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Abstract

Robust topological information commonly
comes in the form of a set of persistence di-
agrams, finite measures that are in nature
uneasy to affix to generic machine learning
frameworks. We introduce a learnt, unsuper-
vised measure vectorisation method and use
it for reflecting underlying changes in topo-
logical behaviour in machine learning con-
texts. Relying on optimal measure quantisa-
tion results the method is tailored to efficiently
discriminate important plane regions where
meaningful differences arise. We showcase the
strength and robustness of our approach on
a number of applications, from emulous and
modern graph collections where the method
reaches state-of-the-art performance to a ge-
ometric synthetic dynamical orbits problem.
The proposed methodology comes with only
high level tuning parameters such as the total
measure encoding budget, and we provide a
completely open access software.

1 Introduction

Topological Data Analysis (TDA) is a field dedicated
to the capture and description of relevant geometric
or topological information from data. The use of TDA
with standard machine learning tools has proved partic-
ularly advantageous in dealing with all sorts of complex
data, meaning objects that are not or partly Euclidean,
for instance graphs, time series, etc. The applications
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are abundant, from social network analysis, bio and
chemoinformatics, to medical imaging and computer
vision, to name a few.

Through persistent homology, a multi-scale analysis of
the topological properties of the data, robust and stable
information can be extracted. The resulting features
are commonly computed in the form of a persistence
diagram whose structure (an unordered set of points
in the plane representing birth and death times for
the features) does not easily fit the general machine
learning input format. Therefore TDA is generally
combined to machine learning by way of an embedding
method for persistence diagrams.

Contributions. Our work is set in that trend. First
using recent measure quantisation results we introduce
a learnt, unsupervised vectorisation method for mea-
sures in Euclidean spaces of any dimension (Section
2.1). Then we specialise this method for handling
persistence diagrams (Section 2.2), allowing for easy
integration of topological features into challenging ma-
chine learning problems with theoretical guarantees
(Theorem 1). We illustrate our approach on a set of
experiments that leads to state-of-the-art results on
difficult problems (Section 3). Lastly we provide an
open source implementation and notebook.

Our quantisation of the space of diagrams is statis-
tically optimal and the resulting algorithm, a simple
variant of the Lloyd’s algorithm, is simple and efficient.
It can also be used in a minibatch fashion, making it
practical for large scale and high dimensional problems,
and competitive with respect to more sophisticated
methods involving kernels, deep learning, or compu-
tations of Wasserstein distance. To the best of our
knowledge, our results provide the first vectorisation
method for persistence diagrams that is proven to be
able to separate clusters. There is little to no tuning
to this method, and no knowledge of TDA is required
for this framework.



Figure 1: Example of a filtration by union of balls
built on top of a 2-dimensional data set (red points)
and its corresponding persistence diagram. As the
radius of the balls increases, the connected components
initially represented by each data point get merged;
two cycles appears and disappears along the filtration.
The connected components give rise to the red points
on the vertical axis of the diagram as their birth time
are all 0, and the cycles give rise to the two blue points.

Related work. Finding representations of persistence
diagrams that are well-suited to be combined with stan-
dard machine learning pipeline is a problem that has
attracted a lot of interest these last years. A first fam-
ily of approaches consists in finding convenient vector
representations of persistence diagrams. For instance it
involves interpreting diagrams as images in [AEK+17],
extracting topological signatures with respect to fixed
points whose optimal position are supervisedly learnt
in [HKNU17], a square-root transform of their approx-
imated pdf in [AVRT16].

A second family of approaches consists in designing spe-
cific kernel on the space of persistence diagrams, such
as the multi-scale kernel of [RHBK15], the weighted
Gaussian kernel of [KHF16] or the sliced Wasserstein
kernel of [CCO17]. Those techniques have state-of-
the-art behaviour on problems, but for drawback they
require another step for an explicit representation, and
are known to scale poorly.

A recent other line of work has managed to directly
combine the uneasy structure of persistence diagrams
to neural networks architectures [ZKR+17], [CCI+19].
Despite their successful performances, these neural
networks are heavy to deploy and hard to under-
stand. They are sometimes paired with a representation
method as in [HKNU17], [HKN19].

