
HAL Id: hal-02306917
https://hal.science/hal-02306917v3

Preprint submitted on 1 Mar 2021 (v3), last revised 2 Oct 2021 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for Sparse Random 3XOR: The Low-Density
Case

Charles Bouillaguet, Claire Delaplace

To cite this version:
Charles Bouillaguet, Claire Delaplace. Algorithms for Sparse Random 3XOR: The Low-Density Case.
2021. �hal-02306917v3�

https://hal.science/hal-02306917v3
https://hal.archives-ouvertes.fr

Algorithms for Sparse Random 3XOR: The1

Low-Density Case2

Charles Bouillaguet3

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France4

charles.bouillaguet@lip6.fr5

Claire Delaplace6

MIS Laboratory, Université de Picardie Jules Verne, 14 quai de la Somme, 80080 Amiens, France7

claire.delaplace@u-picardie.fr8

Abstract9

We present an algorithm for a variant of the 3XOR problem with lists consisting of n-bit vectors10

whose coefficients are drawn independently at random according to a Bernoulli distribution of11

parameter p < 1/2. We show that in this particular context the problem can be solved much more12

efficiently than in the general setting. This leads to a linear algorithm with overwhelming success13

probability for p < 0.0957. With slightly different parameters, this method succeeds deterministically.14

The expected runtime is also linear for p < 0.02155 and always sub-quadratic.15

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-16

tography; Theory of computation17

Keywords and phrases Algorithms, 3-xor problem, random sparse 3-xor18

1 Introduction19

Given three lists A, B and C of n-bit vectors, the 3XOR problem consists in deciding the20

existence of (or even finding) a triplet (x,y, z) ∈ A×B × C such that x⊕ y⊕ z is equal to21

a given target, often assumed to be zero (here the ⊕ symbol represent the exclusive-OR or22

XOR).23

In the general setting where the input lists have size N and can be arbitrary, a simple24

algorithm decides the existence of a 3XOR triplet in time O
(
N2), but there is no known25

way of doing it in time O
(
N2−ε) for any ε > 0. Dietzfelbinger, Schlag and Walzer found an26

algorithm that gain a poly-logarithmic factor over the quadratic algorithm [4].27

3XOR can be seen as a variant of the celebrated 3SUM problem, where this time the input28

list items are seen as integers and we must have x+ y+ z = 0. Many geometric problems can29

be reduced to 3SUM in sub-quadratic time, and those problems are said to be 3SUM hard [6].30

Although the 3XOR problem has enjoyed less interest in the complexity theory field, there31

exists a few such reductions. For instance, it is a fact that any O
(
N1+ε) algorithm for the32

3XOR problem with input lists of size N would imply faster-than-expected algorithms for33

listing triangles in a graph [7]. In the other direction, some conditional lower-bounds have34

been established based on the hypothesis that 3XOR is inherently quadratic: [4] shows that35

the offline SetDisjointness and SetIntersection problems cannot be solved in time36

O
(
N2−ε) unless 3XOR can.37

Besides being a natural extension of 3SUM, the 3XOR problem has some cryptographic38

applications, in which the input lists consist of uniformly random vectors. In particular, we39

can mention Nandi’s attack [10] against the COPA mode of authenticated encryption, or40

the more recent attack against the two-round single-key Even-Mansour cipher by Leurent41

and Sibleyras [9]. May and Both have been considering a variant of the 3XOR problem, the42

approximate 3-list birthday problem: given three lists of N uniformly random elements of43

{0, 1}n the goal consist in finding triplets (x,y, z) in the list such that the hamming weight44

of x⊕ y⊕ z is small [2].45

https://orcid.org/0000-0001-9416-6244
mailto:charles.bouillaguet@lip6.fr
mailto:claire.delaplace@u-picardie.fr

2 Algorithms for Sparse Random 3XOR: The Low-Density Case

Studying the 3XOR problem with uniformly random inputs seemed natural to the46

cryptography community (which makes this assumption “by default”), and this lead to47

several algorithms gaining a polylogarithmic factor, predating [4], and often tailored to48

specific input sizes [8, 11, 3]. The assumption that the input is random makes the problem49

simpler, but it has not yet been possible to obtain a O
(
N2−ε) algorithm even in this simpler50

case.51

Contributions. In this paper, we consider an even more favorable setting, where the input52

lists are both random and sparse, namely where the input bitstrings are biased towards53

zero in some way. More precisely, we assume that each input bit is drawn independently54

at random according to a Bernoulli distribution of parameter 0 < p < 1/2 — the “dense”55

random case corresponds to p = 1/2.56

We first give the probability that the input actually contains a 3XOR triplet for a given57

list size N and density p. To the best of our knowledge, this result was not readily available58

from the existing literature, not even in the simple “cryptographically relevant” case where59

p = 1/2. We then describe a new algorithm to solve the random low-density 3XOR problem60

(Section 3). The main idea is to discard useless input vectors (i.e. whose Hamming weight is61

above a well-chosen threshold), then search a solution using the simple quadratic algorithm.62

This algorithm returns a solution with overwhelming probability in time linear in N for63

small density (i.e. p < 0.0957). A slight variation of the same algorithm can also be used to64

deterministically return a solution if there is one in the input. In this case, the expected65

running time of the procedure is also linear in N when p is smaller than 0.02155. The66

algorithm has a time complexity of O (N +Ne), for some parameter e < 2 when p < 1/2.67

