Convergence and stochastic homogenization of a class of two components nonlinear reaction-diffusion systems - Archive ouverte HAL
Article Dans Une Revue Asymptotic Analysis Année : 2021

Convergence and stochastic homogenization of a class of two components nonlinear reaction-diffusion systems

Résumé

We establish a convergence theorem for a class of two components nonlinear reaction-diffusion systems. Each diffusion term is the subdifferential of a convex functional of the calculus of variations whose class is equipped with the Mosco-convergence. The reaction terms are structured in such a way that the systems admit bounded solutions, which are positive in the modeling of ecosystems. As a consequence, under a stochastic homogenization framework, we prove two homogenization theorems for this class. We illustrate the results with the stochastic homogenization of a prey-predator model with saturation effect.
Fichier principal
Vignette du fichier
Cvg-Syst-rde.pdf (594 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02296179 , version 1 (24-09-2019)

Identifiants

Citer

Omar Anza Hafsa, Jean-Philippe Mandallena, Gérard Michaille. Convergence and stochastic homogenization of a class of two components nonlinear reaction-diffusion systems. Asymptotic Analysis, 2021, 121, pp.259-305. ⟨10.3233/ASY-201603⟩. ⟨hal-02296179⟩

Collections

UNIMES
116 Consultations
117 Téléchargements

Altmetric

Partager

More