Persistent homology in TDA

Persistent homology provides a rigorous mathematical
framework and efficient algorithms to encode relevant

multi-scale topological features of complex data such as
point clouds, time-series, 3D images... More precisely,
persistent homology encodes the evolution of the topol-
ogy of families of nested topological spaces (Fα)α∈A,
called filtrations, built on top of the data and indexed
by a set of real numbers A that can be seen as scale
parameters. For example, for a point cloud in a Eu-
clidean space, Fα can be the union of the balls of radius
α centered on the data points - see Figure 1. Given
a filtration (Fα)α∈A, its topology (homology) changes
as α increases: new connected components can appear,
existing connected components can merge, loops and
cavities can appear or be filled, etc. Persistent ho-
mology tracks these changes, identifies features and
associates, to each of them, an interval or lifetime from
αbirth to αdeath. For instance, a connected component
is a feature that is born at the smallest α such that the
component is present in Fα, and dies when it merges
with an older connected component. The set of inter-
vals representing the lifetime of the identified features
is called the barcode of the filtration. As an interval
can also be represented as a point in the plane with
coordinates (αbirth, αdeath), the persistence barcode is
equivalently represented as an union of such points and
called the persistence diagram - see [EH10, BCY18]
for a more detailed introduction. The classical main
advantage of persistence diagrams is that:
(i) they are proven to provide robust qualitative and
quantitative topological information about the data
[CdSGO16];
(ii) since each point of the diagram represents a specific
topological feature with its lifespan, they are easily
interpretable as features;
(iii) from a practical perspective, persistence diagrams
can be efficiently computed from a wide family of fil-
trations [The15].
However, as persistence diagrams come as unordered
set of points with non constant cardinality, they cannot
be immediately processed as standard vector features
in machine learning algorithms. It can be beneficial
to interpret persistence diagrams as measures, see for
instance [CdSGO16], [CD18], and in this work we will
use this paradigm.

Notations

Consider Md the set of finite measures on the d-
dimensional ball B(0, R) of the Euclidean space Rd with
total mass smaller than M , for some given M,R ∈ R2

+.

We assume that the set of input persistence diagrams
comes as an i.i.d. sample from a distribution of uni-
formly bounded diagrams, that is given M,R ∈ R2

+, let
D be the space of persistence diagrams with at most M
points contained in the Euclidean disc B2(0, R). The
space D is considered as a subspace of the set M2 of
finite measures on B2(0, R) with total mass smaller



than M : for any D ∈ D, D :=
∑
p∈D δp where δp is

the Dirac measure centered at point p.

2 Methodology

In this section we introduce Atol, a simple unsuper-
vised data-driven method for measure vectorisation.
Atol allows to automatically convert a distribution of
persistence diagrams into a distribution of feature vec-
tors that are well-suited for use as topological features
in standard machine learning pipelines.

To summarise, given a positive integer b, Atol pro-
ceeds in two steps: it first computes a discrete measure
in Rd supported on b points that approximates the av-
erage measure of the distribution from which the input
observations have been sampled. Second, it computes
a set of well-chosen contrast functions centered on each
point of the support of this measure, that are then used
to convert each observation into a vector of size b.

2.1 Measure vectorisation through
quantisation

We now introduce Algorithm 1 Atol-featurisation in
its generality, that is a featurisation method for ele-
ments of Md. The first step in our procedure is to
use quantisation in space Md. Starting from an i.i.d.
sample of measures X1, . . . , Xn drawn from probabil-
ity distribution LX on Md and given an integer bud-
get b ∈ N∗, we leverage recent algorithms and results
from [LRC20] and produce a compact representation
for the mean measure E(X). That is, we produce a
distribution Pĉn,b

supported on a fixed-length code-

book ĉn,b = {c(1), . . . , c(b)} in the ambient space that
aims to minimize over such distribution the distorsion
R(Pc) := W 2

2 (Pc,E(X)), the squared 2-Wasserstein
distance to the mean measure. In practice, one consid-
ers the empirical mean measure X̄n and the k-means
problem for this X̄n measure. Then the respective
adaptations of Lloyd’s [Llo82] and MacQueen’s [Mac67]
algorithms to the format of measures are introduced
in [LRC20] and can readily be employed.