The evolution of this parameter e in function of p is shown in Figure 1.68

Another relevant sparse distribution would be the “low-weight” distribution, where69

bitstrings from {0, 1}n of a given small weight are drawn uniformly at random. For lack of70

space, we do not consider this (quite different) problem in this paper. Our main contribution,71

the algorithm described in section 4, cannot be adapted to this other setting.72

The algorithm presented in this paper has no concrete application that we are aware of,73

either in cryptography or elsewhere. We nevertheless demonstrate its practical efficiency by74

obtaining the —non-trivial and “sensible”— result shown in Section 5.75

2 Preliminaries76

Let x = x0x1 . . . xn−1 be an n-bit string (we use “bit string” and “vector” as synonyms). We77

denote by wt(x) its Hamming weight. Let A be a list ; |A| denotes the number of elements in78

A and A[i] denotes the i-th element. We say that (x,y, z) is a 3XOR triplet if x⊕ y⊕ z = 0.79

We consider random instances of the problem defined as follows. Let Ψ be some probability80

distribution over {0, 1}n. Let A, B and C be three lists of N elements drawn independently at81

random according to Ψ. A solution to the instance of the 3XOR problem given by (A,B,C)82

is a 3XOR triplet (x,y, z) ∈ A×B × C.83

Let 0 < p < 1/2 be fixed and let Berp the Bernoulli distribution of parameter p. In the84

sequel, we focus on the sparse “low-density” distributions over {0, 1}n, denoted as D, where85

each input bit is drawn independently from Berp.86

Bounds for Binomial Distributions. Let B(n, p) denote the binomial distribution with87

parameters n, p. Let X ∼ B(n, p) be a binomial random variable. We make heavy use of tail88

bounds, notably the Chernoff bound (1) and the tighter classical inequality (2), a proof of89

C. Bouillaguet and C. Delaplace 3

0.0 0.1 0.2 0.3 0.4 0.5
p

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
e

Negligible failure probability
Deterministic success

Figure 1 The Incremental3XOR algorithm of section 4 run in time O (N + Ne) where e is
shown here. With wmax = 2nu (cf. theorem 3), this yields the “negligible failure probability” curve.
With wmax = n (theorem 6), this yields the “deterministic success” curve.

which can be found in [1] amongst others.90

Pr(X ≤ an) ≤ exp− n

2p (p− a)2, if k
n
< p (1)91

Pr(X ≤ an) ≤ exp−nD(a, p) if a < p, (2)92

Pr(X ≥ an) ≤ exp−nD(a, p) if a > p,93
94

where D(a, p) = a ln a
p + (1− a) ln 1−a

1−p is the Kullback-Leibler divergence between an a-coin95

and a p-coin.96

Computational Model. We consider a transdichotomous word Random Access Machine97

(word-RAM) model. In this model, we have access to a machine in which each “memory98

cell” contains a n-bit word. We assume that the usual arithmetic and bit-wise operations on99

n-bit words, as well as the comparison of two n-bit integers and memory access with n-bit100

addresses can be done in constant time. We also assume that obtaining the Hamming weight101

of an n-bit word is an elementary operation. In other terms, we assume that the machine is102

large enough to accommodate the instance of the problem at hand.103

The Quadratic Algorithm. The simplest possible way to solve the 3XOR problem is the104

quadratic algorithm (shown as algorithm 1). For all pairs (x, y) ∈ A × B, check if x ⊕ y105

belongs to C. Each test can be done in constant time if all entries of C have been stored in a106

4 Algorithms for Sparse Random 3XOR: The Low-Density Case

suitable data structure beforehand — for instance one could use the optimal static dictionary107

of [5], or simply cuckoo hashing [12].108

Algorithm 1 The simple quadratic algorithm for 3XOR.
1: function QuadraticSetup(C)
2: Initialize a static dictionary C containing all the bit strings in C
3: return C

4: function Quadratic3XOR(A,B, C)
5: for (x, y) ∈ A×B do
6: if x⊕ y ∈ C then
7: return (x, y, x⊕ y)
8: return ⊥

The initialization of the dictionary holding C is separated from the rest, because we will109

subsequently invoke Quadratic3XOR many times with the same C. We assume (using [5]110

for instance) that QuadraticSetup takes time O (|C|). Then Quadratic3XOR(A,B, C)111

takes time O (|A| × |B|). The quadratic algorithm works regardless of the sparsity of the112

input, and as such it does not take advantage of it. It is the only solution, up to logarithmic113

factors, when the input is dense. In our case, this is the baseline that must be improved114

upon.115

3 Bounds on the Existence of 3XOR Triplets116

Suppose that (G,+) is a group (in additive notation) and assume that three lists A,B and117

C, each of size N , are made of group elements sampled independently at random according118

to some distribution Ψ. Let Y be the random variable that counts the number of triplets119

(x, y, z) ∈ A×B ×C such that x+ y + z = 0 (taken over the random choice of A,B and C).120

The expected value of Y is easy to compute, and because the average value is bounded away121

from zero, a concentration bound would yield the probability that the input lists contain at122

least a single “good triplet” (that sums to zero).123

The problem is that the N3 triplets in A×B ×C are not independent and thus classical124

techniques such as the Chernoff bound do not apply. This dependence has to be accounted125

for. Let x, y, z, u, v denote five independent random variable distributed according to Ψ, and126

set127

ρ = Pr(x+ y + z = 0)128

σ = Pr(x+ y + z = 0 | u+ v + z = 0)129

τ = Pr(x+ y + z = 0 | u+ y + z = 0)130
131

The following result can be specialized for any group G and any distribution Ψ by computing132

