ATOL: Measure Vectorisation for Automatic Topologically-Oriented Learning - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

ATOL: Measure Vectorisation for Automatic Topologically-Oriented Learning

Résumé

Robust topological information commonly comes in the form of a set of persistence diagrams, finite measures that are in nature uneasy to affix to generic machine learning frameworks. We introduce a learnt, unsupervised measure vectorisation method and use it for reflecting underlying changes in topological behaviour in machine learning contexts. Relying on optimal measure quantisation results the method is tailored to efficiently discriminate important plane regions where meaningful differences arise. We showcase the strength and robustness of our approach on a number of applications, from emulous and modern graph collections where the method reaches state-of-the-art performance to a geometric synthetic dynamical orbits problem. The proposed methodology comes with only high level tuning parameters such as the total measure encoding budget, and we provide a completely open access software.
Fichier principal
Vignette du fichier
atol.pdf (1.17 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02296513 , version 1 (28-09-2019)
hal-02296513 , version 2 (10-02-2020)
hal-02296513 , version 3 (13-10-2020)

Identifiants

Citer

Martin Royer, Frédéric Chazal, Clément Levrard, Yuichi Ike, Yuhei Umeda. ATOL: Measure Vectorisation for Automatic Topologically-Oriented Learning. 2020. ⟨hal-02296513v2⟩
535 Consultations
540 Téléchargements

Altmetric

Partager

More