From this quantisation our aim is to derive spatial
information on measures in order to discriminate be-
tween them. Much like one would compactly describe
a point cloud with respect to its barycenter in a PCA,
we describe measures based on a number of reduced
difference to our mean measure approximate. To this
end, our second step is to tailor b individual contrast
functions each based on the estimated codebook that
individually describe local regions. In other words we
set to find regions of the space where measures seem to
aggregate on average, and build a dedicated descriptor
for those regions. We define and use the two following

contrast families R2 → R+, for i ∈ [b]:

Ψi(·, ĉn,b) : x 7→ exp
[
−
|x− ĉ(i)n,b|2
σi(ĉn,b)

]
, (1)

Φi(·, ĉn,b) : x 7→ exp
[
−
|x− ĉ(i)n,b|22
σ2
i (ĉn,b)

]
, (2)

where σi(ĉn,b) := min
j∈[b],j 6=i

|ĉ(i)n,b − ĉ
(j)
n,b|2/2. (3)

These specific contrast functions are chosen to decrease
away from the approximate mean centroid in a Lapla-
cian (Ψ) or Gaussian (Φ) fashion. We choose the scale
to roughly correspond to the minimum distance to the
closest Voronoi cell in the corresponding codebook ĉn,b.
The Ψ-exponential decrease will allow to properly sepa-
rate a measure mixture in Theorem 1 so by default we
make our arguments with that family in mind and will
denote AtolΦ and AtolΨ the Gaussian and Laplacian
versions of the algorithm. To our knowledge there is
nothing that prevents other, well designed contrast fam-
ilies to be substituted in their place, but this is beyond
the scope of this paper. Given a family of contrast
function and a mean measure codebook approximate,
each element of Md can now be compactly described
through the integrated contribution to each contrast
functions: for X ∈Md and contrast function χ, let

X · χ(·, ĉn,b) :=

∫
x∈Rd

χ(x, ĉn,b)X(dx). (4)

Our algorithm simply concatenates into a vector each
of those contributions.

Algorithm 1: Atol-featurisation

Data: Collection of measures X1, . . . , Xn ∈ (Md)
n.

parameters : budget b ∈ N∗,
contrast family χ ∈ {Ψ,Φ}.

Result: vectorisation map vAtol :Md → Rb.
1 Calibration step 1: apply {batch or minibatch}

quantization algorithm of the mean measure with
fixed-length support from [LRC20], output: ĉn,b;

2 Calibration step 2: adjust b measurable ”contrast”
functions (χi(·, ĉn,b))i∈[b] to the mean measure
centroids;

3 Vectorisation step: compute featurisation map:

vAtol :Md → Rb, X 7→
[
X · χi(·, ĉn,b)

]
i∈[b]

.

Calibration step 1 is optimal for deriving space quanti-
sation in the following sense: let the excess distorsion
be the difference between R(Pĉn,b

) the distorsion of
the resulting distribution based on codebook ĉn,b and
the optimal distorsion of a distribution supported on
b points. Then for either version of the quantisation
algorithm (batch or minibatch), the excess distorsion



can be controlled (respectively with high probability or
on average) at a log n/n minimax speed under margin
conditions, see Theorems 4 and 5 from [LRC20].

2.2 Topological learning

We now specialise our featurisation method to the
context of topological learning when we are set in di-
mension d = 2 with D ⊂ M2. Applying Algorithm 1
to a collection from D is straightforward and allows
to embed the complex, unstructured space D in Eu-
clidean terms. Set in the context of a standard learning
problem, we introduce Algorithm 2 Atol: Automatic
Topologically-Oriented Learning. Let Ω := (X, y) with
given observations X in some space X corresponding to
a known, partially available or hidden label y ∈ Y . As-
sume that one has a way to extract toplogical features
from X , i.e. to derive a collection of diagrams associ-
ated to those elements, and let κ : X → D, X 7→ D(X)
be the corresponding map. Then applying Algorithm 1
to the resulting collection of diagrams provides some
simplified topological understanding on elements X of
this problem.

Algorithm 2: Atol: Automatic Topologically-
Oriented Learning

Data: Learning problem Ω := (X, y)
with X ∈ X observations and y ∈ Y labels.

parameters : κ : X → D yielding topological
descriptors, and budget b ∈ N∗.

Result: Enhanced learning problem
Ω̃ := ((X, vAtol ◦ κ(X)), y) with euclidean,
topological features vAtol ◦ κ(X) ∈ Rb.

