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CONVERGENCE AND STOCHASTIC HOMOGENIZATION OF A CLASS OF TWO

COMPONENTS NONLINEAR REACTION-DIFFUSION SYSTEMS

OMAR ANZA HAFSA, JEAN PHILIPPE MANDALLENA AND GÉRARD MICHAILLE

Abstract. We establish a convergence theorem for a class of two components nonlinear reaction-

diffusion systems. Each diffusion term is the subdifferential of a convex functional of the calculus of

variations whose class is equipped with the Mosco-convergence. The reaction terms are structured in
such a way that the systems admit bounded solutions, which are positive in the modeling of ecosystems.

As a consequence, under a stochastic homogenization framework, we prove two homogenization theorems

for this class. We illustrate the results with the stochastic homogenization of a prey-predator model
with saturation effect.
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2 CONVERGENCE OF TWO COMPONENTS NONLINEAR REACTION-DIFFUSION SYSTEMS

1. Introduction

Let T > 0 and Ω be a bounded domain in RN . The paper is concerned with the convergence of
sequences of reaction-diffusion systems in L2

(
0, T, L2 (Ω)

)
of the type

(Sn)



dun
dt

(t) + ∂Φ1,n (un (t)) 3 F1,n (t, un (t) , vn (t)) for a.e. t ∈ (0, T )

dvn
dt

(t) + ∂Φ2,n (vn (t)) 3 F2,n (t, un (t) , vn (t)) for a.e. t ∈ (0, T )

ρ
1,n
≤ un (0) ≤ ρ1,n, ρ2,n

≤ vn (0) ≤ ρ2,n, un (0) ∈ dom (∂Φ1,n), vn (0) ∈ dom (∂Φ2,n),

where, for i = 1, 2, ρ
i,n

and ρi,n are suitable constants depending on the reaction functional Fi,n.

Each diffusion term is the subdifferential of a convex integral functional of the calculus of variations
Φi,n : L2 (Ω)→ R∪{+∞}, whose domain dom (∂Φi,n) contains the boundary conditions. In their domain,
the diffusion terms are of divergence form −divDξW1,n (x,∇u) and −divDξW2,n (x,∇v). The explicit
dependence on the spatial variable reflects the fact that the diffusion may take place in heterogeneous
media. More specifically, when we write n for εn intended to tend toward 0, the system models among
other examples, ecosystems of two species in a spatial domain made up of small habitats with size εn.
The well-posedness nature of reaction-diffusion systems in the sense of existence of a strong solution has
been extensively studied. In this paper, the novelty is the special form of the reactions functionals: they
are structured in such a way that for fixed v ∈ L2 (Ω), (t, u) 7→ Fn,1 (t, u, v), and for fixed u ∈ L2 (Ω),
(t, v) 7→ Fn,2 (t, u, v) are SVR-structured reaction functionals as defined in [1]. As a consequence, (Sn)
admits a pair of bounded solutions according to the constants ρ

i,n
and ρi,n that govern the initial

conditions. Problems (Sn) model various situations involving competition or symbiosis models, prey
predator models in ecology, as well as heat mass transfert in chemical reactors and combustion theory, or
gaz-liquid interactions problems, etc. They are illustrated through Examples 2.1, 2.2, 2.3, 2.4. It should
be noted that our study includes systems (Sn) coupling a reaction-diffusion equation (r.d.e.) and a non
diffusive reaction equation (n.d.r.e.), like the FitzHugh-Nagumo system in neurophysiology described in
Example 2.5.

In Section 2, for any T > 0, we prove existence and uniqueness of bounded strong solutions in
C
(
[0, T ], L2 (Ω)

)
× C

(
[0, T ], L2 (Ω)

)
for problems of the type (Sn), when initial functions are bounded

according to the reaction functionals. The proof is based on [1, Theorem 3.1] combined with a suitable
fixed point procedure.

In Section 3, under the Mosco-convergence of functionals Φi,n, and a suitable convergence of Fi,n to
Fi, i = 1, 2, we establish the first main result of the paper, Theorem 3.1, which states the convergence
of (Sn) toward a reaction-diffusion system (S) of the same type. This can be seen as a compactness or
a stability result for the class of systems considered.

The convergence of systems (Sn) coupling a reaction-diffusion equation with a non diffusive reaction
equation or two non diffusive reaction equations is addressed in Section 4 and is discussed in Theorem
4.1 and Theorem 4.2. It requires additional regularity conditions on the reaction functional associated
with the n.d.r.e..

As far as we know, the homogenization of reaction-diffusion systems was first addressed in [10, 14] by
means of the two scale convergence; see also [13] where the homogenization with evolving microstructure
is performed using the method of transformation to a periodic reference domain. In Section 5 we hope
to contribute to this research in the framework of stochastic homogenization described in [1]. The main
results, which are direct consequences of Theorems 3.1, 4.1, are stated in Theorems 5.1, 5.2. They
are illustrated through the homogenization of a prey-predator model with a saturation effect which
is the randomization of Example 2.3. The model involves two species spreading in an heterogeneous
environment whose small spatial heterogeneities are randomly distributed following a Poisson point
process. The homogenized problem illustrates the interplay between the growth rate of the prey and the
maximum carrying capacity of the environment when the size of the spatial heterogeneities is very small.
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2. Two components reaction diffusion system associated with convex functionals of
the calculus of variations and TCCP-structured reaction functionals

We denote by LN the Lebesgue measure in RN , by Ω a domain of RN of class C1, and by Γ a subset
of its boundary ∂Ω with positive HN−1-Hausdorf measure. To shorten the notation, we sometimes write
X to denote the Hilbert space L2 (Ω) equipped with its standard scalar product and its associated norm,
denoted by 〈 , 〉 and ‖ . ‖X respectively. All along the paper we use the same notation | · | to denote the
norms of the euclidean spaces Rd, d ≥ 1, and by ξ · ξ′ the standard scalar product of two elements ξ, ξ′

in Rd. We also denote by ξ � ξ′ the Hadamard (or Schur) product of two elements ξ and ξ′ in Rd. For
any topological space T, we denote by B (T) its Borel field.

The paper is concerned with sequences of systems of reaction-diffusion Cauchy problems of the form

(S)



du

dt
(t) + ∂Φ1 (u (t)) = F1 (t, u (t) , v (t)) for a.e. t ∈ (0, T )

dv

dt
(t) + ∂Φ2 (v (t)) = F2 (t, u (t) , v (t)) for a.e. t ∈ (0, T )

u (0) ∈ dom (∂Φ1), v (0) ∈ dom ∂Φ2,

where, for i = 1, 2, ∂Φi denote the subdifferential of standard convex functionals Φi of the calculus of
variations. More precisely Φi : L2 (Ω)→ R ∪ {+∞} is defined by

Φi (u) =


ˆ

Ω

Wi (x,∇u (x)) dx+
1

2

ˆ
∂Ω

aiu
2 dHN−1 −

ˆ
∂Ω

φiu dHN−1 if u ∈ H1 (Ω) ,

+∞ otherwise

(2.1)

where ai ∈ L∞HN−1
(∂Ω) with

 ai ≥ 0 HN−1-a.e. in ∂Ω

∃σi > 0 ai ≥ σ HN−1-a.e. in Γi ⊂ ∂Ω with HN−1 (Γi) > 0,
and

φi ∈ L2
HN−1

(∂Ω).

The density Wi : RN × RN → R is a Borel measurable function which satisfies the following conditions:

(D1) there exist α > 0 and β > 0 such that for a.e. x ∈ RN and every ξ ∈ RN

α|ξ|2 ≤Wi (x, ξ) ≤ β
(
1 + |ξ|2

)
,

(D2) for a.e. x ∈ RN , ξ 7→ Wi (x, ξ) is a Gâteaux differentiable 1 convex function (we denote by
DξWi (x, ·) its Gâteaux derivative), with DξWi (x, 0) = 0 for a.e. x ∈ RN .

By using the subdifferential inequality together with the growth conditions fulfilled by the convex
function ξ 7→ Wi (x, ξ), it is easy to show that there exist nonnegative constants L (β) and C (β) such
that, for all (ξ, ξ′) ∈ RN × RN ,

|Wi (x, ξ)−Wi (x, ξ′) | ≤ L (β) |ξ − ξ′| (1 + |ξ|+ |ξ′|) ,
|DξW (x, ξ) | ≤ C (β) (1 + |ξ|) .

