Some New Congruences for l-Regular Partitions Modulo 13, 17, and 23 - Archive ouverte HAL Access content directly
Journal Articles Hardy-Ramanujan Journal Year : 2020

Some New Congruences for l-Regular Partitions Modulo 13, 17, and 23

Abstract

A partition of n is l-regular if none of its parts is divisible by l. Let b l (n) denote the number of l-regular partitions of n. In this paper, using theta function identities due to Ramanujan, we establish some new infinite families of congruences for b l (n) modulo l, where l = 17, 23, and for b 65 (n) modulo 13.
Fichier principal
Vignette du fichier
42Article8.pdf (255.37 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-02301897 , version 1 (30-09-2019)
hal-02301897 , version 2 (30-04-2020)

Identifiers

Cite

S Abinash, T Kathiravan, K Srilakshmi. Some New Congruences for l-Regular Partitions Modulo 13, 17, and 23. Hardy-Ramanujan Journal, 2020, Volume 42 - Special Commemorative volume in honour of Alan Baker - 2019, ⟨10.46298/hrj.2020.5827⟩. ⟨hal-02301897v2⟩

Collections

INSMI
122 View
716 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More