ρ, σ and τ .133

I Lemma 1. EY = N3ρ and 1−N3ρ ≤ Pr(Y = 0) ≤ 1
ρ

(
3σ
N

+ 3τ
N2 + 1

N3

)
.134

Proof. Let X(i, j, k) denote the binary random variable that takes the value 1 if and only135

if A[i] +B[j] + C[k] = 0 (and zero otherwise), so that Y =
∑
X(i, j, k). Unless mentioned136

otherwise, in this section all sums are taken over 0 ≤ i, j, k < N ; we omit the indices to137

alleviate notations.138

C. Bouillaguet and C. Delaplace 5

The expected value of Y is easy to determine. Because the elements of the lists are139

identically distributed, Pr(A[i] +B[j] + C[k] = 0) is independent of i, j and k and its value140

is ρ. We get:141

EY = E
∑

X(i, j, k) =
∑

EX(i, j, k) =
∑

Pr(A[i] +B[j] + C[k] = 0) = N3ρ.142

The Markov bound yields 1 − EY ≤ Pr(Y = 0) ; the less immediate part consists in143

estimating Pr(Y > 0). Because Y is the sum of binary random variables, we are entitled to144

use Ross’s conditional expectation inequality [13]:145

Pr(Y > 0) ≥
∑ E (X(i, j, k))

E (Y | X(i, j, k) = 1) .146

As argued above, the value of the term under the sum is independent of i, j and k, so this147

boils down to: Pr(Y > 0) ≥ EY/E(Y | X(0, 0, 0) = 1). It remains to compute the expected148

number of solutions knowing that there is at least one. This yields:149

E(Y | X(0, 0, 0) = 1) =
∑

Pr(A[i] +B[j] + C[k] = 0 | A[0] +B[0] + C[0] = 0)150
151

We split this sum in 8 parts by considering separately the situation where i = 0,152

j = 0 and k = 0 (resp 6= 0 for each summation index). We introduce the shorthand153

pijk = Pr (A[i] + B[j] + C[k] = 0 | A[0] + B[0] + C[0] = 0) and we assume that i, j, k > 0.154

Then the two events are in fact independent and pijk = ρ. But when at least one index is155

zero, this is no longer the case ; the extreme situation is p000 = 1. By symmetry between156

the three input lists, we find that pij0 = pi0k = p0jk (this is the value we denote by σ) and157

pi00 = p0j0 = p00k (this is the value we denote by τ). We can now write:158

E (Y | X(0, 0, 0) = 1) = (N − 1)3ρ+ 3(N − 1)2σ + 3(N − 1)τ + 1159

= N3ρ+ 3N2σ + 3Nτ + 1−∆160

with ∆ = (3N2 − 3N + 1)ρ+ 3(2N − 1)σ + 3τ161
162

The “error term” ∆ is always positive for N ≥ 1. Going back to the beginning, we have:163

Pr (Y > 0) ≥ N3ρ

N3ρ+ 3N2σ + 3Nτ + 1−∆ ≥ 1
1 + 3N−1σ/ρ+ 3N−2τ/ρ+N−3/ρ

164

165

Using the convexity of 1/(1 +x), we obtain Pr (Y = 0) ≤ 3N−1σ/ρ+ 3N−2τ/ρ+N−3/ρ. J166

Low-Density 3XOR. We now specialize the result of lemma 1 to the group ({0, 1}n,⊕)167

with the low-density distribution D (each bit is drawn independently at random according to168

the Bernoulli distribution Berp of parameter p < 1/2).169

I Theorem 2. Let Y denote the random variable counting the number of 3XOR triplets170

in A × B × C. The probability that a random triplet from A × B × C XORs to zero is171

ρ = (1− p)n(1− 2p+ 4p2)n, and their expected number is EY = N3ρ. Furthermore:172

1− EY ≤ Pr (Y = 0) ≤ 3
(EY)1/3 + 3

(EY)2/3 + 1
EY . (3)173

Proof. If a, b and c are random bits drawn according to Berp, then the probability that they174

XOR to zero is (1− p)
(
1− 2p+ 4p2). It follows that if x,y and z are drawn according to D,175

then ρ = Pr(x⊕ y⊕ z = 0) = (1− p)n(1− 2p+ 4p2)n.176

6 Algorithms for Sparse Random 3XOR: The Low-Density Case

Let us compute σ = Pr(x ⊕ y = z | u⊕ v = z). What happens essentially depends on177

the hamming weight of z. Both x,y and u,v have to XOR to z. Two random bits drawn178

according to Berp XOR to zero with probability p2 + (1− p)2 and their XOR to one with179

probability 2p(1− p). This yields (using the binomial theorem):180

ρσ = Pr(x⊕ y = z ∧ u⊕ v = z)181

=
n∑
k=0

Pr(wt(z) = k) Pr(x⊕ y = z ∧ u⊕ v = z | wt(z) = k)182

=
n∑
k=0

(
n

k

)
pk(1− p)n−k [2p(1− p)]2k

[
p2 + (1− p)2]2(n−k)

183

=
[
(1− p)(1− 4p+ 8p2 − 4p3)