1 Compute intermediate learning problem
ΩPH := ((X,κ(X)), y) ∈ (X ×D)×Y with persistent
homology features, unfit for general machine learning
routines;

2 Use Algorithm 1 to transform it into a generic
machine learning problem
Ω̃ := ((X, vAtol ◦ κ(X)), y) ∈ (X × Rb)× Y.

Suppose now that persistence diagrams originate
from distinct sources: assume that observed dia-
grams D1, . . . , Dn are sampled with noise from a mix-
ture model D =

∑L
l=1 πlD

(l) of distinct measures
D(1), . . . , D(L) — by that we mean that any two mea-
sures in this set differ by at least one point. Call Z
the latent variable associated to the mixture so that
D|Z = l ∼ D(l). The following results ensures that
vAtol has separative power, i.e. that the vectorisation
clearly separates the different sources:

Theorem 1 (Separation with Atol).
For a given noise level assuming E(D) satisfies some

(explicit) margin condition and for n and b large enough

there exists a non-empty segment for σ1, . . . , σb in Equa-
tion (1) such that for all i, j ∈ [n]2, with high probabil-
ity:

Zi = Zj =⇒ ‖vAtol(Di)− vAtol(Dj)‖∞ 6 1/4, (5)

Zi 6= Zj =⇒ ‖vAtol(Di)− vAtol(Dj)‖∞ > 1/2. (6)

This result follows from Corollary 19 in [LRC20] and
the explicit statement of the assumptions and margin
conditions are classical but rather technical and are
fully described in [LRC20] (see Definition 3 for the
margin conditions).

Notice that establishing that a persistence diagram vec-
torisation method allows for separation, i.e. that dia-
grams from different clusters will be well-discriminated,
has never been achieved to our knowledge. It is not
sufficient to find a space quantisation that allows to
discriminate a collection of diagrams from D, the vec-
torisation based upon this quantisation could still miss
a difference of interest depending on the chosen con-
trast family Ψ. The above theorem shows that Atol
overcomes this issue.

Note that in order to adjust the values for σ1, . . . , σb
in Equation (1), we use a common heuristic instead of
constant values and it is our intuition that the chosen,
adaptive values of Equation (3) help the vectorisation
perform better than what the theory can predict.

We point that as embedding map vAtol is automatically
computed without knowledge of a learning task, its
derivation is fully unsupervised. The representation
is learned since it is data-dependent, but it is also
agnostic to the task and only depends on getting a
glimpse at an average persistence diagram. Using the
minibatch quantisation step of [LRC20] is single-pass
so the vectorisation algorithm has linear computation
time in O(n ×M × b), therefore it is able to handle
high-dimensional problems as long as corresponding
diagrams are provided.

This featurisation is conceptually close to two other
recent works. [HKNU17] computes a persistence dia-
gram vectorisation through a deep learning layer that
adjusts Gaussian contrast functions used to produce
topological signatures much like our Calibration step 2.
So in essence our approach substitutes quantisation to
deep learning, with no need of supervision and allowing
to provide mathematical guarantees. Next, the bag of
word method of [ZLJ+19] uses an ad-hoc form of quan-
tisation for the space of diagrams, then count functions
as contrast functions to produce histograms as topolog-
ical signatures. There are in fact sensible differences,
that will ultimately translate in terms of effectiveness:
Section 3.1 shows the Atol-featurisation to produce
state-of-the-art mean accuracy on two difficult multi-
class classification problems (66.9 % on REDDIT5K and



51.6 % on REDDIT12K) that are also tackled by those
papers where [HKNU17] report a mean accuracy of
respectively 54.5% and 44.5%, and [ZLJ+19] report an
accuracy of respectively 49.9% and 38.6%.

3 Competitive TDA-Learning

In this section we demonstrate experimentally the ad-
vantages of our approach. We show the Atol frame-
work to be competitive and state-of-the-art, but also
versatile and easy to use with high automaticity.

3.1 Graph Classification

Learning problems involving graph data are receiving a
strong interest at the moment, consider graph classifi-
cation: Ω := (X, y) ∈ X ×Y is a finite family of graphs
and available labels and one learns to map X → Y.