From the second estimate, we infer that if u ∈ H1 (Ω), then the function DξWi (·,∇u) belongs to L2 (Ω)
N

.

We recall (see [1, Lemma 1]) that the subdifferential of the functional Φi (actually its Gâteau deriva-
tive), whose domain captures the boundary condition, is given by:

dom (∂Φi) = {v ∈ H1 (Ω) : div DξWi (·,∇v) ∈ L2 (Ω) , aiv +DξWi (·,∇v) · n = φi on ∂Ω}

∂Φi (v) = −div DξW (·,∇v) for v ∈ dom (∂Φi)

where n denotes the outer unit normal to ∂Ω and aiv+DξWi (·,∇v) ·n must be taken in the trace sense.
In what follows, since ∂Φi are single valued, we denote them by DΦi.

The pair (F1, F2) of reaction functionals belongs to a suitable class for which a comparison principle
holds with respect to the initial and boundary data for lower and upper solutions. This class is defined
in the next section.

1Under this hypothesis the subdifferential of Φi is single valued. We make this hypothesis to simplify the notation.
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2.1. The class of TCCP-structured reaction functionals. Reaction-diffusion systems which model
a wide class of applications in the domain of ecosystems, and which gives rise to bounded or positive
solutions, amenable to analytical calculation in homogenization (periodic or stochastic) involve a special
class of pairs of reaction functionals that we define below.

Definition 2.1. A pair (F1, F2) of functionals Fi : [0,+∞) × L2 (Ω) × L2 (Ω) → RΩ, i = 1, 2, is
called a TCCP-structured reaction functional, if there exists a pair of Borel measurable functions (f1, f2),
fi : [0,+∞)× RN × R× R→ R, i = 1, 2, such that for all t ∈ [0,+∞) and all (u, v) ∈ L2 (Ω)× L2 (Ω),{

F1 (t, u, v) (x) = f1 (t, x, u (x) , v (x)) ,
F2 (t, u, v) (x) = f2 (t, x, u (x) , v (x)) ,

which fulfill the following structure conditions:{
f1 (t, x, ζ, ζ ′) = r1 (t, x)� h1 (ζ ′) · g1 (ζ) + q1 (t, x)
f2 (t, x, ζ, ζ ′) = r2 (t, x)� h2 (ζ) · g2 (ζ ′) + q2 (t, x) ,

2 where

• hi, gi : R→ Rl, i = 1, 2, are locally Lipschitz continuous functions;

• for all T > 0, ri ∈ L∞
(
[0, T ]× RN ,Rl

)
;

• for all T > 0, qi ∈ L2
(
0, T, L2

loc

(
RN
))

.

Furthermore (f1, f2) must satisfy the Two Components Comparison Principle condition (TCCP ): for

i = 1, 2, there exists a pair
(
f
i
, f i

)
of functions f

i
, f i : [0,+∞) × R → R with f

i
≤ 0 ≤ f i, and a pair(

ρ
i
, ρi

)
in R2 with ρ

i
≤ ρi, such that each of the two ordinary differential equations

ODEi

{
y′
i
(t) = f

i

(
t, y

i
(t)
)

for a.e.t ∈ (0,+∞)

y
i
(o) = ρ

i

ODEi

{
y′i (t) = f i (t, yi (t)) for a.e.t ∈ (0,∞)
yi (o) = ρi

possesses at least one solution, such that for all T > 0, for a.e. (t, x) ∈ (0, T )× RN , we have:{
f1

(
t, x, y

1
(t) , ζ ′

)
≥ f

1

(
t, y

1
(t)
)

f1 (t, x, y1 (t) , ζ ′) ≤ f1 (t, y1 (t)) ,

for all ζ ′ ∈ [y
2

(T ) , y2 (T )],

and {
f2

(
t, x, ζ, y

2
(t)
)
≥ f

2

(
t, y

2
(t)
)

f2 (t, x, ζ, y2 (t)) ≤ f2 (t, y2 (t))

for all ζ ∈ [y
1

(T ) , y1 (T )].

The pair (F1, F2) is called a TCCP-structured reaction functional associated with (ri, gi, hi, qi)i=1,2,

and (f1, f2) a TCCP-structured reaction function associated with (ri, gi, hi, qi)i=1,2.

If furthermore, for all T > 0, and i = 1, 2, ri ∈W 1,1
(
0, T, L2

(
RN ,Rl

))
and qi ∈W 1,1

(
0, T, L2

loc

(
RN
))

,
the pair (F1, F2) is referred to as a regular TCCP-structured reaction functional and (f1, f2) as a regular
TCCP-structured reaction function.

Remark 2.1. 1) Since y
i

is nonincreasing, and yi is nondecreasing, for any T > 0, and for i = 1, 2 we
have

y
i
(T ) ≤ y

i
(0) = ρ

i
< ρi = yi (0) ≤ yi (T ) .

2) It is worth noting that for each fixed ζ ′ in [y
2

(T ) y2 (T )], the function ζ 7→ f1 (t, x, ζ, ζ ′) is a SVR-

structured reaction function associated with (r1 � h1 (ζ ′) , g1, q1) in the sense of [1, Definition 3.1].
Similarly for each fixed ζ in [y

1
(T ) y1 (T )], the function ζ ′ 7→ f2 (t, x, ζ, ζ ′) is a SVR-structured reaction

function associated with (r2 � h2 (ζ) , g2, q2).

2Using the coordinates of ri, gi and hi we have f1 (t, x, ζ, ζ′) =
∑l

k=1 r1,k (t, x)h1,k (ζ′) g1,k (ζ) + q1 (t, x) and

f2 (t, x, ζ, ζ′) =
∑l

k=1 r2,k (t, x)h2,k (ζ) g2,k (ζ′) + q2 (t, x)
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2.2. Examples. In examples below, for any a : [0,+∞)× RN → R we use the notation

a := sup
(t,x)∈[0,+∞)×RN

a (t, x) , a := inf
(t,x)∈[0,+∞)×RN

a (t, x) .

The proofs of Propositions below are postponed to Appendix A.

Examples 2.1. Example derived from competition models in ecology.

f1 (t, x, ζ, ζ ′) = α1 (t, x) ζ

(
1− ζ

K1 (t, x)
− a1,2

ζ ′

K1 (t, x)

)
f2 (t, x, ζ, ζ ′) = α2 (t, x) ζ ′

(
1− ζ ′

K2 (t, x)
− a2,1

ζ

K2 (t, x)

)
,

where αi > 0 satisfies αi < +∞, Ki (t, x) > 0, a1,2 > 0 and a2,1 > 0.

Proposition 2.1. The pair (f1, f2) is a TCCP-structured reaction function with for i = 1, 2,{
ρ
i

= 0, y
i

= 0;

ρi is any positif real number, yi (t) = ρi exp (αit) .

The pair (f1, f2) is associated with the diffusive competition model between two species

(S)



du

dt
(t) +DΦ1 (u (t)) = α1 (t, ·)u (t)

(
1− u (t)

K1 (t, ·)
− a1,2

v (t)

K1 (t, ·)

)
for a.e. t ∈ (0, T )

dv

dt
(t) +DΦ2 (v (t)) = α2 (t, ·) v (t)

(
1− v (t)

K2 (t, ·)
− a2,1

u (t)

K2 (t, ·)

)
for a.e. t ∈ (0, T )

u (0) = u0 ∈ dom (DΦ1), v (0) = v0 ∈ domDΦ2,

where u and v denote the densities of two competing species having a logistic growth in the absence of
the other. The αi are the birth rates and the Ki the carrying capacities. The dimensionless coefficients
a1,2 and a2,1 measure the competing effect of v to u and u to v respectively. In Theorem 2.1 we prove

that for all T > 0, (S) admits a unique solution (u, v) ∈ C
(
[0, T ], L2 (Ω)

)2
. Under the initial conditions

0 ≤ u0 ≤ ρ1, 0 ≤ v0 ≤ ρ2, this solution fulfills for all t ∈ [0, T ] the bounds 0 ≤ u (t) ≤ ρ1 exp (α1t),

0 ≤ v (t) ≤ ρ2 exp (α2t). Furthermore, if we assume that the functions αi,
αi
Ki

, and ai,i+1
αi(t,x)
Ki(t,x) belong

to W 1,1
(
0, T, L2

loc

(
RN
))
∩L∞

(
[0, T ]× RN

)
, then u and v fulfill the boundary conditions for all t ∈]0, T ]

and admit a right derivative at each t ∈]0, T [.

