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We present the solution to a model of fermions hopping between neighbouring sites on a line with
random Brownian amplitudes and open boundary conditions driving the system out of equilibrium.
The average dynamics reduces to that of the symmetric simple exclusion process. However, the full
distribution encodes for a richer behaviour entailing fluctuating quantum coherences which survive
in the steady limit. We determine exactly the steady statistical distribution of the system state. We
show that the out of equilibrium quantum coherence fluctuations satisfy a large deviation principle
and we present a method to recursively compute exactly the large deviation function. As a by-
product, our approach gives a solution of the classical symmetric simple exclusion process based on
fermion technology. Our results open the route towards the extension of the macroscopic fluctuation
theory to many body quantum systems.

Introduction.– Non-equilibrium phenomena are
ubiquitous in Nature. Understanding the fluctuations of
the flux of heat or particles through systems is a central
question in non equilibrium statistical mechanics. Last
decade has witnessed tremendous conceptual and techni-
cal progresses in this direction for classical systems, start-
ing from the exact analysis of simple models [1–3], such
as the Symmetric Simple Exclusion Process (SSEP) [4–
7], via the understanding of fluctuation relations [8–10]
and their interplay with time reversal [11, 12], and culmi-
nating in the formulation of the macroscopic fluctuation
theory (MFT) which is an effective theory adapted to
describe transport and its fluctuations in diffusive classi-
cal systems [13]. Whether MFT may be extended to the
quantum realm is yet unexplored.

In parallel, the study of quantum systems out of equi-
librium has received a large amount of attention in re-
cent years [19–22]. Experimentally, unprecedented con-
trol of cold atom gases gave access to the observation of
many body quantum systems in inhomogeneous and iso-
lated setups [14–18]. Theoretically, results about closed,
quantum systems have recently flourished, with a better
perception of the roles of integrability, chaos or disor-
der [23–34]. In critical or integrable models, a good un-
derstanding has been obtained with a precise description
of entanglement dynamics, quenched dynamics, as well as
transport [35–46]. These efforts culminated in the devel-
opment of a hydrodynamic picture adapted to integrable
systems [47, 48]. However, these understandings are re-
stricted to closed, predominantly ballistic, systems.

Many quantum transport processes are diffusive rather
than ballistic [49] and, to some extends, physical systems
are generically in contact with external environments. It
is thus crucial to extend the previous studies by devel-
oping simple models for fluctuations in open, quantum
many body, locally diffusive, out of equilibrium systems.
Putting aside the quantum nature of the environments
leads to consider model systems interacting with clas-

sical reservoirs or noisy external fields. In the context
of quantum many body systems, and especially quan-
tum spin chains, the study of such models has recently
been revitalised [50–57], partly in connection with ran-
dom quantum circuit [58–64], as a way to get a better
understanding of entanglement production or informa-
tion spreading.

In this work, we introduce and solve an iconic ex-
ample of such models. It is a stochastic variant of the
Heisenberg XX spin chain. It codes for typical features
of quantum many body at scales smaller than the co-
herence length (to keep interference effects) but larger
than the mean free path (to include diffusion). It de-
scribes fermions hopping from site to site on a discretised
line, but with Brownian hopping amplitudes, and inter-
acting with reservoirs at the chain boundaries. For rea-
sons explained below, we may call this model the quan-
tum SSEP. Its average dynamics reduces to the classical
SSEP, but the model codes for the fluctuations around
this mean behaviour. Although decoherence is at play
in the mean behaviour, fluctuating quantum coherences
survive to the noisy interaction. Their magnitudes typi-
cally scale proportionally with the inverse of the square
root of the system size. We characterise completely the
steady measure on the system state which encodes for
the fluctuations of the quantum coherences and occupa-
tion numbers at large time. We also present a recursive
method to compute exactly, order by order, the large
deviation function of these fluctuations. These findings
open the route towards the extension of the MFT [13] to
many body quantum systems.

The open quantum SSEP.– For an open chain in
contact with external reservoirs at their boundaries, the
quantum SSEP dynamics results from the interplay be-
tween unitary, but stochastic, bulk flows with dissipative,
but deterministic, boundary couplings. The bulk flows
induce unitary evolutions of the system density matrix
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ρt onto e−idHt ρt e
idHt with Hamiltonian increments

dHt =
√
D

L−1∑
j=0

(
c†j+1cj dW

j
t + c†jcj+1 dW

j

t

)
, (1)

for a chain of length L, where cj and c†j are canon-
ical fermionic operators, one pair for each site of the

chain, with {cj , c†k} = δj;k, and W j
t and W

j

t are pairs
of complex conjugated Brownian motions, one pair for
each edge along the chain, with quadratic variations

dW j
t dW

k

t = δj;k dt. This model was shown to de-
scribe the effective dynamics of the stochastic Heisenberg
XX spin chain with dephasing noise in the strong noise
limit [65]. It codes for a diffusive evolution of the number

operators n̂j = c†jcj with the parameter D being the dif-
fusion constant. This model is one of the simplest model
of quantum, stochastic, diffusion. It shares similarities
with that of [57]. Exact results concerning the statisti-
cal mean behaviour of this model, and more generally of
the dephasing Heisenberg spin chain, were described in
[66–69]. Properties of the closed periodic version of this
model were deciphered in [70] via a mapping to random
matrix theory. We set D = 1 in the following.

Assuming the interaction between the chain and the
reservoirs to be Markovian, the contacts with the exter-
nal leads can be modelled by Lindblad terms [71]. The
resulting equations of motion read

dρt = −i[dHt, ρt]−
1

2
[dHt, [dHt, ρt]] + Lbdry(ρt)dt, (2)

with dHt as above and Lbdry the boundary Lindbla-
dian. The two first terms result from expanding the
unitary increment ρt → e−idHt ρt e

idHt to second order
(because the Brownian increments scale as

√
dt). The

third term codes for the dissipative boundary dynamics
with Lbdry = α0L+

0 + β0L−0 + αLL+
L + βLL−L and

L+
j (•) = c†j • cj −

1

2
(cjc

+
j •+ • cjc†j), (3)

L−j (•) = cj • c†j −
1

2
(c†jcj •+ • c†jcj), (4)

where the parameters αj (resp. βj) are the injection
(resp. extraction) rates.

The dynamics being noisy, so is the density matrix and
hence the quantum expectations such as the mean quan-
tum occupation numbers nj = Tr(n̂j ρt). Their stochas-
tic averages E[nj ] evolve according to

∂tE[nj ] = ∆dis
j E[nj ] +

∑
k∈{0,L}

δj;k
(
αk(1−E[nk])− βkE[nk]

)
,

with ∆dis
j the discrete Laplacian, ∆dis

j nj = nj+1 − 2nj +
nj−1, illustrating the diffusive bulk dynamics and the
boundary injection/extraction processes. At large time,

they reach a linear profile,

n∗j := lim
t→∞

E[nj ] =
na(L+ b− j) + nb(j + a)

L+ a+ b
, (5)

with na := α0

α0+β0
, nb := αL

αL+βL
, a := 1

α0+β0
, b := 1

αL+βL
,

associated to a steady mean flow from one reservoir to the
other. In the large size limit, L → ∞ at x = i/L fixed,
this mean profile, n∗(x) = na + x(nb − na), interpolates
linearly the two boundary mean occupations na and nb,
in agreement with [57, 66–69].