Recently [CCI+19] have introduced a powerful way of
extracting topological information from graph struc-
tures. They make use of heat kernel signatures (HKS)
for graphs [HRG14], a spectral family of signatures
(with diffusion parameter t > 0) whose topological
structure can be encoded in the extended persistence
framework, yielding four types of topological features
with exclusively finite persistence. On both those points
we refer to Sections 4.2 and 2 from [CCI+19]. Therefore
for each graph and HKS diffusion time t the resulting
topological descriptor are four persistence diagrams
with all finite coordinates. For the entire set of prob-
lems to come we choose to use the same two HKS
diffusion times to be .1 and 10, fueling the extended
graph persistence framework and resulting in 8 per-
sistence diagrams per considered graph. For budget
in Algorithm 2 we choose b = 80 for all experiments,
which means Algorithm 1 will rely on approximating
the mean measure on ten points per diagram type and
filtration. We make no use of (and automatically dis-
card) graph attributes on edges or vertices that some
dataset do possess, and no other sort of features are col-
lected, so that our results are solely based on the graph
structure of the problems. To sum up, Algorithm 2 here
simply consists in reducing the original problem from
Ω to Ω̃ := (vAtol ◦ Φ(X), y) with vAtol ◦ Φ(X) ∈ R80.
We stress that the embedding map vAtol from Algo-
rithm 1 is computed each time using all diagrams from
the training set, without supervision. To measure the
worth of this embedding in this learning context, we
evaluate the featurisation for classification purposes
using the standard scikit-learn [PVG+11] random-
forest classification tool with 200 trees and all other
parameters set as default. On each problem we perform
a 10-fold cross-validation procedure and average the
resulting accuracies; we report accuracies and standard
deviations over ten such experiments.

We use two sets of graph classification problems for
benchmarking, one of Social Network origin and one
of Chemoinformatics and Bioinformatics origin. They
include small and large sets of graphs (MUTAG has 188
graphs, REDDIT12K has 12000), small and large graphs
(IMDB-M has 13 nodes on average, REDDIT5K has more
than 500), dense and sparse graphs (FRANKENSTEIN
has around 12 edges per nodes, COLLAB has more than
2000), binary and multi-class problems (REDDIT12K has
11 classes), all available in the public page [KKM+16].
Computations are run on a single laptop (i5-7440HQ
2.80 GHz CPU), in batch version for datasets smaller
than a thousand observations and mini-batch version
otherwise. Average computing time of Algorithm 1
(the average time to calibrate the vectorisation map
on the training set then compute the vectorisation
on the entire dataset), are: less than .1 seconds for
datasets with less than a thousand observations, less
than 10 seconds for datasets that have less than 5
thousand observations, 25 seconds for REDDIT-5K, 50
seconds for REDDIT-12K and 110 seconds for the dens-
est problem COLLAB. The results presented here are
openly accessible (requiring open source library Gudhi
[The15] and reproducible with the public repository
github.com/martinroyer/atol.

We compare performances to the top scoring methods
for these problems, to the best of our knowledge. Those
methods are mostly graph kernels methods tailored to
graph problems: two graph kernel methods based on
random walks (RetGK1, RetGK11 from [ZWX+18]),
one graph embedding method based on spectral dis-
tances (FGSD from [VZ17]), two topological graph ker-
nel method (WKPI-kM and WKPI-kC from [ZW19]),
one graph kernel combined with a graph neural network
(GNTK from [DHS+19]) and one topological vectorisa-
tion method learnt by a neural network (PersLay from
[CCI+19]). Competitor accuracy are quoted from their
respective publication and we detail how they should
be interpreted: for RetGK and WKPI and PersLay
the evaluating procedure is done over ten 10-fold, just
as ours is so the results directly compare; for FGSD
the average accuracy over a single 10-fold is reported,
and for GNTK the average accuracy and deviations
is reported over a single 10-fold as well. When there
are two or more methods under one label, we always
report the best outcome.