Examples 2.2. Example derived from symbiosis models in ecology.

f1 (t, x, ζ, ζ ′) = α1 (t, x) ζ

(
1− ζ

K1 (t, x)
+ b1,2

ζ ′

K1 (t, x)

)
f2 (t, x, ζ, ζ ′) = α2 (t, x) ζ ′

(
1− ζ ′

K2 (t, x)
+ b2,1

ζ

K2 (t, x)

)
,

where αi > 0, +∞ > Ki ≥ Ki (t, x) ≥ Ki > 0. We assume that

0 ≤ b1,2 <
K1

K1

and 0 ≤ b2,1 <
K2

K2

. (2.2)

Proposition 2.2. The pair (f1, f2) is a TCCP-structured reaction function with for i = 1, 2,

ρ
i

= 0, y
i

= 0;

ρ1 = ρ2 ≥ max

(
K1K1

K1 − b1,2K1

,
K2K2

K2 − b2,1K2

)
;

yi = ρi.
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The pair (f1, f2) is associated with the diffusive symbiosis model between two species

(S)



du

dt
(t) +DΦ1 (u (t)) = α1 (t)u (t)

(
1− u (t)

K1 (t)
+ b1,2

v (t)

K1 (t)

)
for a.e. t ∈ (0, T )

dv

dt
(t) +DΦ2 (v (t)) = α2 (t) v (t)

(
1− v (t)

K2 (t)
+ b2,1

u (t)

K2 (t)

)
for a.e. t ∈ (0, T )

u (0) = u0 ∈ dom (DΦ1), v0 = v0 ∈ domDΦ2,

where u and v denote the densities of two species having a logistic growth in the absence of the other.
Like in Example 2.1, the αi denote the birth rates and the Ki the carrying capacities. The dimensionless
coefficients b1,2 and b2,1 measure the symbiosis effect of v to u and u to v respectively. By contrast with
the competition model of two species described in Example 2.1, the signs preceding the b’s are positive
and reflect the fact that the interaction between the two species is to the advantage of all. Conditions
(2.2) reflect the fact that symbiosis between both species must not be too large so that both populations
grow while being bounded. Indeed, from Proposition 2.2, one can choose 0 ≤ ρ1 = ρ2 < +∞. It should
be noted that the stability analysis of the system, for the model without diffusion and with constant
carrying capacities, provides the less restrictive condition b1,2b2,1 < 1 (see [11, Section 3.6]). In Theorem
2.1 we prove that under the initial conditions 0 ≤ u0 ≤ ρ1, 0 ≤ v0 ≤ ρ2, for all T > 0, (S) admits

a unique solution (u, v) ∈ C
(
[0, T ], L2 (Ω)

)2
which fulfills for all t ∈ [0, T ] the bounds 0 ≤ u (t) ≤ ρ1,

and 0 ≤ v (t) ≤ ρ2. Furthermore, if we assume that the functions αi,
αi
Ki

, and bi,i+1
αi(t,x)
Ki(t,x) belong to

W 1,1
(
0, T, L2

loc

(
RN
))
∩ L∞

(
[0, T ]× RN

)
, then u and v fulfill the boundary conditions for all t ∈]0, T ]

and admit a right derivative at each t ∈]0, T [.

Examples 2.3. Example derived from predator-prey models.

f1 (t, x, ζ, ζ ′) = α1 (t, x) ζ

(
1− ζ

Kcar (t, x)

)
− a (x, t) ζ ′ (1− exp (−bζ))

f2 (t, x, ζ, ζ ′) = α2 (t, x) ζ ′
(

1− cζ
′

ζ

)
,

where α1 (t, x) ≥ α1 > 0, +∞ > α2 ≥ α2 (t, x) ≥ α2 > 0, Kcar (t, x) ≥ K > 0, +∞ > a ≥ a (t, x) > 0,

and b, c are positive constants. Furthermore setting µext := c
α1α2

aα2
, we assume that µext ≥ 4.

Proposition 2.3. The pair (f1, f2) is a TCCP-structured reaction function with

ρ
1
∈

K 1−
√

1− 4
µext

2
,K

1 +
√

1− 4
µext

2

 , y
1

= ρ
1
;

ρ1 = θρ
1
, θ ∈

[
K

ρ
1

, µext

(
1−

ρ
1

K

)]
, y1 (t) = ρ1 exp (α1t) ;

ρ
2

= 0, y
2

= 0;

ρ2 ∈
[
α2

cα2

ρ1,
α1

a
ρ

1

(
1−

ρ
1

K

)]
, y2 = ρ2.

(2.3)

As a consequence of Theorem 2.1, we obtain that under the initial conditions ρ
1
≤ u0 ≤ ρ1 and

0 ≤ v0 ≤ ρ2, where ρ
1
, ρ1 and ρ2 fulfill condition (2.3), the diffusive predator-prey system

(S)



du

dt
(t) +DΦ1 (u (t)) = α1 (t, ·)u (t)

(
1− u (t)

Kcar (t, ·)

)
− a (t, ·) v (t) (1− exp (−bu (t))) for a.e. t ∈ (0, T )

dv

dt
(t) +DΦ2 (v (t)) 3 α2 (t, ·) v (t)

(
1− c v (t)

u (t)

)
for a.e. t ∈ (0, T )

u (0) = u0 ∈ dom (DΦ1), v (0) = v0 ∈ domDΦ2,

admits for all T > 0 a unique solution (u, v) ∈ C
(
[0, T ], L2 (Ω)

)2
which satisfies for all t ∈ [0, T ],

ρ
1
≤ u (t) ≤ ρ1 exp (α1) and 0 ≤ v (t) ≤ ρ2. Furthermore, if we assume that the functions αi, i =
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1, 2, α1

Kcar
and a belong to W 1,1

(
0, T, L2

loc

(
RN
))
∩ L∞

(
[0, T ]× RN

)
, then u and v fulfill the boundary

conditions for all t ∈]0, T ] and admit a right derivative at each t ∈]0, T [. The system models the
evolution of two species with density u and v of a prey and a predator, with birth growth rate α1

and α2 respectively. The prey population satisfies a logistic growth with some time-space depending
maximum carrying capacity Kcar (the carrying capacity of the prey when the density of the predator is
equal to zero), perturbed by a “predator term” −a (t, ·) v (t) (1− exp (−bu (t))) with a growth coefficient
a. This term involves a saturation effect, i.e. −a (t, ·) v (t) (1− exp (−bu (t))) saturates to −av (t) for
u (t) large, which reflects the limited capability of the predator when the prey is abundant. There exits
many other choice of predator terms with saturation effects, and we refer the reader to [11, Section
3.3] for various examples in the context of o.d.e’s. The predator population satisfies a logistic growth
with a carrying capacity proportional to the prey density. The condition µext ≥ 4 on the dimensionless
coefficient µext, prevents the extinction of the prey species since its guarantees existence of ρ

1
> 0, so

that u (t) ≥ ρ
1
≥ K

1−
√

1− 4
µext

2 . The coefficient µext is referred to as the extinction threshold.

Examples 2.4. Example derived from thermo-chimical models.

f1 (t, x, ζ, ζ ′) = −α1 (t, x) ζpf0 (ζ ′)
f2 (t, x, ζ, ζ ′) = α2 (t, x) ζpf0 (ζ ′)

where

f0 (ζ ′) =

exp

(
γ − γ

ζ ′

)
if ζ ′ > 0

0 otherwise,
and αi > 0, α2 < +∞, p ≥ 1, and γ is a positive constant.

Proposition 2.4. The pair (f1, f2) is a TCCP-structured reaction unction with{
ρ
i

= 0, y
i

= 0;

ρi is any positif real number, y1 = ρ1, y2 (t) = α2ρ
p
1t exp (γ) + ρ2.