In mean, the off-diagonal quantum expectations Gji :=

Tr(c†i cj ρt) vanish exponentially fast, limt→∞ E[Gji] = 0
for j 6= i, hence reflecting decoherence due to destruc-
tive interferences induced by the noise. However, this
statement is only valid in mean as fluctuating coherences
survive at sub-leading orders with a rich statistical struc-
ture, with long range correlations.

The steady state : fluctuations and
coherences.– As exemplified by the above one-
point functions, a steady state is attained at large time
in the sense that the distribution of quantum expecta-
tions reaches a stationary value. Equivalently, the limit
limt→∞ E[F (Gt)] exists for any smooth function F of the
matrix of two-point quantum expectations G and this
defines an invariant measure E∞[•] of the flow (2), that
we shall denote by [•] to simplify the notation. Diagonal
elements Gjj code for occupation numbers while the
off-diagonal elements Gji for coherences, and hence [•]
for their steady statistics.

Amongst the two point functions E[GijGkl], only those
with {i = j, k = l} and {i = l, j = k} survive at large
time, the others decrease exponentially fast. This leaves
us with three possible configurations: [G2

ii], [GiiGjj ], and
[GijGji], j 6= i, coding respectively for quantum occupa-
tion and coherence fluctuations. They are determined by
solving the stationarity equations for the invariant mea-
sure (see Supplementary Material):

[GijGji]
c =

(∆n)2 (i+ a)(L− j + b)

(L+ a+ b− 1)(a+ b+ L)(a+ b+ L+ 1)
,

[GiiGjj ]
c = − (∆n)2 (i+ a)(L− j + b)

(L+ a+ b− 1)(a+ b+ L)2(a+ b+ L+ 1)
,

[G2
ii]
c =

(∆n)2
(
2(i+ a)(L− i+ b)− (L+ a+ b)

)
2(a+ b+ L)2(a+ b+ L+ 1)

,

for i < j with ∆n = nb − na and [GiiGjj ]
c = [GiiGjj ]−

[Gii][Gjj ]. The first lesson is that coherences are present
in the large time steady state as their covariances do
not vanish exponentially but remains finite. At large
size, L → ∞ with x = i/L, y = j/L fixed, their second
moments behave as

[GijGji]
c =

1

L
(∆n)2 x(1− y) +O(L−2), (6)

[GiiGjj ]
c = − 1

L2
(∆n)2 x(1− y) +O(L−3), (7)
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for x < y, while [G2
ii]
c = 1

L (∆n)2 x(1 − x) + O(L−2).
The second lesson is, on one hand, that these fluctuating
coherences scale as 1/

√
L in the thermodynamic limit,

and in the other hand, that the correlations between the
quantum occupation numbers ni and nj at distinct sites
i 6= j scale as 1/L2 and hence are sub-leading. These
correlations coincide with those of the statistical mean of
the number operator two-point expectations, for reasons
explained below, but this coincidence does not hold for
higher (N > 3) point correlations.

These facts hold for higher order cumulants
[Gi1j1 · · ·GiN jN ]c of the matrix of two-point quan-
tum expectations. These cumulants are non vanishing
only if the sets {i1, · · · , iN} and {j1, · · · , jN} coincide
so that the N -uplet (j1, · · · , jN ) is a permutation of
(i1, · · · , iN ). To such product Gi1j1 · · ·GiN jN we can
associate an oriented graph with a vertex for each
point i1, · · · , iN and an oriented edge from i to j for
each insertion of Gji. These graphs may be discon-
nected. The condition that the sets {i1, · · · , iN} and
{j1, · · · , jN} coincide translates into the fact that the
number of ongoing edges equals that of outgoing edges,
at each vertex. For instance, [Gii] is represented by [i ],

[GiiGjj ] for i 6= j by [i j ], [GijGji] for i 6= j by [
i j

]

and [G2
ii] by [

i
].

The claim is that expectations of single loop dia-
grammes, corresponding to the expectations of cyclic
products [Gi1iN · · ·Gi3i2Gi2i1 ]c, are the elementary build-
ing blocks in the large size limit. They scale proportion-
ally to 1/LN−1 in the thermodynamic limit

[Gi1iN · · ·Gi3i2Gi2i1 ]c =
1

LN−1
gN (x1, · · · , xN )+O(L−N ),

(8)
with xp = ip/L. The expectations gN depend on which
sector the points x := (x1, · · · , xN ) belong to, with the
sectors indexing how the ordering of the points along
the chain match / un-match that along the loop graph.
Let us choose to fix an ordering of the points along the
chain so that 0 ≤ x1 < · · · < xN ≤ 1, and let σ be the
permutation coding for the ordering of the point vertices
around the loop so that by turning around the oriented
loop one successively encounters the vertices labeled by
xσ(1), xσ(2), · · · , up to xσ(N). There are (N−1)!/2 sectors
because the ordering around the loop is defined up to
cyclic permutations and because reversing the orientation
of the loop preserves the expectations. Let us then set
fσN (x) := gN (xσ(1), · · · , xσ(N)).

The fσN ’s are recursively determined by a set of equa-
tions which arise from the stationarity conditions of the
invariant measure. (See the Supplementary Material).
First, stationarity in the bulk imposes that ∆xj f

σ
N (x) =

0 for all j with ∆x the Laplacian with respect to x, as
a consequence of the bulk diffusivity. Second, the cou-
plings at the boundaries freeze the fluctuations so that

FIG. 1. Graphical representation of the contact relation (11).

fσN (x)|x1=0 = fσN (x)|xN=1 = 0. (9)

Third, contact interactions due to noisy hoppings im-
poses two conditions on expectations at the boundary
between the sectors σ and πj;j+1σ with πj;j+1 the per-
mutation transposing j and j + 1. The ordering of the
point vertices in the sector σ and πj;j+1σ differ by the
exchange of xj and xj+1, so that xj+1 = xj at these
boundaries. The first contact condition is the continuity
condition

fσN (x)|xj+1=xj = f
πj;j+1σ
N (x)|xj+1=xj . (10)

To write the second contact condition, let us define j−∗
(resp. j+∗ ) to be the σ pre-image of j (resp. j + 1), i.e.
j = σ(j−∗ ) and j + 1 = σ(j+∗ ). Since, the vertices xj+1

and xj are identified at these sector boundaries, the loop
graph splits into two sub-loops, touching at the vertex
xj , one including the circle arc xσ(j−∗ −1), xj , xσ(j+∗ +1), and
the other containing the circle arc xσ(j+∗ −1), xj , xσ(j−∗ +1),

respectively denoted `σ,−j and `σ,+j . The second contact
condition is the Neumann like matching condition

(∇xj
−∇xj+1

)
(
fσN (x) + f

πj;j+1σ
N (x)

)
|xj+1=xj

(11)

= 2
(
∇xj [R+

j · f
σ](x)

)
·
(
∇xj [R−j · f

σ](x)
)
,

with [R±j · fσ] the expectations of the reduced sub-loops

`σ,±j . Eqs. (9,10,11) allow to recursively compute the
building block loop expectations (8). See FIG. 1 for a
graphical representation of (11).

