Partial Linear NMF-Based Unmixing Methods for Detection and Area Estimation of Photovoltaic Panels in Urban Hyperspectral Remote Sensing Data - Archive ouverte HAL
Article Dans Une Revue Remote Sensing Année : 2019

Partial Linear NMF-Based Unmixing Methods for Detection and Area Estimation of Photovoltaic Panels in Urban Hyperspectral Remote Sensing Data

Résumé

High-spectral-resolution hyperspectral data are acquired by sensors that gather images from hundreds of narrow and contiguous bands of the electromagnetic spectrum. These data offer unique opportunities for characterization and precise land surface recognition in urban areas. So far, few studies have been conducted with these data to automatically detect and estimate areas of photovoltaic panels, which currently constitute an important part of renewable energy systems in urban areas of developed countries. In this paper, two hyperspectral-unmixing-based methods are proposed to detect and to estimate surfaces of photovoltaic panels. These approaches, related to linear spectral unmixing (LSU) techniques, are based on new nonnegative matrix factorization (NMF) algorithms that exploit known panel spectra, which makes them partial NMF methods. The first approach, called Grd-Part-NMF, is a gradient-based method, whereas the second one, called Multi-Part-NMF, uses multiplicative update rules. To evaluate the performance of these approaches, experiments are conducted on realistic synthetic and real airborne hyperspectral data acquired over an urban region. For the synthetic data, obtained results show that the proposed methods yield much better overall performance than NMF-unmixing-based methods from the literature. For the real data, the obtained detection and area estimation results are first confirmed by using very high-spatial-resolution ortho-images of the same regions. These results are also compared with those obtained by standard NMF-unmixing-based methods and by a one-class-classification-based approach. This comparison shows that the proposed approaches are superior to those considered from the literature.
Fichier principal
Vignette du fichier
DOTA19200.1568961447.pdf (7.02 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02296954 , version 1 (25-09-2019)

Identifiants

Citer

Moussa Sofiane Karoui, Fatima Zohra Benhalouche, Yannick Deville, Khelifa Djerriri, Xavier Briottet, et al.. Partial Linear NMF-Based Unmixing Methods for Detection and Area Estimation of Photovoltaic Panels in Urban Hyperspectral Remote Sensing Data. Remote Sensing, 2019, 11 (8), pp.2164. ⟨10.3390/rs11182164⟩. ⟨hal-02296954⟩
452 Consultations
82 Téléchargements

Altmetric

Partager

More