Our results Table 1 are state-of-the-art or substan-
tially improving the state-of-the-art on the Large Social
Network datasets that are rather difficult multi-class
problems. The results on the Chemoinformatics and
Bioinformatics datasets Table 2 are state-of-the-art.
These results are especially postive seeing how Algo-
rithm 1 is generic and has been designed neither for
graph experiments nor for persistence diagrams specif-

https://www.github.com/martinroyer/atol


method RetGK FGSD WKPI GNTK PersLay AtolΨ AtolΦ

problem (Laplacian) (Gaussian)
REDDIT (5K, 5 classes) 56.1±.5 47.8 59.5±.6 — 55.6±.3 66.9±.3 67±.3
REDDIT (12K, 11 classes) 48.7±.2 — 48.5±.5 — 47.7±.2 51.6±.1 51.6±.2
COLLAB (5K, 3 classes) 81.0±.3 80.0 — 83.6±.1 76.4±.4 87.8±.2 88.1±.1
IMDB-B (1K, 2 classes) 71.9±1. 73.6 75.1±1.1 76.9±3.6 71.2±.7 74.3±.8 74.5±.5
IMDB-M (1.5K, 3 classes) 47.7±.3 52.4 48.4±.5 52.8±4.6 48.8±.6 47.8±.8 48.3±.7

Table 1: Mean accuracy and standard deviations for Large Social Network datasets.

method RetGK FGSD WKPI GNTK PersLay AtolΨ AtolΦ

problem (size) (Laplacian) (Gaussian)
MUTAG (188) 90.3±1.1 92.1 88.3±2.6 90.0±8.5 89.8±.9 86.7 ± .8 87.5 ± .6
COX2 (467) 81.4±.6 — — — 80.9±1. 78.8 ± .5 79.4±1.3
DHFR (756) 81.5±.9 — — — 80.3±.8 81.9 ± .8 83.1 ± .8
PROTEINS (1113) 78.0±.3 73.4 78.5±.4 75.6±4.2 74.8±.3 72.7 ± .4 72.4±.5
NCI1 (4110) 84.5±.2 79.8 87.5±.5 84.2±1.5 73.5±.3 78.8 ± .3 79.9 ±.2
NCI109 (4127) — 78.8 87.4±.3 — 69.5±.3 77.6 ± .2 78.5±.3
FRNKNSTN (4337) 76.4±.3 — — — 70.7±.4 72.8 ± .2 73.1±.3

Table 2: Mean accuracy and standard deviations for Chemoinformatics and Bioinformatics datasets - all binary
classification problems.

ically, and seing how the classification task has been
entrusted to an external and generic learning tool. Con-
trary to competitors, the method does not require to
construct a kernel or a neural network. Overall, the
simplicity and absence of tuning hint at robustness and
good generalisation power.

3.2 Discrete dynamical systems seen as
measures

[AEK+17] use a synthetic, discrete dynamical system
(used to model flows in DNA microarrays) with the
following property: the resulting chaotic trajectories
exhibit distinct topological characteristics depending
on a parameter r > 0. The dynamical system is:

xn+1 := xn + ryn(1− yn) mod 1,

yn+1 := yn + rxn+1(1− xn+1) mod 1.

With random initialisation and five different param-
eters r ∈ {2.5, 3.5, 4, 4.1, 4.3}, a thousand iterations
per trajectory and a thousand orbits per parameter,
a datasets of five thousand orbits is constituted and
commonly used for evaluating topological methods.
Figure 2 shows a few orbits generated with parameters
r ∈ {4.0, 4.1}. For orbits generated with parameter
r = 4.1, it happens that the initialisation spawns close
to an attractor point that gives it the special shape
as in the leftmost orbit. The problem of classifying
this datasets in accordance to their underlying param-

Figure 2: Example of synthetised orbits (x and y co-
ordinates in the flat torus [0, 1]2) with parameter 4.0
(top row) and 4.1 (bottom).

eter is rather uneasy and challenging. Some compet-
itive topological methods have tackled this problem
in the following way: after a learning phase with a
70/30 split, accuracy with the standard deviation over
a hundred such experiments. The following results
have been reported: 72.38±2.4 [RHBK15], 76.63±0.7
[KHF16], 83.6±0.9 [CCO17], 85.9±0.8 [LY18], and the
state-of-the-art 87.7±1.0 with persistence diagrams in
[CCI+19].

Since those discrete orbits can be seen as measures
in [0, 1]2, we apply our learning framework directly
on the observed point cloud i.e. we use Algorithm 1
on the synthetic orbits and for learning we use the
scikit-learn [PVG+11] random-forest classification
tool (with 100 trees and all other parameters set as de-



Figure 3: Example location of b = 80 quantisation cen-
ters and their respective importance in the clustering
task.

fault) on the resulting vector. Note that in this context,
our framework resembles that of image classification
where instead of a fixed grid for measurement we have
learnt centers from which to look at the data. After
learning the center importance can be represented (see
an example with 80 centers Figure 3) and naturally cen-
ters that can gather important geometrical information
gain importance in this process.