]n
184
185

We move on to τ = Pr(x = u⊕ v | z = u⊕ v). In this context, this mostly depends on186

the hamming weight of u⊕ v. This yields (again using the binomial theorem):187

ρτ = Pr(x = u⊕ v ∧ z = u⊕ v)188

=
n∑
k=0

Pr(wt(u⊕ v) = k) Pr(x = u⊕ v ∧ z = u⊕ v | wt(u⊕ v) = k)189

=
n∑
k=0

(
n

k

)
[2p(1− p)]k

[
p2 + (1− p)2]n−k [pk(1− p)n−k

]2
190

=
[
(1− p)(1− 3p+ 4p2)

]n
191
192

We now move on to establish (3). Because N = (EY)1/3/ρ, the bound of lemma 1 can193

be rewritten as:194

Pr (Y = 0) ≤ 3
(EY)1/3

σ

ρ2/3 + 3
(EY)2/3

τ

ρ1/3 + 1
EY .195

We now claim that 1/2 ≤ σ3/n/ρ2/n ≤ 1 and 1/4 ≤ τ3/n/ρ1/n ≤ 1 when 0 ≤ p ≤ 1/2; this196

yields the desired result. This claim follows from the facts that both values are decreasing197

functions of p. This can be seen by computing their derivatives (all factors are easily seen to198

be positive when 0 ≤ p ≤ 1/2):199

∂

∂p

σ3/n

ρ2/n = −6(4p3 − 8p2 + 4p− 1)2(2p2 − 6p+ 3)(1− 2p)2p

(4p2 − 2p+ 1)6(1− p)3200

∂

∂p

τ3/n

ρ1/n = −6(4p2 − 3p+ 1)2(4p2 − 6p+ 3)(1− 2p)p
(4p2 − 2p+ 1)5(1− p)2201

202

J203

4 An Algorithm for Random Low-Density 3XOR204

In this section, we present a simple algorithm that solves the low-density 3XOR problem205

with interesting theoretical guarantees when p is small. It is always subquadratic but its206

most striking feature is that it succeeds with overwhelming probability in linear time when p207

is small enough.208

First of all, because the input is random, the problem may potentially be easy to solve209

with low error probability without even observing the input lists, depending on n, the size and210

C. Bouillaguet and C. Delaplace 7

the distribution of the input. In light of theorem 2, we see that if N (the size of input lists) is211

exponentially smaller than ρ−1/3, then “return ⊥” is an algorithm that has an exponentially212

small probability of yielding false negatives. Alternatively, if N exponentially larger than213

(1− p)−n, then we expect the string 000 . . . 0 to be present in A,B and C with overwhelming214

probability ; it follows that “return (0, 0, 0)” is a fast algorithm with exponentially low215

false positive probability. To avoid these pitfalls, our main focus is on the hard case where216

N ≈ ρ−1/3, and where the expected number of solutions in the random input lists is close to217

one.218

Let a, b and c be random bits drawn according to Berp conditioned to a⊕ b⊕ c = 0. The219

possible combinations are 000, 011, 101 and 110. We find that220

u := Pr(abc = 110 | a⊕ b⊕ c = 0) = p2/(1− 2p+ 4p2)221
222

The same result is attained for 101 and 011. Two out of the three non-zero options result223

in a 1 bit, and therefore Pr(a = 1 | a⊕ b⊕ c = 0) = 2u. It follows that if the (x,y, z) is a224

triplet drawn from D such that x⊕ y⊕ z = 0, then the expected “density” of x, y and z is225

2u. This is always smaller than p when 0 < p < 1/2. In other terms: random triplets drawn226

from D have density p, but random 3XOR triplets drawn from D have smaller density.227

This observation can be exploited in a simple way: we iteratively search for 3XOR228

triplets of increasing maximum weight. This yields the Incremental3XOR function (shown229

as algorithm 2). It takes an additional argument wmax controlling the maximum allowed230

weight. wmax = 2nu yields an algorithm that reveals a 3XOR triplet present in the input231

with probability greater than 1/4, because the median weight of both x and y is 2nu if232

x ⊕ y ⊕ z = 0. Setting wmax = 2nu(1 + ε) is enough to miss an existing solution with233

exponentially small probability. With wmax = n, the algorithm deterministically finds a234

solution if it is present in the input, but the complexity is much higher.235

Algorithm 2 An “incremental” algorithm for the sparse 3XOR problem.
1: function Incremental3XOR-One-Sided(A,B, C, wmax)
2: for 0 ≤ j ≤ wmax do
3: for 0 ≤ i ≤ j do
4: ζ ← Quadratic3XOR(Ai, Bj , C)
5: if ζ 6= ⊥ then return ζ

6: return ⊥
7: function Incremental3XOR(A,B,C,wmax)
8: for 0 ≤ i ≤ wmax do . Bucket sort by Hamming weight
9: Ai ← {x ∈ A | wt(x) = i}
10: Bi ← {y ∈ B | wt(y) = i}
11: ζ1 ← Incremental3XOR-One-Sided(A,B, C, wmax)
12: ζ2 ← Incremental3XOR-One-Sided(B,A, C, wmax)
13: if both ζ1 = ⊥ and ζ2 = ⊥ then return ⊥ ; otherwise return the solution found.