Furthermore, connected expectations of pinched
graphs obtained by identifying points in single loop
graphs are obtained by continuity from the expectations
of the corresponding parent loop graphs, thanks to (10).
They are of order 1/LN−1 with N the number of edges in
the pinched graph (and hence the number of insertions of
matrix elements of G). All other connected expectations
of disconnected graphs are sub-leading in the large size
limit.

The conditions (9,10,11) allow to determine all leading
expectations recursively. For N = 3, there is only one
sector and g3(x, y, z) = (∆n)3 x(1 − 2y)(1 − z) for x <
y < z, so that

[GikGkjGij ]
c =

1

L2
(∆n)3 x(1−2y)(1−z)+O(L−3), (12)



4

with x = i/L, y = j/L and z = k/L (i < j < k). For
N = 4, there are 3 sectors respectively associated to the
identity and the transpositions π1;2 and π2;3 :

x1 x2

x3x4
,

x2 x1

x3x4
,

x1 x3

x2x4
.

For x1 < x2 < x3 < x4, their expectations are respec-
tively :

1

L3
(∆n)4 x1(1− 3x2 − 2x3 + 5x2x3)(1− x4),

1

L3
(∆n)4 x1(1− 3x2 − 2x3 + 5x2x3)(1− x4),

1

L3
(∆n)4 x1(1− 4x2 − x3 + 5x2x3)(1− x4),

up to O(L−4) contributions.

The scaling behaviour of the single loop expectations
(8) ensures that the fluctuations of the matrix of quan-
tum two-point expectations G satisfy a large deviation
principle, in the sense that their generating function is
such that

[
eTr(AG)

]
�L→∞ eLF(A) for some function

F(A), called the large deviation function,

F(A) = lim
L→∞

1

L
log
[
eTr(AG)

]
. (13)

This function admits a series expansion, F(A) =∑
N

1
N ! F

(N), with the F(N)’s given by the multiple sums
L−N

∑
i1,··· ,iN [Gi1iN · · ·Gi3i2Gi2i1 ]c (Ai1i2 · · ·AiN i1)

which converge to multiple integrals. To lowest order

F(A) =

∫ 1

0

dxn∗(x)A(x, x) (14)

+ (∆n)2
∫ 1

0

dx

∫ 1

x

dy x(1− y)A(x, y)A(y, x) + · · · .

Higher orders can be recursively computed by using equa-
tions (9,10,11).

Sketch of proof.– Since both the Hamiltonian in-
crements (1) and the Lindbladians (3) are quadratic in
the fermionic creation and annihilation operators, the
stochastic evolution (2) preserves Gaussian states of the

form ρt = Z−1t ec
†Mtc with Mt a L× L matrix and Zt =

Tr(ec
†Mtc). These density matrices are parametrised

by Mt or, equivalently, by the matrix of quantum two-
point expectations Gij = Tr(ρtc

†
jci). One can show that

Gt = eMt

1+eMt
. Eq. (2) then becomes a stochastic equation

for Mt or Gt. For instance, for 0 6= i < j 6= L,

dGij = −2Gijdt+ i
(
Gi;j−1dW

j−1
t +Gi;j+1dW

j
t )

− i
(
Gi−1;jdW

i−1
t +Gi+1;jdW

i

t

)
, (15)

with similar equations for Gii and at the two chain
boundaries. Imposing the stationarity of the measure

FIG. 2. Graphical representation of the reshuffling relation.

amounts to demand that the statistical expectations
[F (Gt)] are time independent for any function F . Since
the Itô derivatives of polynomials in Gt are polynomi-
als in Gt of the same degrees, the stationarity condi-
tions are sets of linear equations on moments of given
order. There are two types of contributions arising
from the Itô derivatives of polynomials: one complet-
ing the drift term in (15) to produce discrete Lapla-
cians acting on products of Gt’s, the other producing
contact interactions. For instance, dGkjdGl;j+1|contact =

−(Gk;j+1dW
j)(GljdW

j
) = −Gk,j+1Glj dt which imple-

ments the transposition of the adjacent points j and j+1.
As a consequence, the Itô derivatives of graphs coding for
products ofGt’s with adjacent indices induce a reshuffling
of the connections of these graphs. See FIG. 2 for an illus-
tration. Thus, the stationarity conditions yield relations
between expectations of reshuffled graphs from which the
relations (9,10,11) can be deduced. (See Supplementary
Material). More details will be described elsewhere [72].

Connecting to the classical SSEP.– The mean
density matrix ρ̄t := E[ρt] evolves according to the Lind-
blad equation ∂tρ̄t = Lbulk(ρ̄t) + Lbdry(ρ̄t) with Lbdry

defined in (3) and bulk Lindbladian

Lbulk(ρ̄t) = −1

2

L−1∑
j=0

(
[c†j+1cj , [c

†
jcj+1, ρ̄t]] + h.c

)
. (16)

This Lindblad dynamics has been studied in [66–69]. For
density matrices diagonal in the occupation number ba-
sis, it codes for the time evolution of SSEP. Asymptoti-
cally in time, decoherence is effective and the mean den-
sity matrix is diagonal, ρ̄t =

∑
[n] Q̄t[n]P[n] where the

P[n]’s are the projectors on the occupation number eigen-
states |[n]〉 and Q̄t[n] the mean populations. The P[n]’s

are products of projectors Pnj

j on each site of the chain,
with nj = 0 (resp. nj = 1) for empty (resp. full). On
adjacent pairs of projectors, the bulk Lindbladian acts as

Lbulk(P1
jP0

j+1) = −P1
jP0

j+1 + P0
jP1

j+1,

Lbulk(P0
jP1

j+1) = −P0
jP1

j+1 + P1
jP0

j+1,

whereas Lbulk(P0
jP0

j+1) = 0 and Lbulk(P1
jP1

j+1) = 0. This
is equivalent to the SSEP transition matrix.