The pair (f1, f2) is associated with the diffusive system

(S)



du

dt
(t) +DΦ1 (u (t)) = −α1 (t, ·)u (t)

p
f0 (v (t)) for a.e. t ∈ (0, T )

dv

dt
(t) +DΦ2 (v (t)) 3 α2 (t, ·)u (t)

p
f0 (v (t)) for a.e. t ∈ (0, T )

u (0) = u0 ∈ dom (DΦ1), v (0) = v0 ∈ domDΦ2,

where u and v denote a chemical concentration and the temperature respectively, in a non isothermal
chemical reaction process; α1 and α2

α1
are called Thiele number and Prater number respectively (see

[12] and references therein). In Theorem 2.1 we prove that (S) admits a unique solution (u, v) ∈
C
(
[0, T ], L2 (Ω)

)2
under the initial condition 0 ≤ u0 ≤ ρ1, 0 ≤ v0 ≤ ρ2, which satisfies the bounds

0 ≤ u (t) ≤ ρ1, and 0 ≤ v (t) ≤ α2ρ
p
1t exp (γ) + ρ2 for all t ∈ [0, T ]. Furthermore, if we assume that

the functions αi belong to W 1,1
(
0, T, L2

loc

(
RN
))
∩ L∞

(
[0, T ]× RN

)
, then u and v fulfill the boundary

conditions for all t ∈]0, T ] and admit a right derivative at each t ∈]0, T [.

Examples 2.5. Example derived from FitzHugh-Nagumo models.

f1 (t, x, ζ, ζ ′) = α1 (t, x) ζ (ζ − a (t, x)) (1− ζ)− b (t, x) ζ ′

f2 (t, x, ζ, ζ ′) = α2 (t, x) ζ − c (t, x) ζ ′

where α1 (t, x) ≥ α1 > 0, +∞ > α2 ≥ α2 (t, x) > 0; +∞ > b ≥ b (t, x) ≥ b > 0; c (t, x) ≥ c > 0; and
0 < a ≤ a (t, x) < 1.
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Proposition 2.5. Set γ = b α2

cα1
. Then the pair (f1, f2) is a TCCP-structured reaction function with

ρ1 ≥ max

(
γ + 1,

√
γ
γ−a
γ

)
;

ρ
1

= −γρ1;

ρ2 = α2

c ρ1;

ρ
2

= α2

c ρ1
;

f
i

= f i = 0, i = 1, 2.

(2.4)

The pair (f1, f2) is associated with the system

(S)



du

dt
(t) +DΦ (u (t)) = α1 (t, ·)u (t) (u (t)− a (t, ·)) (1− u (t))− b (t, ·) v (t) for a.e. t ∈ (0, T )

dv

dt
(t) = α2 (t, ·)u (t)− c (t, ·) v (t) for a.e. t ∈ (0, T )

u (0) = u0 ∈ dom (DΦ), v (0) = v0,

coupling a reaction diffusion equation with a non diffusive reaction equation. This coupling generalizes
the FitzHugh-Nagumo model which describes the evolution of the electrical potential u across the axonal
membrane. The variable v is a recovery variable obtained in the simplification of the Hodgkin-Huxley
Theory of Nerve Membranes (see [11]). For a complete analysis of boundary value problems relating to
FitzHugh-Nagumo equations in one space dimension, we refer the reader to [7, 9, 15]. When the initial
functions satisfy the bounds ρ

1
≤ u0 ≤ ρ1 and ρ

2
≤ u0 ≤ ρ2 where ρ

i
and ρi are given by (2.4), existence

and uniqueness of solutions fulfilling the same bounds are obtained according to Theorem 2.1 and Remark
2.3. If we assume that the functions αi, a, b, and c belong to W 1,1

(
0, T, L2

loc

(
RN
))
∩ L∞

(
[0, T ]× RN

)
then u fulfills the boundary condition for all t ∈]0, T ] and u and v possess a right derivative at each
t ∈]0, T [. For bounds similar to those given by (2.4), in the case when the coefficients of the reaction
functional are constants, we refer the reader to [12, Chapter 12, Section 12.7].

2.3. Existence and uniqueness of a bounded solution. Combining [1, Theorem 3.1] with a suitable
fixed point procedure, we establish the existence of a bounded unique solution to the Cauchy problem
associated with TCCP-structured reaction functionals.

Theorem 2.1. Let Φi, i = 1, 2, be standard functionals of the calculus of variations (2.1) and (F1, F2)
a TCCP-structured reaction functional with ρ

i
, ρi, yi and yi given by condition (TCCP ). Assume that

aiρi ≤ φi ≤ aiρi for i = 1, 2, then the two component reaction-diffusion system

(S)



du

dt
(t) +DΦ1 (u (t)) = F1 (t, u (t) , v (t)) for a.e. t ∈ (0, T )

dv

dt
(t) +DΦ2 (v (t)) = F2 (t, u (t) , v (t)) for a.e. t ∈ (0, T )

ρ
1
≤ u0 = u (0) ≤ ρ1, ρ

2
≤ v0 = v (0) ≤ ρ2, u0 ∈ dom (DΦ1), v0 ∈ domDΦ2,

admits a unique solution (u, v) ∈ C
(
[0, T ], L2 (Ω)

)
× C

(
[0, T ], L2 (Ω)

)
satisfying:

(S1) u (t) ∈ dom (DΦ1) and v (t) ∈ dom (DΦ2) for a.e. t ∈ (0, T ),
(S2) u and v are almost everywhere derivable in (0, T ),

(S3) u (t) ∈
[
y

1
(t) , y1 (t)

]
and v (t) ∈

[
y

2
(t) , y2 (t)

]
for all t ∈ [0, T ].

If moreover (F1, F2) is a regular TCCP-structured reaction functional, then u and v satisfy



CONVERGENCE OF TWO COMPONENTS NONLINEAR REACTION-DIFFUSION SYSTEMS 9

(S4) u (t) ∈ dom (DΦ1) and v (t) ∈ dom (DΦ2) for all t ∈]0, T ], u and v possess a right derivative
d+u
dt (t) and d+v

dt (t) at every t ∈]0, T [, and
d+u

dt
(t) +DΦ1 (u (t)) = F1 (t, u (t) , v (t)) ,

d+v

dt
(t) +DΦ1 (v (t)) = F2 (t, u (t) , v (t)) .

Proof. Step 1 (local existence). We prove that there exists a unique solution of (S) for T small
enough. For T > 0 set

XT :=
{

(u, v) ∈ C ([0, T ], X)× C ([0, T ], X) : u and v fulfill condition (S3)
}

which is clearly a closed subset of the space C ([0, T ], X)×C ([0, T ], X) equipped with the norm product
defined by ‖ (u, v) ‖C×C := ‖u‖C([0,T ],X) + ‖v‖C([0,T ],X). Therefore XT is a complete metric space when
equipped with the metric associated with the norm ‖ · ‖C×C .

For each (u, v) ∈ XT , we consider the two reaction-diffusion problems with unknown Λ1v and Λ2u
respectively defined by

(P1)


dΛ1v

dt
(t) +DΦ1 (Λ1v (t)) = F1 (t,Λ1v (t) , v (t)) for a.e. t ∈ (0, T )

ρ
1
≤ Λ1v (0) = u0 ≤ ρ1,

(P2)


dΛ2u

dt
(t) +DΦ2 (Λ2u (t)) = F2 (t, u (t) ,Λ2u (t)) for a.e. t ∈ (0, T )

ρ
2
≤ Λ2u (0) = v0 ≤ ρ2.

We first claim that (P1) and (P2) possess a unique solution Λ1v and Λ2u satisfying (S1), (S2) and (S3)
where Λ1v and Λ2u are substituted for u and v respectively. Indeed, for fixed (u, v) ∈ XT , set

rv (t, x) := r1 (t, x)� h1 (v (t, x)) , fv (t, x, ζ) := rv (t, x) · g1 (ζ) + q1 (t, x) ,
ru (t, x) := r2 (t, x)� h2 (u (t, x)) , fu (t, x, ζ ′) := ru (t, x) · g2 (ζ ′) + q2 (t, x) ,

and, for (U, V ) ∈ L2 (Ω)×L2 (Ω), Fv (t, U) (x) = fv (t, x, U (x)), Fu (t, V ) (x) = fu (t, x, V (x)). Therefore,
(P1) and (P2) may be written as

(P1)


dΛ1v

dt
(t) +DΦ1 (Λ1v (t)) = Fv (t,Λ1v (t)) for a.e. t ∈ (0, T )

ρ
1
≤ Λ1v (0) = u0 ≤ ρ1,

(P2)


dΛ2u

dt
(t) +DΦ2 (Λ2u (t)) = Fu (t,Λ2u (t)) for a.e. t ∈ (0, T )

ρ
2
≤ Λ2u (0) = v0 ≤ ρ2.