It is fairly obvious that Incremental3XOR-One-Sided only finds a 3XOR triplet (x,y, z)236

in the input lists if wt(x) ≤ wt(y) ≤ wmax. By calling it twice, we lift the restriction that x237

must be sparser than y.238

4.1 Overwhelming Success Probability239

Choosing a small value of wmax leads to smaller “filtered” instances and thus to a smaller240

running time for the actual computation using the quadratic algorithm. However, if wmax is241

8 Algorithms for Sparse Random 3XOR: The Low-Density Case

too small, then a potential solution present in the input might be discarded.242

A sensible choice consists in picking wmax in the range]2nu, np[— above the expected243

density of random 3XOR triplets so that we do not discard them, and below the density of244

the input lists in order to actually discard input vectors that are too heavy. In this case the245

algorithm succeeds with overwhelming probability as long as the original input contains at246

least one solution. The main contribution of this paper is the following247

I Theorem 3. Let e := 2 + 6D
(
2p2/(1− 2p+ 4p2), p

)
/ ln(1 − p)(1 − 2p + 4p2). For all248

d > e there is an algorithm for the random low-density 3XOR problem that runs in time249

O
(
N +Nd

)
, where N denotes the size of the input list and fails with negligible probability250

(in n).251

We first discuss some aspects of the result. The graph of the best possible exponent252

(e) is shown in Fig. 1. The exponent e increases from zero to 2 as p goes from zero to253

1/2. Using the bisection algorithm, we find that e ≤ 1 when p ≤ 0.0957. It follows that254

Incremental3XOR is linear in the size of the input for small p.255

It seems that e ≤ 2p(1− 2 ln p) ; establishing this is a fascinating endeavour that we must256

regrettably leave for future work. It is worth noting that the not-so-friendly expression of257

e comes from the use of the tight binomial bound (2). It would be greatly simplified had258

we instead used the simpler Chernoff bound (1). However, doing so makes the result much259

worse for small p: it results in lim e = 1 when p goes to zero (instead of lim e = 0).260

I Lemma 4. With wmax = 2nu(1 + ε), if the input contains a 3XOR triplet, then Incre-261

mental3XOR returns ⊥ with probability less than 2 exp(−nuε2).262

Proof. Assume that the input lists contain a 3XOR triplet (x∗,y∗, z∗). It will be discarded263

if and only if the weight of either x∗,y∗ is greater than wmax. We know that the expected264

weight of x∗ and y∗ (and z∗ as well but this is irrelevant) is 2un, therefore the Chernoff265

bound (1) shows that either has weight greater than 2un(1 + ε) with probability less than266

exp(−nuε2). A union bound (for x∗ and y∗) then ensures that the solution is discarded with267

probability less than 2 exp(−nuε2). J268

I Lemma 5. Let T denote the running time of Incremental3XOR with wmax = 2nu(1+ε).269

Then ET ≤ N +N2 exp(−2nD (2u(1 + ε), p)).270

Proof. In the sequel, all the stated complexities must be understood “up to a constant271

factor”. Bucket-sorting the input lists by Hamming weight takes time N . Up to a constant272

factor, it is sufficient to upper-bound the running time of Incremental3XOR-One-Sided.273

The running time of Quadratic3XOR on input (Ai, Bj , C) is upper-bounded by |Ai| · |Bj |.274

Therefore, the total running time of Incremental3XOR is then:275

T = N +
wmax∑
j=0

j∑
i=0
|Ai| · |Bj | ≤ N +

wmax∑
j=0
|Bj |

(wmax∑
i=0
|Ai|

)
276

Let A =
⋃wmax
i=0 Ai and B =

⋃wmax
j=0 Bi denote the lists of all input vectors of weight less277

than of equal to wmax. The above inequality shows that the running-time of the algorithm is278

less than that of running Quadratic3XOR directly on A and B.279

Let X ∼ B(n, p) be a (binomial) random variable modeling the weight of an input vector280

of density p. Such a vector belongs to A or B if its is less than or equal to wmax, and281

this happens with probability s := Pr(X ≤ wmax). Because wmax < np, the binomial tail282

bound (2) yields the tight upper-bound s ≤ e−nD(2u(1+ε),p).283

C. Bouillaguet and C. Delaplace 9

The sizes of A and B are stochastically independent random variables following a284

binomial distribution of parameters N, s and their expected size is Ns. The expected285

running time of the quadratic algorithm on A and B (which is an upper-bound on that of286

Incremental3XOR) is therefore E |A| × E |B| = E |A| × E |B| = N2s2. Combining this287

with the upper-bound on s gives the announced result. J288

We are now ready to prove theorem 3.289

proof of theorem 3. Let d be a complexity exponent greater than the bound e given in290

theorem 3. Let ε > 0 be such that291

d = 2 + 6 D (2u(1 + ε), p)
ln(1− p)(1− 2p+ 4p2)− 3ε ln 2 .292

(such an ε always exist). Note that setting ε = 0 in this expression yields the lower-bound293

exponent e of the theorem.294

Let N0 := ρ−1/3 (input lists of this size contain a single 3XOR triplet in average).295

Suppose that N ≤ N02εn, where N denotes the size of the input lists ; in this case run296

Incremental3XOR with wmax = 2un(1 + ε). Lemma 4 guarantees the exponentially small297

failure probability while lemma 5 tells us that the expected running time T is less than298

N +N2 exp−nD(2u(1 + ε), p).299

Set d′ := logN (ET − N), so that the algorithm runs in time O
(
N +Nd′

)
. A quick300

calculation shows that d′ = d, and the theorem is proved in this case.301

If N > N02nε, then do the following : slice the input lists in chunks of size 4N0 and run302