As a consequence, the SSEP generating function for
the occupation number fluctuations can be identified
with the statistical average of the generating function
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of quantum expectations of the number operators,

〈e
∑

j ajnj 〉ssep = Tr
(
ρ̄ e

∑
i ain̂i

)
=
[
Tr
(
ρ e

∑
i ain̂i

)]
,

with n̂i = c†i ci. It can be computed using Wick’s theo-
rem, so that the SSEP cumulants read

〈nj1 · · · njN 〉cssep =
(−)N−1

LN−1

∑
σ

fσN (x) +O(L−N ), (17)

with xk = jk/L all distinct. The sum is over permuta-
tions σ modulo cyclic permutations. (See Supplementary
Material). The expectations (8) of the matrix of quantum
two-point expectations cannot be reconstructed from the
SSEP expectations (for N ≥ 4) because the latter are
symmetric under permutations and hence only involve
the sum of the sectors.

Discussion.– We have introduced a quantum exten-
sion of the SSEP and outlined how to solve it exactly by
characterising its invariant measure and computing the
large deviation function of the matrix of quantum two-
point expectations. The quantum SSEP is a simple, if
not the simplest, model coding for diffusive behaviour of
quantum operators in a many body fermionic systems. In
mean, it reduces to the classical SSEP so that the statis-
tical averages of the quantum expectations of the number
operators coincide with those of the classical SSEP.

The quantum SSEP is strictly finer than its classical
counterpart, and contains much more information, in-
cluding fluctuations of quantum coherences. Although
decoherence is at work on the mean steady state, we
have observed and quantified sub-leading fluctuating co-
herences which are not visible in the mean behaviour [66–
68]. In the thermodynamic large size limit, the system
state approaches a self averaging non equilibrium state
dressed by occupancy and coherence fluctuations whose
amplitudes scale proportionally to 1/

√
L. We have de-

scribed how to compute the large deviation function for
these fluctuations, order by order. One simple experi-
mental route to probe these coherences consists in trans-
posing to our system the recently proposed setup [57] to
conduct interferometry experiments between two parts
of the system. Another possibility to generate echoes of
coherence effects in the occupancy number correlations
consists in injecting fermions in quantum states which
are not eigenstates of the occupancy operators.

As an example of quantum out of equilibrium exclusion
processes and of fluctuating quantum discrete hydrody-
namics, our findings open several new research directions.
The first concerns the integrable structure underlying the
exact solution we have presented and its connection with
the existing solution methods for classical exclusion pro-
cesses [73–76]. The second concerns the extension of our
work to deal with the quantum analogue of the asymmet-
ric simple exclusion process (ASEP). We have already

noticed that the appropriate generalisation amounts to
couple the fermionic system to quantum noise [77, 78].
But the most important ones deal with using the present
model, and its generalisations to interacting systems, to
formalise the extension of the MFT [13] to many body
quantum systems. Proposing such quantisation of the
MFT incorporating the fluctuating quantum coherences
requires going beyond the statistical mean behaviour.
It has been observed in [79] that the additivity princi-
ple [80], which applies classically with some degree of
generality, also holds for some statistics encoded into the
mean system state of diffusive spin chains. How to ex-
tend this principle to keep track of the quantum coher-
ences and their statistical fluctuations? How to take the
continuum limit of those models to provide a quantisa-
tion of the MFT? We plan to report on these questions
in the near future [81].
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Low order cumulants

From eq.(2) in the main text, we derive the stochastic equations satisfied by the matrix Gt:

dGi;i = (Gi+1;i+1 − 2Gi;i +Gi−1;i−1)dt+
∑

p∈{0,L}

δi,p(αp(1−Gi;i)− βpGi;i)dt (18)

+ i
(
Gi;i−1dW̄

i−1
t +Gi;i+1dW

i
t −Gi−1;idW t

i−1 −Gi+1;idW̄
i
t

)
, (j = i)

dGi;j = −2Gi;jdt−
1

2

∑
p∈{0,L}

(αp + βp)(δi,p + δj,p)Gi;jdt (19)

+ i
(
Gi;j−1dW̄

j−1
t +Gi;j+1dW

j
t −Gi−1;jdW i−1

t −Gi+1;jdW̄
i
t

)
, (j 6= i)

Here and in the following, it will always be implicitly assumed that we have to truncate the equations keeping only
the appropriate terms when evaluating them at boundaries, i.e. either taking i or j equal to 0 or L. For instance

dG0;j = −G0;jdt−
1

2

∑
p∈{0,L}

(αp + βp)(δ0,p + δj,p)G0;jdt (20)

+ i
(
G0;j−1dW̄

j−1
t +G0;j+1dW

j
t −G1;jdW̄

0
t

)
, (j 6= 0),

and similarly at the other end of the chain.

Cumulants of order 2.– Let us see how to compute the cumulants of order 2. To each product of G’s not
vanishing in the long-time limit, there is an associated stationary equation. Let’s illustrate how this works for
instance for E[Gi;jGj;i] with i and j 6= 0 or L. Working in the Itô convention, the differential of E[GijGji] is given
by :

dE[Gi;jGj;i] = E[dGi;jGj;i + dGi;jGj;i + dGi;jdGj;i]

= E[((∆dis
i + ∆dis

j )Gi;jGj;i + 2(δi,j − δi−1,j)Gi−1;i−1Gi;i + 2(δi,j − δi+1,j)Gi;iGi+1;i+1)

−
∑

p∈{0,L}

γp(δi,p + δj,p)(Gi;jGj;i)]dt, (21)

where ∆dis
i is the discrete Laplacian as in the main text. To go from the first line to the second line, we made

use of the statistical properties of the complex noises, i.e E[dW j
t ] = E[dW

j

t ] = E[(dW j
t )2] = E[(dW

j

t )
2] = 0 and

E[dW i
t dW

j

t ] = E[dW
j

tdW
i
t ] = δi;jdt. In the steady state E∞[GijGji] = f(i, j) and df(i, j) = 0 which leads to :

0 = (∆dis
i + ∆dis

j )f(i, j)︸ ︷︷ ︸
Laplacians

+ 2(δi,j − δi−1,j)n(i− 1, i) + 2(δi,j − δi+1,j)n(i, i+ 1)︸ ︷︷ ︸
Contact terms

−
∑

p∈{0,L}

γp(δi,p + δj,p)f(i, j)

︸ ︷︷ ︸
Boundary

.

with γk := αk + βk (i.e. γ0 = 1/a and γL = 1/b). The terms weighted by the Kronecker delta’s are what we will refer
to in the following as the contact terms. A stationarity equation is always composed of three parts as above : the
Laplacian terms, the contact terms and the boundary terms.

