Some New Congruences for l-Regular Partitions Modulo 13, 17, and 23
Résumé
A partition of n is l-regular if none of its parts is divisible by l. Let b l (n) denote the number of l-regular partitions of n. In this paper, using theta function identities due to Ramanujan, we establish some new infinite families of congruences for b l (n) modulo l, where l = 17, 23, and for b 65 (n) modulo 13.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...