Open Quantum Symmetric Simple Exclusion Process
Résumé
We present the solution to a model of fermions hopping between neighboring sites on a line with random Brownian amplitudes and open boundary conditions driving the system out of equilibrium. The average dynamics reduces to that of the symmetric simple exclusion process. However, the full distribution encodes for a richer behavior, entailing fluctuating quantum coherences which survive in the steady limit. We determine exactly the steady statistical distribution of the system state. We show that the out-of-equilibrium quantum coherence fluctuations satisfy a large-deviation principle, and we present a method to recursively compute exactly the large-deviation function. As a by-product, our approach gives a solution of the classical symmetric simple exclusion process based on fermion technology. Our results open the route towards the extension of the macroscopic fluctuation theory to many-body quantum systems.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|