Using the same 70/30 split procedure and repeating a
hundred times with the Ψ-Laplacian contrast family
and b = 80 centers (so in the exact same configuration
as the graph experiment), we obtain 88.3±.8 mean
accuracy and deviation. Therefore our results are also
competitive for this high dimensional problem. But
what is more, increasing the budget on this experiment
yields sensible gains: using the Φ-Gaussian contrast
family and a b = 1000 centers for cloud description
allows to reach 95% accuracy or more, so it seems that
this problem can be precisely described by a purely
spatial approach — and our framework can be labeled
as such in this context.

We also use this synthetical dataset to present ad-
ditional experiments displayed Table 3, designed to
understand parameter influence of Algorithm 1. The
considered parameters are: (i) a high or low budget
b ∈ N∗ for describing the measure space, (ii) possible
effect of the contrast functions Ψ or Φ to use for vec-
torisation of the quantised space, (iii) the proportion
of training observations to use for deriving the quanti-
sation, with 10% indicating that all a random selection
of a tenth of the measures from the training set were
used to calibrate Algorithm 1.

Naturally it is expected that augmenting the budget for
vectorising the measure space will yield a better descrip-

tion of said space, and this intuition is confirmed by
Table 1. But we stress that a weakness of Algorithm 1
is that once centers are fixed in the quantisation, space
regions that are too far from these centers will neces-
sarily be left out and the information they can carry
with them. Therefore this intuition can sometimes be
wrong if a lower number of centers happens to lead to a
more pertinent quantisation. Next, the influence of the
chosen contrast functions clearly show the Gaussian
contrast functions to perform better than the other.
Understanding the ability of such contrast functions to
describe some particular observation space is challeng-
ing and left for future work. Lastly, ORBIT5K seems to
be a dataset where the percentage of observations used
in the calibration part of the algorithm does not weigh
much on the final result for a budget b = 80 (it does
have a significant influence when the budget is lower).
This tells us that the calibration can be stable for a
given level of information.

3.3 Topological score for time series, an
industrial application

Finally we present an industrial application for time
series, in a case where the learning problem is hard
and no obvious solutions are to be found. This dataset
consists in the following experiments: using commer-
cially available simulator of a Japanese city road circuit
course, about a hundred subjects are monitored and the
intervals between successive heartbeats are recorded
(RRI data sampled at 4Hz) for a 80 minutes drive
that includes two periods of high-speed driving at the
beginning and at the end of the experiment, and a low-
speed driving period in the middle designed to induce
sleepiness. For each experiment, an expert annotation
(labeled NEDO score) produced from visual observation
of the driver is made available, indicating sleepiness on
a 1 to 5 class scale. We show four such experiments in
Figure 4 (the RR-intervals have then been normalised).

This problem of retrieving the sleepiness level based
on RRI levels is hard and ill-posed: there are strong
individual differences in perceived reaction to a given
situation, a single experiment per subject to learn be-
haviour from, and apparent noise or absence of signal
in annotations, see e.g. subject 3 in Figure 4. Nev-
ertheless we propose to use the Atol framework to
produce features meant reflect the sleepiness level in
subjects based on RRI variations. The intent is that
even though this will poorly reflect the latent sleepiness
level, this could be enough to allow to catch jumps in
the perceived attention level. The framework can read-
ily be applied to time series in any given dimension and
used to produce topological features. For this applica-
tion we will follow a classical path: (i) use a sliding
window decomposition on the RRI time-series, (ii) use



Budget effect Contrast functions Calibration effect
b = 2 b = 8 b = 20 b = 80 b = 200 Φ-Gaussian Ψ-Laplacian 10% 50% 100%

42.7±.7 68.5±2.5 82.1±2.3 88.3±.8 90.9±.7 93.0±.7 88.3±.8 88.3±.8 88.6±.8 88.6±.8
16.5 s 19.8 s 20.1 s 25.8 s 65.8 s 26 s 25.8 s 25.8 s 25 s 26 s

Table 3: Mean accuracy and deviation and vectorisation time over 10 experiments for ORBIT5K. Boldface blue
indicate parameters by default, and only one parameter is varied at a time.