The claim follows from [1, Theorem 3.1], provided that we establish that Fv and Fu are SVR-structured
reaction functionals. For this, note that each function fv and fu satisfies the structure condition of SVR-
structured reaction functions, and that condition (CP ) is fulfilled because (f1, f2) satisfies (TCCP ), and
v and u satisfy (S3).

To show (S4), it remains to prove that t 7→ rv (t, ·) and t 7→ ru (t, ·) from [0, T ] into L2 (Ω) are
absolutely continuous. For t 7→ rv (t, ·) the claim follows from the absolute continuity of r1 and v, and
the following estimate

‖rv (t, ·)− rv (s, ·) ‖L2(Ω,Rl) ≤ ‖r1 (t, ·)� h1 (v (t))− r1 (s, ·)� h1 (v (t)) ‖L2(Ω,Rl)

+‖r1 (s, ·)� h1 (v (t))− r1 (s, ·)� h1 (v (s)) ‖L2(Ω,Rl)

≤ ‖h1‖L∞([y
2
(T ),y2(T )],Rl)‖r1 (t, ·)− r1 (s, ·) ‖L2(Ω,Rl)

+‖r1‖L∞([0,T ]×RN ,Rl)Lh1‖v (t)− v (s) ‖L2(Ω)

where Lh1
denotes the Lipschitz constant of h1 in [y

2
(T ) , y2 (T )]. For t 7→ ru (t, ·) the proof is similar.
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Let us consider the operator Λ : XT → C ([0, T ], X) × C ([0, T ], X) defined by Λ (u, v) = (Λ1v,Λ2u).
We are going to establish existence of a fixed point of Λ for T > 0 small enough. Such a fixed point
clearly furnishes a solution of (S) fulfilling (S1)− (S4).

We claim that Λ (XT ) ⊂ XT . Let (u, v) ∈ XT , then Λ (u, v) = (Λ1v,Λ2u). According to the consid-
erations above, as Λ1v and Λ2u solve (P1) and (P2) respectively, we have (Λ1v,Λ2u) ∈ C ([0, T ], X) ×
C ([0, T ], X), and y

1
(t) ≤ Λ1v (t) ≤ y1 (t), y

2
(t) ≤ Λ2u (t) ≤ y2 (t). Therefore (Λv,Λ2u) belongs to XT .

We claim that Λ is a contraction for T > 0 small enough. Let (u1, v1) and (u2, v2) in XT . We first
estimate

‖Λ (u1, v1)− Λ (u2, v2) ‖C×C = ‖ (Λ1v1 − Λ1v2) ‖X + ‖ (Λ2u1 − Λ2u2) ‖X .
From (P1), subtract the equation related to Λ1v1 from the equation related to Λ1v2 and take the scalar
product in X with Λ1v1−Λ1v2. Using the fact that DΦ1 is a monotone operator, we obtain that for a.e.
t ∈ (0, T )

1

2

d

dt
‖ (Λ1v1 − Λ1v2) (t) ‖2X ≤ 〈F1 (t,Λ1v1 (t) , v1 (t))− F1 (t,Λ1v2 (t) , v2 (t)) ,Λ1v1 (t)− Λ1v2 (t)〉.

Thus, for a.e. t ∈ (0, T ),

d

dt
‖ (Λ1v1 − Λ1v2) (t) ‖2X ≤ 2‖F1 (t,Λ1v1 (t) , v1 (t))− F1 (t,Λ1v2 (t) , v2 (t)) ‖X‖Λ1v1 (t)− Λ1v2 (t) ‖X

≤ ‖F1 (t,Λ1v1 (t) , v1 (t))− F1 (t,Λ1v2 (t) , v2 (t)) ‖2X + ‖Λ1v1 (t)− Λ1v2 (t) ‖2X .
(2.5)

According to the structure of the functional F1, we have

‖F1 (t,Λ1v1 (t) , v1 (t))− F1 (t,Λ1v2 (t) , v2 (t)) ‖2X
≤ C (T, g1, h1) ‖v1 (t)− v2 (t) ‖2X + C ′ (T, g1, h1) ‖Λ1v1 (t)− Λ1v2 (t) ‖2X (2.6)

with
C (T, g1, h1) = 2 sup

ζ∈[y
1
(T ),y1(T )]

|g1 (ζ) |2‖r1‖2L∞(RN ,Rl)Lh1,T ,

C ′ (T, g1, h1) = 2 sup
ζ′∈[y

2
(T ),y2(T )]

|h1 (ζ ′) |2‖r1‖2L∞(RN ,Rl)Lg1,T ,

where Lg1,T , Lh1,T denote the Lipschitz constants of the restrictions of g1 and h1 on [y
1

(T ) , y1 (T )] and

[y
2

(T ) , y2 (T )] respectively. Combining (2.5) and (2.6) we infer that for a.e. t ∈ (0, T )

d

dt
‖ (Λ1v1 (t)− Λ1v2 (t)) ‖2X ≤ C (T, g1, h1) ‖v1 (t)− v2 (t) ‖2X

+ (1 + C ′ (T, g1, h1)) ‖Λ1v1 (t)− Λ1v2 (t) ‖2X . (2.7)

By integrating this inequality over (0, s) for s ∈ [0, T ] and noticing that Λ1v1 (0) = Λ1v2 (0) = u0, we
obtain

‖Λ1v1 (s)− Λ1v2 (s) ‖2X ≤ C (T, g1, h1)

ˆ s

0

‖v1 (t)− v2 (t) ‖2Xdt

+ (1 + C ′ (T, g1, h1))

ˆ s

0

‖Λ1v1 (t)− Λ1v2 (t) ‖2Xdt (2.8)

from which, according to Grönwall’s lemma, we deduce that for all s ∈ [0, T ],

‖ (Λ1v1 (s)− Λ1v2 (s)) ‖2X ≤ T C (T, g1, h1) ‖v1 − v2‖2C([0,T ],X) exp ((1 + C ′ (T, g1, h1))T ) .

Proceeding similarly, we obtain, with suitable adapted notation,

‖ (Λ2u1 (s)− Λ2u2 (s)) ‖2X ≤ T C (T, g2, h2) ‖u1 − u2‖2C([0,T ],X) exp ((1 + C ′ (T, g2, h2))T ) .

Consequently

‖Λ (u1, v1)− Λ (u2, v2) ‖C×C ≤ C (T ) ‖ (u1, v1)− (u2, v2) ‖C×C
where

C (T ) = T max

(
C (T, g1, h1)

1
2 exp

(
(1 + C ′ (T, g1, h1))

T

2

)
, C (T, g2, h2)

1
2 exp

(
(1 + C ′ (T, g2, h2))

T

2

))
.
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For i = 1, 2, the nonnegative constants C (T, gi, hi) and C ′ (T, gi, hi) are clearly nondecreasing so that
limT→0 C (T ) = 0. Consequently Λ is a contraction for T small enough and admits a fixed point (u, v),
i.e. (Λ1v,Λ2u) = (u, v) so that Λ1v = u and Λ2u = v. This proves that (u, v) solves (S).

Step 2 (uniqueness). Let (u1, v1) and (u2, v2) be two solutions of (S), then taking Λ1v1 = u1 and
Λ1v2 = u2 in (2.8), we infer that for all s ∈ [0, T ]

‖u1 (s)− u2 (s) ‖2X ≤ C (T, g1, h1)

ˆ s

0

‖v1 (t)− v2 (t) ‖2Xdt+ (1 + C ′ (T, g1, h1))

ˆ s

0

‖u1 (t)− u2 (t) ‖2Xdt,

similarly

‖v1 (s)− v2 (s) ‖2X ≤ C (T, g2, h2)

ˆ s

0

‖u1 (t)− u2 (t) ‖2Xdt+ (1 + C ′ (T, g2, h2))

ˆ s

0

‖v1 (t)− v2 (t) ‖2Xdt.