We define the connected two-point expectations (for i < j):

nc(i, j) := [GiiGjj ]− [Gii][Gjj ], mc(i) := [G2
ii]− [Gii]

2, f(i, j) = [GijGji]. (22)
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The bulk stationarity equations impose that (∆dis
i + ∆dis

j )nc(i, j) = 0 and (∆dis
i + ∆dis

j )f(i, j) = 0, with ∆dis
i is the

discrete Laplacian as in the main text, which we enforce by demanding that

∆dis
i nc(i, j) = ∆dis

j nc(i, j) = 0, ∆dis
i f(i, j) = ∆dis

j f(i, j) = 0. (23)

The bulk/boundary stationarity equations demand that (with j 6= 0, L and i 6= 0, L):

nc(1, j)− nc(0, j) + ∆dis
j nc(0, j) = γa n

c(0, j), (24)

f(1, j)− f(0, j) + ∆dis
j f(0, j) = γa f(0, j), (25)

nc(i, L− 1)− nc(i, L) + ∆dis
i nc(i, L) = γb n

c(i, L), (26)

f(i, L− 1)− f(i, L) + ∆dis
i f(i, L) = γb f(i, L), (27)

The two first equations give nc(1, j) = (γa + 1)nc(0, j) and f(1, j) = (γa + 1)f(0, j). Using ∆dis
i nc(i, j) = 0 and

∆dis
i f(i, j) = 0, this then recursively yields (for i < j):

nc(i, j) = (iγa + 1)nc(0, j), f(i, j) = (iγa + 1)f(0, j). (28)

Similarly, starting from the other hand of the chain gives (for i < j):

nc(i, j) = ((L− j)γb + 1)nc(i, L), f(i, j) = ((L− j)γb + 1)f(i, L). (29)

Hence, for i < j,

nc(i, j) = N (i+ a)(L− j + b), f(i, j) = F (i+ a)(L− j + b), (30)

for some constants N and F (with a = 1/γa = 1/(α0 + β0) and b = 1/γb = 1/(αL + βL).
The constants N and F are then determined by the stationarity conditions at the contact points j = i and j = i+ 1.
Stationarity of mc(i) yields

2mc(i) = nc(i, i+ 1) + nc(i− 1, i) + f(i, i+ 1) + f(i− 1, i). (31)

The equation fixes mc(i) as a function of f(i, j) and nc(i, j). Using again the bulk relations ∆i n
c(i, j) = 0 and

∆i f(i, j) = 0, the stationarity conditions for f(i, i+ 1) and for nc(i, i+ 1) give

mc(i+ 1) +mc(i) = 2f(i, i+ 1) + nc(i+ 1, i+ 1) + nc(i, i), (32)

mc(i+ 1) +mc(i) = 2nc(i, i+ 1) + f(i+ 1, i+ 1) + f(i, i)−
(
n∗(i+ 1)− n∗(i)

)2
, (33)

with n∗(i) the mean profile. Eliminating mc(i) from the above three equations give two equations for the constants
N and F :

(F −N)(b+ a+ L− 1) = (F +N)(a+ b+ L+ 1) =
(
n∗(i+ 1)− n∗(i)

)2
. (34)

Since n∗(i+ 1)− n∗(i) = (∆n)/(b+ a+ L), with ∆n = nb − na, this yields

F =
(∆n)2

(a+ b+ L− 1)(a+ b+ L)(a+ b+ L+ 1)
, (35)

N = − (∆n)2

(a+ b+ L− 1)(a+ b+ L)2(a+ b+ L+ 1)
. (36)

Hence

nc(i, j) = − (∆n)2(i+ a)((L− j) + b)

(a+ b+ L− 1)(a+ b+ L)2(a+ b+ L+ 1)
, (37)

f(i, j) =
(∆n)2(i+ a)((L− j) + b)

(a+ b+ L− 1)(a+ b+ L)(a+ b+ L+ 1)
. (38)

The cumulant mc(i) are then determined using (31):

mc(i) =
∆n2 (2(i+ a)(L− i+ b)− (L+ b+ a))

2(a+ b+ L)2(a+ b+ L+ 1)
(39)
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Cumulants of order 3.– For N = 3, with 0 ≤ i < j < k ≤ L, the non zero terms in the stationary state are :

[ i j k ] = [GiiGjjGkk], [ i j k
] = [GiiGjkGkj ], (40)

[
i j k ] = [GijGjiGkk], [ i kj

] = [GikGjjGki], (41)

[ j
k

i
] = [GijGjkGki], [

i k ] = [G2
iiGkk], (42)

[ i k
] = [GiiG

2
kk], [

i
] = [G3

ii], (43)

[
i j

] = [GijGjiGjj ], [
i k

] = [GiiGikGki], (44)

where the convention is that two indices written with different letters are evaluated at different sites. We define the
connected expectations of the five first terms as :

[ i j k ]c = [ i j k ]− [ i ][ j k ]− [ j ][k i ]− [ i j ][k ] + 2[ i ][ j ][k ] (45)

[ i j k
]c = [ i j k

]− [ i ][
j k

] (46)

[
i j k ]c = [

i j k ]− [
i j

][k ] (47)

[ i kj
]c = [ i kj

]− [
i k

][ j ] (48)

[ j
k

i
]c = [ j

k

i
] (49)

We name these terms gcm(i, j, k) where the index m runs from 1 to 5 and labels the diagrams. The stationarity
conditions for the gcm follow all the same pattern :

0 = (∆dis
i + ∆dis

j + ∆dis
k )(gcm(i, j, k)) + “contact terms” (50)

− (γ0δi,0 + γLδk,L)gcm(i, j, k)

where the contact terms are non zero only when two indices are close to each other : j = i + 1, k = j + 1 and
depends on m. As with the N = 2 case, using bulk and boundary stationarity, we find that all the gcm’s must be of
the following polynomial form :

gcm(i, j, k) = Nm(a+ i)(1 + Cmj)(L+ b− k)

We make use of the contact terms to determine the constant Nm and Cm. We will not show the explicit derivation as
it does not entail any difficulties but is a bit cumbersome. Knowing the gcm’s, it is then easy to retrieve the remaining
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terms by again making use of the various contact terms. The result is :

[ i j k ]c = − 4(∆n)3(a+ i)(a− b+ 2j − L)(L+ b− k)

(L+ a+ b− 2)(L+ a+ b− 1)(L+ a+ b)3(L+ a+ b+ 1)(L+ a+ b+ 2)
(51)

[ i j k
]c =

2(∆n)3(a+ i)(a− b+ 2j − L)(L+ b− k)

(L+ a+ b− 2)(L+ a+ b− 1)(L+ a+ b)2(L+ a+ b+ 1)(L+ a+ b+ 2)
(52)

[
i j k ]c = [ i kj

]c = [ i j k
]c (53)

[ j
k

i
]c = − (∆n)3(a+ i)(−L− b+ a+ 2j)(L+ b− k)

(L+ a+ b− 2)(L+ a+ b− 1)(L+ a+ b)(L+ a+ b+ 1)(L+ a+ b+ 2)
(54)

[
i j ]c =

(∆n)3 (2(a+ i)(−L− b+ a+ 2i) + L+ a+ b) (L+ b− j)
(L+ a+ b− 1)(L+ a+ b)3(L+ a+ b+ 1)(L+ a+ b+ 2)

