Algorithms for Sparse Random 3XOR: The Low-Density Case - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Algorithms for Sparse Random 3XOR: The Low-Density Case

Résumé

We present an algorithm for a variant of the 3XOR problem with lists consisting of $n$-bit vectors whose coefficients are drawn independently at random according to a Bernoulli distribution of parameter $p < 1/2$. We show that in this particular context the problem can be solved much more efficiently than in the general setting. This leads to a linear algorithm with overwhelming success probability for $p < 0.0957$. With slightly different parameters, this method succeeds deterministically. The expected runtime is also linear for $p < 0.02155$ and always sub-quadratic.
Fichier principal
Vignette du fichier
main1.pdf (570.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02306917 , version 1 (07-10-2019)
hal-02306917 , version 2 (12-05-2020)
hal-02306917 , version 3 (01-03-2021)
hal-02306917 , version 4 (02-10-2021)

Identifiants

  • HAL Id : hal-02306917 , version 3

Citer

Charles Bouillaguet, Claire Delaplace. Algorithms for Sparse Random 3XOR: The Low-Density Case. 2021. ⟨hal-02306917v3⟩
402 Consultations
368 Téléchargements

Partager

More