By summing these two inequalities, we obtain for a.e. s ∈ [0, T ],

‖u1 (s)− u2 (s) ‖2X + ‖v1 (s)− v2 (s) ‖2X ≤ C
ˆ s

0

(
‖u1 (t)− u2 (t) ‖2X + ‖v1 (t)− v2 (t) ‖2X

)
dt

for some nonnegative constant C. Hence, according to Grönwall’s Lemma, for all s ∈ [0, T ],

‖u1 (s)− u2 (s) ‖2X + ‖v1 (s)− v2 (s) ‖2X = 0,

which proves uniqueness.

Step 3 (existence of a global solution). Denote by T ∗ > 0 a small enough number obtained in
Step 1 so that (S) admits a unique solution in C ([0, T ∗], X)× C ([0, T ∗], X) 3. By [4, Theorem 17.2.5]
or [5, Theorem 3.6]), we have

√
tdudt ∈ L

2 (0, T ∗, X). Hence, for 0 < δ < T ∗, du
dt belongs to L2 (δ, T ∗, X).

Set

E := {T > δ : ∃ (u, v) ∈ C ([0, T ], X)× C ([0, T ], X) solution of (S)}.
Since T ∗ ∈ E, we have E 6= ∅. Set TMax := supE in R+ and denote by (u, v) the maximal solution of
(S) in C ([0, TMax), X)× C ([0, TMax), X). We argue by contradiction assuming that TMax < +∞.

a) We first prove the existence of the two limits lim
t→TMax

u (t) and lim
t→TMax

v (t) in X.

Let T ∈ E, then for a.e. t ∈ (0, T ) we have〈
du

dt
(t) ,

du

dt
(t)

〉
+

〈
DΦ1u (t) ,

du

dt
(t)

〉
=

〈
F1 (t, u (t) , v (t)) ,

du

dt
(t)

〉
, (2.9)〈

dv

dt
(t) ,

dv

dt
(t)

〉
+

〈
DΦ2v (t) ,

dv

dt
(t)

〉
=

〈
F2 (t, u (t) , v (t)) ,

dv

dt
(t)

〉
. (2.10)

From (2.9), we infer that
ˆ T

δ

∥∥∥∥dudt (t)

∥∥∥∥2

X

dt+ Φ1 (u (t))− Φ1 (u (δ))

≤

(ˆ T

0

‖F1 (t, u (t) , v (t)) ‖2X dt

) 1
2
(ˆ T

δ

∥∥∥∥dudt (t)

∥∥∥∥2

X

dt

) 1
2

. (2.11)

For all T ∈ E, we have [y
1

(T ) , y1 (T )] ⊂ [y
1

(Tmax) , y1 (Tmax)], and [y
2

(T ) , y2 (T )] ⊂ [y
2

(Tmax) , y2 (Tmax)].
Thus, according to the structure of F1, there exists a constant

C = C
(
‖r1‖L∞(RN ,Rl), ‖g1‖L∞([y

1
(Tmax),y1(Tmax)],Rl), ‖h1‖L∞([y

2
(Tmax),y2(Tmax)],Rl)

)
such that

‖F1 (t, u (t) , v (t)) ‖2X ≤ 2C2LN (Ω) + 2‖q1 (t, ·) ‖2X .
Therefore, since

inf
v∈L2(Ω)

Φ1 (w) ≥ −Ctrace

2ν
‖φ1‖2L2

HN−1
(∂Ω)

3 Recall that under the initial condition u0 ∈ dom (DΦ1) we are not assured that the derivative du
dt

of the solution

belongs to L2 (0, T ∗, X).
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(for a proof refer to [2]), and q1 ∈ L2
(
0, Tmax, L

2 (Ω)
)
, inequality (2.11) yields

ˆ T

δ

∥∥∥∥dudt (t)

∥∥∥∥2

X

dt ≤ C

1 +

(ˆ T

δ

∥∥∥∥dudt (t)

∥∥∥∥2

X

dt

) 1
2


where the new constant C does not depend on T . We infer thatˆ TMax

δ

∥∥∥∥dudt (t)

∥∥∥∥2

X

dt = sup
T∈E

ˆ T

δ

∥∥∥∥dudt (t)

∥∥∥∥2

X

dt < +∞,

from which we deduce that u : [δ, TMax)→ X is uniformly continuous. Indeed, for s < t in [δ, TMax) we
have

‖u (t)− u (s) ‖X ≤
ˆ t

s

∥∥∥∥dudτ (τ)

∥∥∥∥2

X

dτ ≤ (t− s)
1
2

(ˆ TMax

δ

∥∥∥∥dudτ (t)

∥∥∥∥2

X

dt

) 1
2

and u is more precisely 1
2 -Holder continuous. SinceX is a complete normed space, according to the contin-

uous extension principle, u possesses a unique continuous extension u in [δ, TMax] i.e. limt→TMax u (t) =
u (TMax). Similarly, from (2.10), we deduce that v possesses a unique continuous extension v in [δ, TMax]
i.e. limt→TMax v (t) = v (TMax), which proves the claim.

b) Contradiction: For T > 0, consider the two component reaction-diffusion system

(S ′)



dU

dt
(t) +DΦ1 (U (t)) = F1 (t, U (t) , V (t)) for a.e. t ∈ (0, T )

dV

dt
(t) +DΦ2 (V (t)) = F2 (t, U (t) , V (t)) for a.e. t ∈ (0, T )

U (0) = u (Tmax) , V (0) = v (Tmax)

ρ′
1
≤ U (0) ≤ ρ′1, ρ′

2
≤ V (0) ≤ ρ′2

where ρ′
1

= y
1

(Tmax), ρ′1 = y1 (Tmax), and ρ′
2

= y
2

(Tmax), ρ′2 = y2 (Tmax). Note that U (0) ∈
dom (DΦ1) and V (0) ∈ dom (DΦ2). Then according to step 1, there exists T ∗∗ > 0 small enough
such that (S ′) possesses a solution (U, V ) ∈ C ([0, T ∗∗], X)× C ([0, T ∗∗] , X). Set

ũ (t) =

{
u (t) if t ∈ [0, TMax]

U (t− TMax) if t ∈ [TMax, TMax + T ∗∗] ,

and

ṽ (t) =

{
v (t) if t ∈ [0, TMax]

V (t− TMax) if t ∈ [TMax, TMax + T ∗∗] .

Then (ũ, ṽ) ∈ C ([0, TMax + T ∗∗] , X) × C ([0, TMax + T ∗∗] , X) is a solution of (S), which leads to a
contradiction with the maximality of TMax. �

Remark 2.2. By using [1, Corollary 3.2], and arguing as in the proof above, the conclusion of Theorem
2.1 still holds if for i = 1 or i = 2, the functional Φi is of the form

Φi (u) =


ˆ

Ω

Wi (x,∇u (x)) dx if u ∈ H1
Γi

(Ω) ,

+∞ otherwise,

and ρ
i
≤ 0 ≤ ρi (recall that H1

Γi
(Ω) = {v ∈ H1 (Ω) : u = 0 on Γi}. The domain of ∂Φi contains the

Dirichlet-Neumann boundary conditions as stated in [1, Lemma 3.2]:

dom (∂Φi) =
{
w ∈ H (Ω) : div DξWi (·,∇w) ∈ L2 (Ω) , w = 0 on Γi, DξWi (·,∇w) · η = 0 on ∂Ω \ Γi

}
.

Remark 2.3. A careful analysis of the proof of [1, Corollary 3.1] shows that its conclusion still holds when
Φi = 0 for i = 1 or i = 2 (in the sense Wi = ai = φi = 0). Indeed the lower condition α|ξ|2 ≤ Wi (x, ξ)
with α > 0, only serves to ensure that infv∈L2(Ω) Φi (v) > −∞. Therefore Theorem 2.1 remains valid
for systems (S) coupling a reaction-diffusion equation (r.d.e.) with a non diffusive reaction equation
(n.d.r..e.) (see Example 2.5), or two non diffusive reaction equations (n.d.r.e..).
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3. General convergence theorem for a class of two components reaction-diffusion
systems

For each i = 1, 2, let (Φi,n)n∈N be a sequence of functional of the calculus of variations where Φi,n :

L2 (Ω)→ R ∪ {+∞} is defined by

Φi,n (u) =


ˆ

Ω

Wn (x,∇u (x)) dx+
1

2

ˆ
∂Ω

ai,nu
2 dHN−1 −

ˆ
∂Ω

φi,nu dHN−1 if u ∈ H1 (Ω) ,

+∞ otherwise.