(55)

[ i j
]c =

(∆n)3(a+ i)(a(2(L+ b− j)− 1)− 2(L+ b− 2j)(L+ b− j)− L− b)
(L+ a+ b− 1)(L+ a+ b)3(L+ a+ b+ 1)(L+ a+ b+ 2)

(56)

[
i j

]c = − (∆n)3 (2(a+ i)(−L− b+ a+ 2i) + L+ a+ b) (L+ b− j)
2(L+ a+ b− 1)(L+ a+ b)2(L+ a+ b+ 1)(L+ a+ b+ 2)

(57)

[
i j

]c = − (∆n)3(a+ i)(a(2(L+ b− j)− 1)− 2(L+ b− 2j)(L+ b− j)− L− b)
2(L+ a+ b− 1)(L+ a+ b)2(L+ a+ b+ 1)(L+ a+ b+ 2)

(58)

[
i

]c = − (∆n)3(L+ a+ b− 2)(−L− b+ a+ 2i)(a(4(L+ b− i)− 3) + 4i(L+ b− i)− 3(b+ L))

4(L+ a+ b− 1)(L+ a+ b)3(L+ a+ b+ 1)(L+ a+ b+ 2)
(59)

where the connected expectations are defined according to eqs.(45) with appropriate identification of the indices. For

N = 3 the leading order in the thermodynamic limit is O(L−2). These include [
i j

]c, [
i j

]c, [
i

]c and

[ j
k

i
]c. In the thermodynamic limit, with x = i/L, y = j/L, z = k/L, they read :

[
i j

]c =
(∆n)3x(1− 2x)(1− y)

L2
(60)

[
i j

]c =
(∆n)3x(1− 2y)(1− y)

L2
(61)

[
i

]c =
(∆n)3x(1− 2x)(1− x)

L2
(62)

[ j
k

i
] =

(∆n)3x(1− 2y)(1− z)
L2

(63)

As stated in the main text we see that in the thermodynamic limit, the knowledge of the single loop [ j
k

i
] is

enough to get the other terms by continuity.

Conditions for stationarity, blow-ups and higher order cumulants

We recall the stochastic equations (18,19,20).

Conditions for stationarity and blow-ups.– We look at expectations of the following form[
A B

i

j

]
,

[
A Bji

]
,

[
A Bi

]
, (64)

where A and B are subgraphs (We could also add another subgraph linking A and B).
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We write the stationarity conditions, using (18,19,20). The first set of bulk relations, for i and j far a part and
away from the boundaries, are satisfied if

∆dis
i

[
A B

i

j

]
= ∆dis

j

[
A B

i

j

]
= 0, ∆dis

i

[
A Bji

]
= ∆dis

j

[
A Bji

]
= 0, (65)

with ∆dis
i the discrete Laplacian as in the main text. Notice that

[
A Bi

]
is not discrete harmonic.

As for the two- and three- point functions, it is easy to see that the stationarity conditions imposes the connected

components of

[
A B

i

j

]
and

[
A Bji

]
to vanish at the boundaries in the large size limit.

We then write the contact conditions which come from the stationarity conditions for j = i or j = i± 1. We start
with j = i ± 1. The case j = i − 1 is recovered from the case j = i + 1 up to the exchange of A and B. Using (65),

stationarity of

[
A B

j

j + 1

]
gives

[
A Bj

]
+

[
A Bj + 1

]
=

[
A B

j

j

]
+

[
A B

j + 1

j + 1

]
+

[
A Bj + 1j

]
+

[
A Bjj + 1

]
(66)

Similarly, stationarity of

[
A Bj + 1j

]
gives

[
A Bj

]
+

[
A Bj + 1

]
=

[
A Bjj

]
+

[
A Bj + 1j + 1

]
+

[
A B

j + 1

j

]
+

[
A B

j

j + 1

]
(67)

The stationarity conditions for

[
A Bj

]
yields

4

[
A Bj

]
=

[
A B

j + 1

j

]
+

[
A B

j

j + 1

]
+

[
A B

j − 1

j

]
+

[
A B

j

j − 1

]
(68)

+

[
A Bjj + 1

]
+

[
A Bj + 1j

]
+

[
A Bjj − 1

]
+

[
A Bj − 1j

]

Stationarity conditions for higher order cumulants.– Eliminating

[
A Bj

]
+

[
A Bj + 1

]
from

the two equations (66,67) yields[
A B

j + 1

j + 1

]
−
[

A B
j

j + 1

]
+

[
A B

j

j

]
−
[

A B
j + 1

j

]
(69)

=

[
A Bj + 1j + 1

]
−
[

A Bj + 1j

]
+

[
A Bjj

]
−
[

A Bjj + 1

]
The l.h.s. is the difference of discrete derivatives. In the large size limit, the r.h.s. is dominated by the disconnected
contributions to the expectations because the approximation[

A Bji

]
=

[
A i

][
Bj

]
+ · · · , (70)

where the dots refer to sub-leading terms in 1/L, is valid in the large size limit. Hence, equation (69) can be written
as

∇dis
x

[
A B

x

y

]∣∣
y=x+ −∇dis

y

[
A B

y

x

]∣∣
y=x+ =

(
∇dis
x

[
A x

])
·
(
∇dis
y

[
By

]) ∣∣∣∣
y=x

(71)

up to sub-leading terms in 1/L, where we adopt a more explicit continuous indexation (i.e. x = i/L, etc.), and with
∇dis
x f(x) = f(x+ 1/L)− f(x) ' L−1∇xf(x) in the large L limit.
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Exchanging the role of A and B (which amounts to exchange x and y) gives two relations. Exchanging and taking
the sum yields (in the large L limit)

(
∇dis
x −∇dis

y

) ([
A B

x

y

]
+

[
A B

y

x

]) ∣∣∣∣
y=x+

= 2

(
∇dis
x

[
A x

])
·
(
∇dis
y

[
By

]) ∣∣∣∣
y=x

(72)

Exchanging and taking the difference yields (in the large L limit)

(
∇dis
x +∇dis

y

) ([
A B

x

y

]
−
[

A B

y

x

]) ∣∣∣∣
y=x+

= 0. (73)

If

[
A B

]
is a single loop diagram, then A and B are circle arcs and

[
A

]
and

[
B

]
are single

loops with respectively Na and Nb edges (so that the parent single loop has N = Na +Nb edges). By recursion, the

expectations

[
A

]
and

[
B

]
scale respectively as 1/LNa−1 and 1/LNb−1, and the l.h.s. of (72) scales as

1/LNa−1+Nb−1+2 = 1/LN . Hence, by (72),

[
A B

]
scales as 1/LN−1. Equation (72) then reads

(∇x −∇y)

([
A B

x

y

]
+

[
A B

y

x

]) ∣∣∣∣
y=x+

=
2

L

(
∇x
[

A x

])
·
(
∇y
[

By

]) ∣∣∣∣
y=x

(74)

which coincides with the main contact relation of the main text.