Incremental3XOR with wmax = 2un(1 + ε) on each successive chunk until a solution is303

found. Theorem 2 tells us that each chunk contain 64 3XOR triplets on average, and contain304

at least one 3XOR triplet with probability greater than 3/64. Incremental3XOR will305

reveal an existing 3XOR triplet present in a chunk with probability greater than 1/4 (this is306

true regardless of the value of ε > 0). Therefore, a 3XOR triplet will be found in each chunk307

with probability greater than 3/256 ; because the the chunks are completely independent308

parts of the random input, the events “Incremental3XOR finds a 3XOR triplet in chunk i”309

are independent. Therefore, the whole process fails to reveal a 3XOR triplet with probability310

less than
(
1− 3

256
)nε. The running time is 4N ·Nd−1

0 , which is less than Nd. J311

4.2 Deterministic Success312

We now study the expected behavior of Incremental3XOR algorithm with wmax = n.313

When w ≥ np, then discarding vectors of weight greater than w does not reduce significantly314

the size of the lists. Thus, all iterations with “threshold weight” w ≥ np cost essentially315

Ω
(
N2). It follows that if there is no 3XOR triplet in input lists (for instance, if they are316

too short), then the algorithm is essentially quadratic. On the other hand, if the input317

lists are so long that they contain many 3XOR triplets, then the probability that they318

contain a low-weight triplet (and thus that the algorithm stops early) increases. We therefore319

focus on the hardest relevant case, namely input lists of size N = P (n)ρ−n/3, where P320

is a non-constant positive polynomial. The input lists contain on average P (n)3 3XOR321

triplets and thanks to theorem 2, they contain a 3XOR triplet with probability greater than322

1− 1/P (n)(1 + o(1)). The crux of the analysis is that the w-th iteration is done if and only323

if the solution has Hamming weight greater than or equal to w. The expected weight of the324

solution is 2un < 2np, and therefore the probability that the most expensive iterations take325

place is exponentially small.326

10 Algorithms for Sparse Random 3XOR: The Low-Density Case

I Theorem 6. Consider input lists of size N = P (n)ρ−n/3 and assume that they contain327

a 3XOR triplet. Then Incremental3XOR with wmax = n returns a valid solution and328

terminates in time O (N +Ne), where329

e = 2 + 3
2D
(

1
1+ 3
√

(1
p−1)2(1

2u−1)
, p

)
+D

(
1

1+ 3
√

(1
p−1)2(1

2u−1)
, 2u
)

ln(1− p)(1− 2p+ 4p2) .330

The graph of e is also shown in Fig. 1. We find again that e ≤ 1 when p ≤ 0.02155. Thus,331

this unfailing algorithm is also linear for small p. It is worthwhile noting that the complexity332

is significantly higher than when wmax = 2un. The proof is potentially less tight, but it333

seems plausible that there is a “heavy tail” effect. Theorem 6 follows from the following334

I Lemma 7. Let T denote the running time of Incremental3XOR with wmax = n. Then335

ET ≤ N + 4nN2e−n[2D(x0,p)+D(x0,2u)] where 1
x0
− 1 = 3

√(
1
p
− 1
)2(1

2u − 1
)
.336

Proof. Let Tj denote the running time of the j-th iteration of the outer for loop and S the337

number of iterations done when the algorithm stops (i.e. the value of j in the algorithm). As in338

the proof of lemma 5, let Ak =
⋃k
i=0 Ai and Bk =

⋃k
j=0 Bj and we find that Tj ≤ |Aj |× |Bj |.339

The total running time is then given by T =
∑n
j=0[S ≥ j]Tj . The two random variables340

[S ≥ j] and Tj are not independent, however we claim that E ([S ≥ j]Tj) ≤ (E [S ≥ j])Tj341

— i.e. they are negatively correlated. The point is that is that the fact that input lists342

contain a “large weight” triplet t∗ can only reduce the expected size of low-weight lists by at343

most one, and therefore reduce the expected time needed to process them. It follows that344

ET ≤
∑n
j=0 Pr(S ≥ j) · (ETj).345

Next, let us consider two random variables following binomial distributions X2u ∼ B(n, 2u)346

and Xp ∼ B(n, p). From the proof of lemma 5, we know that ETj ≤ N2s2, where s =347

Pr(Xp ≤ j). In addition, following the same reasoning as in the proof of lemma 4, we have348

Pr(S ≥ j) ≤ 2 Pr(X2u ≥ j). This gives:349

ET ≤ 2N2
n∑
j=0

Pr(Xp ≤ j)2Pr(X2u ≥ j)350

351

Set µj := Pr(Xp ≤ j)2Pr(X2u ≥ j). Our goal is to upper-bound the sum of the µj ’s. To352

this end, we split the sum in three parts:353

n∑
j=0

µj ≤
2nu∑
j=0

µj +
np∑

j=2nu
µj +

n∑
j=np

µj354

First, we focus on the case where 0 ≤ j ≤ 2nu. In this range, Pr(Xp ≤ j) is increasing355

with j and Pr(X2u ≥ j) is greater than 1
2 , therefore we find that µj ≤ 2µ2nu for 0 ≤ j ≤ 2nu.356

A symmetric argument shows that µj ≤ 2µnp for all np ≤ j ≤ n.357

Let M denote the largest µj for 2nu ≤ j ≤ np. It follows from the above discussion358

that this is the largest of all the µj , so that their is less than 2nM . We use the binomial359

tail bound (2) to get an upper-bound on M . Set f(x) = 2D(x, p) + D(x, 2u), so that360