Figure 4: Normalized RRI time-series (blue) and anno-
tated NEDO score (orange) for four subjects with the
simulation time (x-axis, in seconds).

a time-delay embedding to transform said window into
a point cloud, (iii) apply persistent homology analysis
(we use DTM-filtration [ACG+18]) to produce persis-
tence diagrams and (iv) vectorise persistence diagrams
using Algorithm 1.

We concatenate those features with the mean and stan-
dard deviation statistics on the sliding-window. As for
learning, we compute a learner based on other indi-
viduals’ features regressed to their NEDO scores, and
use it to generate a score based on Atol features (see
middle and bottom row in Figure 5). Although this
score imperfectly reflects the underlying NEDO score
for a given patient, is can still have some uses. We set
to detect two jumps on this topologically-augmented
score using a Gaussian Kernel. We also compute a
regressor based on the standard features without ad-
ditional topological features, for comparison purposes,
and also detect two jumps on this standard score.

Figure 5 shows two example results of our analysis.
Each panel (top and bottom) consists in three time-
series: the (hidden) NEDO score (top row), the Atol-
score computed from a regressor based on topological
features (middle row), and a standard score computed
from a regressor based solely on standard features (bot-

tom row). The changes of colour from blue to red and
to blue indicates the changes in the experimental design
for the driving simulation, i.e. the red portion indicates
low-speed driving whereas the blue portions indicate
high-speed driving periods. The black dotted lines in-
dicate jumps detected from the Atol representation,
whereas the red dotted lines indicate jumps detected
from the standard representation. In the top panel,
the two series of jumps are concomitant, and almost
an exact match to the underlying changes in the exper-
imental design. In the bottom panel, an improvement
over the standard score is caught with the Atol score
that better reflects the changes in latent NEDO score
for this subject, two the point that the detected jumps
are an exact match for the changes in experimental
conditions. Overall, the Atol score has less spikes
and more regularity than the standard score, which
is expected as the topological features are extracted
posterior to a time-delay embedding procedure.

4 Conclusion

This paper introduces a vectorisation for measures in
Euclidean spaces based on optimal quantisation proce-
dures, then shows how this method can be employed in
machine learning context and help process topological
features. Atol has a rather simple design, is mul-
tifaceted and ties theoretical guarantees to practical
efficiency.

Moreover Atol only depends on few simple parame-
ters, namely the size b of the codebook and the choice
of contrast functions. The study of the effect and the
design of a method for automatic choice of these pa-
rameters deserves further analysis and is left to future
work.



Figure 5: For two subjects (1 and 4), results of NEDO
score (top row) regression and of a 2-jumps detection
procedure, from Atol procedure (Atol-regression in
middle row, yields jumps in black dashes) and stan-
dard features alone (standard-regression in bottom row,
yields jumps in red dashes). Red zones indicates low-
speed and blue zones indicates high-speed section in
the experiment.
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Ike, Théo Lacombe, Martin Royer, and
Yuhei Umeda. PersLay: A Simple and
Versatile Neural Network Layer for Persis-
tence Diagrams. To appear in AISTATS
2020, page arXiv:1904.09378, Apr 2019.

[CCO17] Mathieu Carrière, Marco Cuturi, and
Steve Oudot. Sliced Wasserstein kernel
for persistence diagrams. In Interna-
tional Conference on Machine Learning,
volume 70, pages 664–673, jul 2017.

[CD18] Frédéric Chazal and Vincent Divol. The
density of expected persistence diagrams
and its kernel based estimation. In SoCG
2018 - Symposium of Computational Ge-
ometry, Budapest, Hungary, June 2018.
Extended version of the SoCG proceed-
ings, submitted to a journal.

[CdSGO16] Frédéric Chazal, Vin de Silva, Marc Glisse,
and Steve Oudot. The structure and stabil-
ity of persistence modules. SpringerBriefs
in Mathematics. Springer, 2016.

[DHS+19] Simon S Du, Kangcheng Hou, Russ R
Salakhutdinov, Barnabas Poczos, Ruosong
Wang, and Keyulu Xu. Graph neural

tangent kernel: Fusing graph neural net-
works with graph kernels. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché
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