Similarly, in the large size limit, equation (73) becomes the continuity equation[
A B

x

y

]∣∣∣∣
y=x+

=

[
A B

y

x

]∣∣∣∣
y=x+

(75)

Finally, equation (68) in the large size limit gives[
A Bx

]c
=

[
A B

x

x

]
, (76)

which says that connected expectations of pinched diagrammes are obtained by continuity from the parent diagramme.

Furthermore, we can use the stationarity equations (66,67,68) to prove that

[
A Byx

]c
is sub-leading compare

to

[
A B

x

y

]
by a factor 1/L.

Explicit solutions for the first cases.– Here, we solve the stationarity conditions for the first cumulants. Recall
that n∗(x) = na + x(nb − na). The case N = 2 was done in the main text (from the discrete solution) with output[

x y

]
=

1

L
f2(x, y), f2(x, y) = (∆n)2 x(1− y). (77)

For N = 3, there are only one diagram

[
y

z

x

]
=

1

L2
f3(x, y, z), (78)

with 0 ≤ x < y < z ≤ 1 by convention. Because there is only one sector in the case N = 3, the equations for f3(x, y, z)
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simplify to

∆x

[
y

z

x

]
= ∆y

[
y

z

x

]
= ∆z

[
y

z

x

]
= 0 (79)[

y
z

0

]
=

[
y

1

x

]
= 0 (80)

(∇x −∇y)

([
y

z

x

])∣∣∣∣
x=y

=
1

L

(
∇x
[
x

])
·
(
∇y
[
y z

])∣∣
x=y

(81)

(∇y −∇z)
([

y
z

x

])∣∣∣∣
y=z

=
1

L

(
∇y
[
y

])
·
(
∇z
[
x z

])∣∣
y=z

(82)

The solution is of the form f3(x, y, z) = xQ(y) (1 − z) for some polynomial Q(y) of degree one. Solving for it using
the above equations gives [

y
z

x

]
=

(∆n)3

L2
x(1− 2y)(1− z).

For N = 4 there are a priori 3 different types of one-loop diagrams :

[
x1 x2

x3x4
]
,

[
x2 x1

x3x4
]
, and

[
x1 x3

x2x4
]

with 0 ≤ x1 < x2 < x3 < x4 ≤ 1. They fulfill the following equations :

∆xj

[
x1 x2

x3x4
]

= ∆xj

[
x2 x1

x3x4
]

= ∆xj

[
x1 x3

x2x4
]

= 0, ∀j ∈ J1, 4K (83)

[
0 x2

x3x4
]

=

[
x2 0

x3x4
]

=

[
0 x3

x2x4
]

= 0 (84)

[
x1 x2

x31
]

=

[
x2 x1

x31
]

=

[
x1 x3

x21
]

= 0 (85)

(∇x1
−∇x2

)

([
x1 x2

x3x4
+

x2 x1

x3x4
])∣∣∣∣

x1=x2

=
2

L

(
∇x1

[
x1

])
·
(
∇x2

[
x2

x3

x4

])∣∣
x1=x2

(86)

lim
x1→x2

([
x1 x2

x3x4
]
−
[
x2 x1

x3x4
])

= 0 (87)

(∇x2 −∇x3)

([
x1 x2

x3x4
+

x1 x3

x2x4
])∣∣∣∣

x2=x3

=
2

L

(
∇x2

[
x2

])
·
(
∇x3

[
x3

x4

x1

])∣∣
x2=x3

(88)

lim
x2→x3

([
x1 x2

x3x4
]
−
[
x1 x3

x2x4
])

= 0 (89)

(∇x3 −∇x4)

([
x1 x2

x3x4
+

x2 x1

x3x4
])∣∣∣∣

x3=x4

=
2

L

(
∇x3

[
x2

x3

x1

])
·
(
∇x4

[
x4

])∣∣
x3=x4

(90)

lim
x3→x4

([
x1 x2

x3x4
]
−
[
x2 x1

x3x4
])

= 0 (91)

(∇x2
−∇x3

)

([
x2 x1

x3x4
])∣∣∣∣

x2=x3

=
1

L
∇x2

(
[
x1 x2

]
) · ∇x3

(
[
x3 x4

]
)
∣∣
x2=x3

(92)

(∇x1
−∇x2

)

([
x1 x3

x2x4
])∣∣∣∣

x1=x2

=
1

L
∇x1

(
[
x1 x3

]
) · ∇x2

(
[
x2 x4

]
)
∣∣
x1=x2

(93)

(∇x3
−∇x4

)

([
x1 x3

x2x4
])∣∣∣∣

x3=x4

=
1

L
∇x3

(
[
x1 x3

]
) · ∇x4

(
[
x2 x4

]
)
∣∣
x3=x4

(94)
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The bulk/boundary conditions impose that all loops must be polynomial of the form x1Q(x2, x3)(1− x4). Using the
remaining conditions, one gets :[

x1 x2

x3x4
]

=
(∆n)4

L3
x1(1− 3x2 − 2x3 + 5x2x3)(1− x4) (95)

[
x2 x1

x3x4
]

=
(∆n)4

L3
x1(1− 3x2 − 2x3 + 5x2x3)(1− x4) (96)

[
x1 x3

x2x4
]

=
(∆n)4

L3
x1(1− 4x2 − x3 + 5x2x3)(1− x4) (97)

Classical SSEP

Let us first recall the connection between the quantum and classical SSEP models:

〈e
∑

j ajnj 〉ssep = Tr
(
ρ̄ e

∑
i ain̂i

)
=
[
Tr
(
ρ e

∑
i ain̂i

)]
, (98)

with n̂i = c†i ci the quantum number operators and nj the classical SSEP occupation variables.

In this part, we prove eq.(17) of the main text as a consequence of eq.(8) in the main text. First, using Wick’s
theorem we have :[

Tr(ρ n̂i1 n̂i2 · · · n̂iN )
]

=
∑

P={u1,··· ,um}

∑
{σu1 ···σum}

(−1)N+m

[
iσu1 (1)

iσu1 (2)

. . .iσu1
(u1)

. . .
iσum (N−um+1) iσum (N−um+1)

. . .iσum (N)
]

(99)

where P = {u1, · · · , um} are partitions of N , i.e.
∑m
j=1 uj = N and the σp’s denote all permutations of p indices up

to cyclic permutations (there are (p − 1)! of them). This formula is for i1 6= i2 6= · · · 6= iN , and taking two indices

to be equal amounts to consider a term of order N − 1 since n̂2 = n̂. The graph
i1 i2

. . .ip
designates a one-loop

diagram connecting p points. One can directly check that
[
Tr(ρ n̂i1 n̂i2 · · · n̂iN )

]
equals the terms of order ai1 · · · aiN ,

in [
exp

( ∞∑
p=1

∑
i1···ip

(−1)p−1

p!
ai1 · · · aip

∑
σp iσp(1) iσp(2)

. . .iσp(p) )]
. (100)

The two last formula can also be retrieved from the well known formula for fermionic expectation values:

Tr
(
ρ exp(

∑
i

ain̂i)
)

= Det
(
1 +G(eA − 1)

)
. (101)

with A the diagonal matrix with entries ai. Expanding the determinant as a sum over permutations and decomposing
these permutations into product of cycles yields (99).