µj ≤ e−nf(
j
n) when 2nu ≤ j ≤ np. We next seek the maximum of f , and for this we compute361

its derivative:362

f ′(x) = 2 log x
p
− 2 log 1− x

1− p + log x

2u − log 1− x
1− 2u363

C. Bouillaguet and C. Delaplace 11

Solving f ′(x0) = 0 reveals only one possible real solution, that satisfies:364

1
x0
− 1 = 3

√(
1
p
− 1
)2(1

2u − 1
)

365

It appears that 1/x0 − 1 is the geometric mean of 1/p− 1, 1/p− 1 and 1/(2u)− 1. This366

implies in particular 2u ≤ x0 ≤ p as expected. J367

5 A “Sensible” Application368

In order to put this algorithm to the test, we forged an artificial instance of the problem.369

We downloaded an XML dump of the DBLP database, and extracted all articles published370

in a few selected cryptography conferences (CRYPTO, EUROCRYPT, ASIACRYPT, FSE,371

PKC, CHES, SAC) as well as two journals (TOSC, TCHES). This made more than 7700372

articles. For each article, we wrote down one line of text with the authors and title.373

We considered the function (where & denotes the bitwise AND):374

F (x1, x2, x3, x4) = SHA-512(x1) & SHA-512(x2) & SHA-512(x3) & SHA-512(x4).375

This yields 512-bit hashes with expected density 1/16. SHA-512 is a secure cryptographic376

hash function, so we assumed that there was no way to find inputs leading to correlated377

outputs besides brute force. We looked for three quadruplets of articles such that378

F (x1, x2, x3, x4)⊕ F (y1, y2, y3, y4)⊕ F (z1, z2, z3, z4) = 0379

With the additional constraint that all articles are distinct. There are 5775 ways to dispatch380

12 items into 4 indistinguishable urns, so that with our 7700 articles, we can assemble 2138.5
381

bundles of 12 publications having a chance to satisfy the above equation (of course the inputs382

are correlated, and this deviates from the original problem formulation, but this is not a383

serious issue). Alternatively, we may form 247 quadruplets of publication. With p = 1/16384

and n = 512, we could then expect about 40 solutions from out data set. This made us385

confident that we there would be at least one, but finding it does not seem so easy at first386

glance.387

Evaluating F on all the available quadruplets is not a problem (it takes 240 CPU-hours).388

Trouble starts when we considered writing the list of 247 hashes to persistent storage: this389

would require more than 9 petabytes — this is a lot, but some computing centers have that390

much. However, finding the “golden” triplet of quadruplets using the quadratic algorithm391

would then require 294 probes into a large hash table, and given mankind’s present computing392

power, this does not seem feasible before the sun turns into a red giant.393

Exploiting the sparsity of the input turns the problem into a walk in the park. The394

expected weight of 3XOR triplets of density 1/16 is ≈ 2.25. We evaluated F on all quadruplets,395

but kept only the hashes with hamming weight less than or equal to 3. We thus kept 5091396

candidate quadruplets, for a total storage size of 358KB. We then searched for solutions in397

this restricted data set using the quadratic algorithm. This required 25 millions probes in a398

hash table and was very fast.399

We found six solutions, one of which is shown as algorithm 3. Amazingly, it contains the400

name of one of the authors of the present article.401

6 Conclusion402

We presented a simple algorithm for the random sparse “low-density” 3XOR problem, which is403

always subquadratic and can even be linear if the density is low enough. It works by reducing404

12 Algorithms for Sparse Random 3XOR: The Low-Density Case

Algorithm 3 Demonstrating a sensible application of sparse 3XOR algorithms.

from hashlib import sha512

FSE 2011
a = "Simon Knellwolf and Willi Meier: Cryptanalysis of the Knapsack Generator. (2011)"

ASIACRYPT 2017
b = "Ran Canetti, Oxana Poburinnaya and Mariana Raykova: Optimal-Rate Non-Committing Encryption. (2017)"

CRYPTO 2019
c = "Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu and Dongxi Liu: Lattice-Based Zero-Knowledge \
Proofs: New Techniques for Shorter and Faster Constructions and Applications. (2019)"

FSE 2009
d = "Martijn Stam: Blockcipher-Based Hashing Revisited. (2009)"

EUROCRYPT 1990
e = "Cees J. A. Jansen: On the Construction of Run Permuted Sequences. (1990)"

EUROCRYPT 2013
f = 'Charles Bouillaguet, Pierre-Alain Fouque and Amandine Véber: Graph-Theoretic Algorithms for the \
"Isomorphism of Polynomials" Problem. (2013)'

CRYPTO 2017
g = "Prabhanjan Ananth, Arka Rai Choudhuri and Abhishek Jain: A New Approach to Round-Optimal Secure \
Multiparty Computation. (2017)"

EUROCRYPT 2001
h = "William Aiello, Yuval Ishai and Omer Reingold: Priced Oblivious Transfer: How to Sell Digital \
Goods. (2001)"

CRYPTO 2019
i = "Navid Alamati, Hart Montgomery and Sikhar Patranabis: Symmetric Primitives with Structured \
Secrets. (2019)"

CRYPTO 2019
j = "Shweta Agrawal, Monosij Maitra and Shota Yamada: Attribute Based Encryption (and more) for \
Nondeterministic Finite Automata from LWE. (2019)"

