩. ⟨hal-02307954⟩
48 Consultations
143 Téléchargements

Altmetric

Partager

More