Recall the definition of the connected correlation function [X1, · · · , Xq]
c of random variables Xk:

[X1, · · · , Xq]
c =

∂

∂a1
...

∂

∂aq
log
(

exp(

q∑
i=1

aiXi)
)
|a1=a2...=aq=0

Combining this definition with (100) and the correspondance between the quantum and classical SSEP correlations,
it is clear the the classical SSEP expectations are given by :

〈ni1 · · · niN 〉cssep =
∑

P={u1,··· ,um}

∑
{σu1

···σum}

(−1)N+m

[
iσu1

(1) iσu1
(2)

. . .iσu1
(u1)

. . .
iσum (N−um+1) iσum (N−um+1)

. . .iσum (N)
]c
, (102)
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for all ik distinct. The only remaining terms in the thermodynamic limit among the connected diagrams are the
one-loop diagrams, thus proving eq.(17) of the main text :

〈nj1 ...njN 〉cssep =
(−)N−1

LN−1

∑
σ

fσN (x) +O(L−N ). (103)

Up to order four, we checked that this formula indeed agreed with known results for SSEP (see references [6,7,76] of
the main text):

〈nj1〉ssep = [ x1 ] = na + (∆n)x1

〈nj1nj2〉cssep = −
[
x1 x3

]
=

(∆n)2

L
x1(1− x2)

〈nj1nj2nj3〉cssep = 2

[
x2

x3

x1

]
=

(∆n)3

L2
2x1(1− 2x2)(1− x3)

〈nj1nj2nj3nj4〉cssep = −2

[
x1 x2

x3x4
+

x2 x1

x3x4
+

x1 x3

x2x4
]

= − (∆n)4

L3
2x1(3− 10x2 − 5x3 + 15x2x3)(1− x4)

Notice again that the classical SSEP cumulants are given by the sum over the different sectors of the quantum SSEP
single loops.

Discussion

This set of remarks aims at making clear within which context our work has to be perceived. They arose while
answering the following questions asked by the referees: What is the simplest non-classical observable that an ex-
periment (or a numerical simulation) should look for, and how different is its behaviour from what would have been
expected in a purely classical model? What kind of physics is to be elucidated through the study such kind of model?
How general is the method of solution, and is there any connection between the notion of integrability here and the
standard notion of quantum integrability via mapping to a Hubbard model in [69]?

The short answer to the first question is “look for coherent effects”, in the form of say interferences or entanglements.
Indeed, as explained in the text and noticed by the referees, the correlation functions of local density observables are
in one-to-one correspondence with their classical counterparts. To see echoes of quantum fluctuations, one should
then look after quantum coherent effects, and we have shown that these quantum coherences (encoded in the off-
diagonal elements of the matrix of two-point functions) scale as the inverse of the square root of the system size
(to leading order). One, possibly simple, experimental route towards this would be to conduct an interferometry
experiment between two parts of the system. Such setup has recently been discussed by M.J. Gullans and D.A.
Huse in [57] and their proposal can be directly transposed to our system. It consists in connecting two distant sites
of the lattice to tunnelling barriers into 1D channels. The tunnelling fermions are then used for an interferometric
experiment via, for instance, a beam splitter. The quantum fluctuating coherences will be visible in the interference
patterns. Another possibility consists in imposing different boundary conditions. The boundary conditions considered
in the text amount to injecting and extracting fermions in the system at given rates, in occupancy eigenstates. Since
our model is quantum mechanical, one could instead consider injecting/extracting fermions in states that are linear
superpositions of occupied and empty sites. These boundary conditions then impose new steady distributions for
which there is not an one-to-one correspondence between the quantum occupancy operator correlations and classical
ones anymore. One should then be able to observe the difference between the classical and quantum systems by
simply measuring the density profiles of the system. This new setting however deserves a study of its own (to which
we hope/plan to come back soon) and we prefer not discuss it here (by lack of room).

As explained in the introduction, the kind of physics we aim at deciphering with this model concerns those covered
by the extension of the macroscopic fluctuation theory, which is a classical theory, to the quantum realm. The
macroscopic fluctuation theory is a quite general framework adapted to describe properties of locally diffusive classical
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systems away from equilibrium. Its quantum version would hopefully have a large degree of generality and apply for
quantum many-body systems at scales smaller than the coherence length (to keep coherent and interference effects)
but larger than the mean free path, or scattering length (to deal with diffusive behaviours). By providing information
on fluctuating coherences across the systems, the quantum version of the macroscopic fluctuation theory is expected
to code for properties – beyond linear response transport (as the Landauer-Buttiker theory already do) – dealing
with interferences, entanglements, information spreading, etc., in such systems and which have obviously no classical
counterpart. For classical systems, establishing the general formalism of the macroscopic fluctuation theory started
by solving and understanding properties of simple model systems such as the exclusion processes. Our work aims at
taking a similar route in the quantum case.

There are a few differences between our work and that of the reference [69]: Ref.[69] deals with a model of dissipative
spin chain experiencing random dephasing at each local site. Ref. [69] looks at the mean dynamics encoded into a
Lindblad equation. In one hand, ref.[69] deals with system models more general than ours, in the sense that they are
valid for any strength of the dephasing, but on the other hand it deals with less general questions in the sense that it
only looks at the mean behaviour whereas the purpose of our work is to decipher the fluctuations present in this class
of model systems. Our model provides a description of the dynamics at the stochastic level while the local dephasing
in [69] focused on the mean Lindblad dynamics, i.e. the dynamics averaged over the noise. The integrability structure
used in [69], via a mapping to a complex Hubbard model, only applies to the mean Lindblad dynamics. Even though
it was shown by the authors and M. Bauer (ref. [65] in the text) that the stochastic version of the random dephasing
model and the quantum SSEP (called the stochastic XY model in [65]) are connected in the limit of long time and
strong dephasing, it is a priori not expected that the integrable structure deciphered in [69] could provide information
beyond the mean properties. However, there are strong incentives, some of which have been shown in this paper,
that some notion of integrability should hold true for the quantum SSEP at the stochastic level. Decoding which
integrability structure is behind the exact solution we described is yet an open problem (and we hope to come back
to this problem). Once this last problem would have been solved, its solution combined with the result of [69] would
suggest that the integrability structure inherent to the quantum SSEP admits an extension to the dephasing spin
chain at the stochastic level (and not only at the mean Lindblad level).