EUROCRYPT 1986
k = "Christoph G. Günther: On Some Properties of the Sum of Two Pseudorandom Sequences. (1986)"

CRYPTO 2009
l = "Susan Hohenberger and Brent Waters: Short and Stateless Signatures from the RSA Assumption. (2009)"

def H(s : str) -> int:
"""Returns the hash (SHA-512) of the string s as a 512-bit integer."""
return int.from_bytes(sha512(s.encode('utf8')).digest(), byteorder='big')

assert (H(a) & H(b) & H(c) & H(d)) ^ (H(e) & H(f) & H(g) & H(h)) ^ (H(i) & H(j) & H(k) & H(l)) == 0

an instance of the “low-density” problem to several smaller instances of a “low-weight”405

problem, whose sparsity is not exploited at this stage. This begs for finding new algorithms406

for the “low-weight” 3XOR problem, which requires completely different techniques. This407

other sparse problem is not only interesting in itself, but better algorithms would yield408

even faster algorithms for the “low-density” case. This is the subject of ongoing and future409

research.410

Ackowledgements We thank Pierre-Alain Fouque, Antoine Joux and Anand Kumar Naray-411

anan for useful discussions. We are very grateful to 3 out of 6 anonymous reviewers (so far)412

for rejecting two previous versions of this paper while providing extremely helpful feedback413

and suggesting new ideas.414

C. Bouillaguet and C. Delaplace 13

References415

1 R. Arratia and L. Gordon. Tutorial on large deviations for the binomial distribu-416

tion. Bulletin of Mathematical Biology, 51(1):125 – 131, 1989. URL: http://www.417

sciencedirect.com/science/article/pii/S0092824089800527, doi:https://doi.org/10.418

1016/S0092-8240(89)80052-7.419

2 Leif Both and Alexander May. The approximate k-list problem. IACR Transactions on420

Symmetric Cryptology, 2017(1):380–397, 2017.421

3 Charles Bouillaguet, Claire Delaplace, and Pierre-Alain Fouque. Revisiting and improving422

algorithms for the 3xor problem. IACR Transactions on Symmetric Cryptology, 2018(1):254–423

276, 2018.424

4 Martin Dietzfelbinger, Philipp Schlag, and Stefan Walzer. A subquadratic algorithm for 3xor.425

In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd International Symposium426

on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool,427

UK, volume 117 of LIPIcs, pages 59:1–59:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,428

2018. doi:10.4230/LIPIcs.MFCS.2018.59.429

5 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with o(1)430

worst case access time. J. ACM, 31(3):538–544, June 1984. URL: http://doi.acm.org/10.431

1145/828.1884, doi:10.1145/828.1884.432

6 Anka Gajentaan and Mark Overmars. On a class of O(n2) problems in computational geometry.433

Computational geometry, 5(3):165–185, 1995.434

7 Zahra Jafargholi and Emanuele Viola. 3sum, 3xor, triangles. Algorithmica, 74(1):326–343,435

2016. doi:10.1007/s00453-014-9946-9.436

8 Antoine Joux. Algorithmic cryptanalysis. CRC Press, 2009.437

9 Gaëtan Leurent and Ferdinand Sibleyras. Low-memory attacks against two-round even-mansour438

using the 3XOR problem. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances439

in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa440

Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II, volume 11693 of Lecture Notes441

in Computer Science, pages 210–235. Springer, 2019. doi:10.1007/978-3-030-26951-7_8.442

10 Mridul Nandi. Revisiting Security Claims of XLS and COPA. IACR Cryptology ePrint Archive,443

2015:444, 2015.444

11 Ivica Nikolić and Yu Sasaki. Refinements of the k-tree Algorithm for the Generalized Birthday445

Problem. In ASIACRYPT, pages 683–703. Springer, 2015.446

12 Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In European Symposium on447

Algorithms, pages 121–133. Springer, 2001.448

13 S.M. Ross. Probability Models for Computer Science. Elsevier Science, 2002. URL: https:449

//books.google.fr/books?id=fG3iEZ8f3CcC.450

http://www.sciencedirect.com/science/article/pii/S0092824089800527
http://www.sciencedirect.com/science/article/pii/S0092824089800527
http://www.sciencedirect.com/science/article/pii/S0092824089800527
https://doi.org/https://doi.org/10.1016/S0092-8240(89)80052-7
https://doi.org/https://doi.org/10.1016/S0092-8240(89)80052-7
https://doi.org/https://doi.org/10.1016/S0092-8240(89)80052-7
https://doi.org/10.4230/LIPIcs.MFCS.2018.59
http://doi.acm.org/10.1145/828.1884
http://doi.acm.org/10.1145/828.1884
http://doi.acm.org/10.1145/828.1884
https://doi.org/10.1145/828.1884
https://doi.org/10.1007/s00453-014-9946-9
https://doi.org/10.1007/978-3-030-26951-7_8
https://books.google.fr/books?id=fG3iEZ8f3CcC
https://books.google.fr/books?id=fG3iEZ8f3CcC
https://books.google.fr/books?id=fG3iEZ8f3CcC

	Introduction
	Preliminaries
	Bounds on the Existence of 3XOR Triplets
	An Algorithm for Random Low-Density 3XOR
	Overwhelming Success Probability
	Deterministic Success

	A ``Sensible'' Application
	Conclusion