We assume that φi,n ∈ L2
HN−1

(∂Ω), ai,n ∈ L∞HN−1
(∂Ω) with ai,n ≥ 0 HN−1 a.e. in ∂Ω, and ai,n ≥ σi,n

on Γi ⊂ ∂Ω with HN−1 (Γi) > 0 for some σi,n > 0 and that Wi,n : RN × RN → R is a Borel measurable
function which fulfills the following conditions:

(D1,n) there exist {αi,n} ⊂ R∗+ and {βi,n} ⊂ R∗+, such that for a.e. x ∈ RN and all ξ ∈ RN and all
n ∈ N,

αi,n|ξ|2 ≤Wi,n (x, ξ) ≤ βi,n
(
1 + |ξ|2

)
,

(D2,n) for a.e. x ∈ RN , ξ 7→Wi,n (x, ξ) is a differentiable and convex function, and DξWi,n (x, 0) = 0,

(D3,n) ∃γi > 0, s. t. for all ξ ∈ RN , inf
n∈N

inf
x∈RN

DζWi,n (x, ξ) .ξ ≥ γi|ξ|2.

In the following we fix T > 0 and consider a sequence ((F1,n, F2,n))n∈N of TCSVR-functionals, each
of them being associated with (ri,n, gi,n, hi,n, qi,n), i.e. Fi,n (t, u, v) (x) = fi,n (t, x, u (x) v (x)) for all

t ∈ [0, T ], a.e. x ∈ Ω, and all (u, v) ∈ L2 (Ω)
2
, where

f1,n (t, x, ζ, ζ ′) = r1,n (t, x)� hi,n (ζ ′) · g1,n (ζ) + q1,n (t, x) for all (t, x, ζ) ∈ [0,+∞)× RN × R,
f2,n (t, x, ζ, ζ ′) = r2,n (t, x)� h2,n (ζ) · g2,n (ζ ′) + q2,n (t, x) for all (t, x, ζ) ∈ [0,+∞)× RN × R.

(3.1)
We assume that for all n ∈ N, hi,n and gi,n are locally Lipschitz functions, uniformly with respect to n,
i.e. for all interval I ⊂ R, there exists LI ≥ 0 and L′I ≥ 0 such that

supn∈N |gi,n (ζ)− gi,n (ζ ′) | ≤ LI |ζ − ζ ′| ,∀ (ζ, ζ ′) ∈ R2,
supn∈N |hi,n (ζ)− hi,n (ζ ′) | ≤ L′I |ζ − ζ ′| ,∀ (ζ, ζ ′) ∈ R2.

(3.2)

The functions ri,n and qi,n are uniformly absolutely continuous, i.e.

sup
n

ˆ T

0

∥∥∥∥dri,ndt (t, ·)
∥∥∥∥
L2(Ω,Rl)

dt < +∞,

sup
n

ˆ T

0

∥∥∥∥dqi,ndt (t, ·)
∥∥∥∥
L2(Ω)

dt < +∞.
(3.3)

We finally assume that

ρ
i

:= inf
n
y
i,n

(T ) > −∞ and ρi := sup
n
yi,n (T ) < +∞, (3.4)

and, for all n ∈ N,

ai,nρi,n ≤ φi,n ≤ ai,nρi,n on ∂Ω (3.5)

where for i = 1, 2, y
i,n

, yi,n, ρ
i,n

and ρi,n are given by condition (TCCP ) fulfilled by (F1,n, F2,n). Recall

that y
i,n

and yi,n are solution of ODEi and ODEi with f
i,n

, f i,n and initial condition ρ
i,n

and ρi,n
respectively.

Recall that a sequence (Φn)n∈N of lower semicontinuous convex proper functionals Φn : L2 (Ω) →
R ∪ {+∞} Mosco-converges to a functional Φ if (Φn)n∈N Γ-converges to Φ when the Γ-convergence is

associated both with the strong and the weak topology of L2 (Ω). We write Φi,n
M→ Φi. For details

consult Appendix C and references therein.

Theorem 3.1 (General convergence theorem). Assume that for i = 1, 2, the sequence (Wi,n)n∈N sat-
isfies conditions (D1,n), (D2,n), (D3,n), and that the sequence of TCCP-structured reaction functionals
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(F1,n, F2,n)n∈N satisfies conditions (3.2) (3.3), (3.4), (3.5). Let (un, vn) be the unique solution of the
system

(Sn)



dun
dt

(t) +DΦ1,n (un (t)) = F1,n (t, un (t) , vn (t)) for a.e. t ∈ (0, T )

dvn
dt

(t) +DΦ2,n (vn (t)) = F2,n (t, un (t) , vn (t)) for a.e. t ∈ (0, T )

ρ
1,n
≤ u0

n = un (0) ≤ ρ1,n, ρ2,n
≤ v0

n = vn (0) ≤ ρ2,n, u
0
n ∈ dom (Φ1,n) , v0

n ∈ dom (Φ2,n) .

Assume that

(Hs1) Φi,n
M→ Φi and supn∈N ‖φi,n‖L2

HN−1
(∂Ω) < +∞;

(Hs2) supn∈N Φ1,n

(
u0
n

)
< +∞ and supn∈N Φ2,n

(
v0
n

)
< +∞;

(Hs3) u0
n → u0 and v0

n → v0 strongly in L2 (Ω);

(Hs4) gi,n and hi,n pointwise converge to gi and hi respectively;

(Hs5) supn ‖ri,n‖L∞([0,T ]×RN ,Rl) < +∞ and ri,n ⇀ ri in L2
(
0, T, L2

(
Ω,Rl

))
where ri ∈ L∞

(
[0, T ]× RN ,Rl

)
;

(Hs6) For all t ∈ [0, T ], supn ‖qi,n (t, ·) ‖L2(Ω) < +∞ and qi,n ⇀ qi in L2
(
0, T, L2 (Ω)

)
.

Then (un, vn) uniformly converges in C
(
[0, T ], L2 (Ω)

)
× C

(
[0, T ], L2 (Ω)

)
to the unique solution (u, v)

of the system

(S)



du

dt
(t) + ∂Φ1 (u (t)) 3 F1 (t, u (t) , v (t)) for a.e. t ∈ (0, T )

dv

dt
(t) + ∂Φ2 (v (t)) 3 F2 (t, u (t) , v (t)) for a.e. t ∈ (0, T )

ρ
1
≤ u0 = u (0) ≤ ρ1, ρ2

≤ v0 = v (0) ≤ ρ2, u
0 ∈ dom (Φ1) , v0 ∈ dom (Φ2) .

The reaction functionals Fi : [0,+∞)× L2 (Ω)× L2 (Ω)→ RΩ, i = 1, 2, are defined for all t ∈ [0, T ], all
(U, V ) ∈ L2 (Ω)× L2 (Ω) and for a.e. x ∈ Ω, by

Fi (t, U, V ) (x) = fi (t, x, U (x) , V (x)) ,
f1 (t, x, ζ, ζ ′) = r1 (t, x)� h1 (ζ ′) · g1 (ζ) + q1 (t, x) ,
f2 (t, x, ζ, ζ ′) = r2 (t, x)� h2 (ζ) · g2 (ζ ′) + q2 (t, x) .

Moreover ρ
1
≤ u ≤ ρ1, ρ

2
≤ v ≤ ρ2, and

(
dun
dt ,

dun
dt

)
⇀

(
du
dt ,

dv
dt

)
weakly in L2

(
0, T, L2 (Ω)

)
×

L2
(
0, T, L2 (Ω)

)
.

Furthermore, if
(
Φ1,n

(
u0
n

)
,Φ1,n

(
v0
n

))
→
(
Φ
(
u0
)
,Φ
(
v0
))

, ri,n → ri strongly in L2
(
0, T, L2

(
Ω,Rl

))
,

and qi,n → qi strongly in L2
(
0, T, L2 (Ω)

)
, then

(
dun
dt ,

dun
dt

)
→
(
du
dt ,

dv
dt

)
strongly in L2

(
0, T, L2 (Ω)

)
×

L2
(
0, T, L2 (Ω)

)
.

Proof. Since dom (Φi,n) ⊂ dom (DΦi,n), we have
(
u0
n, v

0
n

)
∈
(

dom (DΦ1,n),dom (DΦ2,n)
)

, so that,

according to Theorem 2.1, (Pn) admits a unique solution (un, vn) which satisfies (S2)− (S4) of Theorem
2.1. We follow the strategy of the proof of [1, Theorem 4.1].

Step 1. We establish

ρ
1
≤ un ≤ ρ1 and ρ

2
≤ vn ≤ ρ2; (3.6)

gi := sup
(ζ,n)∈[ρ

i
,ρi]×N

|gi,n (ζ) | < +∞, hi := sup
(ζ,n)∈[ρ

i
,ρi]×N

|hi,n (ζ) | < +∞; (3.7)

sup
n∈N

∥∥∥∥dundt
∥∥∥∥
L2(0,T,X)

< +∞ and sup
n∈N

∥∥∥∥dvndt
∥∥∥∥
L2(0,T,X)

< +∞. (3.8)
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From Theorem 2.1 the solution (un, vn) of (Sn) satisfies y
1,n

(T ) ≤ un ≤ y1,n (T ) and y
2,n

(T ) ≤ vn ≤
y2,n (T ), so that inequalities (3.6) follow directly from (3.4). We deduce (3.7) from (3.2), hypothesis
(Hs4) and estimate |gi,n (ζ) | ≤ |gi,n (0) |+ L[ρ

i
,ρi]
|ζ|; idem for hi,n.

Let us establish (3.8). In what follows the letter C denotes various constants which can vary from
line to line. By using the structure of the TCCP-structured reaction functional Fn, and from (3.7) and
hypothesis (Hs5), we easily infer that

‖Fi,n (t, un (t) , vn (t)) ‖2X ≤ 2LN (Ω) ‖ri,n‖2∞g2
ih

2

i + 2‖qi,n (t, ·) ‖2X
≤ C

(
1 + ‖qi,n (t, ·) ‖2X

)
. (3.9)

Thus, according to (Hs6), we deduce

sup
n

ˆ T

0

‖Fi,n (t, un (t) , vn (t)) ‖2X dt < +∞. (3.10)

On the other hand, from (Sn) we infer that for a.e. t ∈ (0, T ),∥∥∥∥dundt (t)

∥∥∥∥2

X

+

〈
DΦ1,n (un (t)) ,

dun
dt

(t)

〉
=

〈
F1,n (t, un (t) , vn (t)) ,

dun
dt

(t)

〉
∥∥∥∥dvndt (t)

∥∥∥∥2

X

+

〈
DΦ2,n (un (t)) ,

dvn
dt

(t)

〉
=

〈
F2,n (t, un (t) , vn (t)) ,

dvn
dt

(t)

〉
.

By integrating over (0, T ), we obtain
ˆ T

0

∥∥∥∥dundt (t)

∥∥∥∥2

X

dt+

ˆ T

0

〈
DΦ1,n (un (t)) ,

dun
dt

(t)

〉
dt =

ˆ T

0

〈
F1,n (t, un (t) , vn (t)) ,

dun
dt

(t)

〉
dt,

ˆ T

0

∥∥∥∥dvndt (t)

∥∥∥∥2

X

dt+

ˆ T

0

〈
DΦ2,n (vn (t)) ,

dvn
dt

(t)

〉
dt =

ˆ T

0

〈
F2,n (t, un (t) , vn (t)) ,

dvn
dt

(t)

〉
dt.

(3.11)
Since

(
u0
n, v

0
n

)
∈ (dom (Φ1,n) ,dom (Φ2,n)), we deduce that

(
dun
dt ,

dvn
dt

)
belongs to L2 (0, T,X)×L2 (0, T,X)

and t 7→ Φ1,n (un (t)), t 7→ Φ2,n (v (t)) are absolutely continuous (see [5, Theorem 3.6]). Therefore for

a.e. t ∈ (0, T ), d
dtΦ1,n (un (t)) =

〈
DΦ1,n (un (t)) , dundt (t)

〉
, and d

dtΦ2,n (vn (t)) =
〈
DΦ2,n (vn (t)) , dvndt (t)

〉
(see [4, Proposition 17.2.5]). From the first equality in (3.11) we have
ˆ T

0

∥∥∥∥dundt (t)

∥∥∥∥2

X

dt = −Φ1,n (un (T )) + Φ1,n

(
u0
n

)
+

ˆ T

0

〈
F1,n (t, un (t) , vn (t)) ,

dun
dt

(t)

〉
dt (3.12)

≤ − inf
w∈L2(Ω)

Φ1,n (w) + sup
n

Φ1,n

(
u0
n

)
+

(ˆ T

0

‖F1,n (t, un (t) , vn (t)) ‖2X

) 1
2
(ˆ T

0

∥∥∥∥dundt (t)

∥∥∥∥2

X

) 1
2

where

inf
v∈L2(Ω)

Φ1,n (w) ≥ −Ctrace

2ν
‖φ1,n‖2L2

HN−1
(∂Ω).

From (Hs1), (Hs2), and (3.10), (3.12) yields that there exists a constant C ≥ 0 such that

ˆ T

0

∥∥∥∥dundt (t)

∥∥∥∥2

X

dt ≤ C

1 +

(ˆ T

0

∥∥∥∥dundt (t)

∥∥∥∥2

X

dt

) 1
2

 .

Reasoning similarly with the second equality in (3.11), we obtain

ˆ T

0

∥∥∥∥dvndt (t)

∥∥∥∥2

X

dt ≤ C

1 +

(ˆ T

0

∥∥∥∥dvndt (t)

∥∥∥∥2

X

dt

) 1
2

 ,

from which we deduce (3.8).
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Step 2. We prove that there exist (u, v) ∈ C ([0, T ], X) × C ([0, T ], X), and a subsequence of
((un, vn))n∈N not relabeled, satisfying (un, vn) → (u, v) in C ([0, T ], X) × C ([0, T ], X) equipped with
the norm ‖ · ‖C×C .

Basically we apply the Ascoli-Arzela compactness theorem for (un)n∈N and (vn)n∈N. We reason for
(un)n∈N, the same reasoning holds for (vn)n∈N. From (3.6), (un)n∈N is bounded in C ([0, T ], X). Moreover

for (s, t) ∈ [0, T ]2 with s < t, we have

‖un (t)− un (s) ‖X ≤
ˆ t

s

∥∥∥∥dundt (τ)

∥∥∥∥
X

dτ ≤ (t− s)
1
2

∥∥∥∥dundt
∥∥∥∥
L2(0,T,X)

≤ (t− s)
1
2 sup

n

∥∥∥∥dundt
∥∥∥∥
L2(0,T,X)

which, from (3.8), yields the equicontinuity of the sequence (un)n∈N. It remains to establish for each
t ∈ [0, T ], the relative compactness in X of the set Et := {un (t) : n ∈ N}. For t = 0 there is nothing to
prove because of hypothesis (Hs3) on the initial condition. It remains to establish the relative compactness
of Et for t ∈]0, T ]. In what follows t is fixed in ]0, T ].

According to Theorem 2.1, un satisfies (S4), then possesses a right derivative at t (at t = T , this is
due to the fact that un exists in C ([0,+∞), X) so that the right derivative of un at t = T is nothing but
the right derivative of the restriction of un to [0, T ]). Moreover

du+
n

dt
(t) +DΦ1,n (un (t)) = F1,n (t, un (t) , vn (t)) .

Taking un (t) as a test function, we infer that〈
du+

n

dt
(t) , un (t)

〉
+ 〈DΦ1,n (un (t)) , un (t)〉 = 〈F1,n (t, un (t) , vn (t)) , un (t)〉 ,

hence, from the Green formula and the fact that un (t) ∈ domDΦ1,n,

ˆ
Ω

DξW1,n (x,∇un (t)) · ∇un (t) dx

=

ˆ
∂Ω

DξW1,n (x,∇ un (t)) · nun (t) dHN−1 −
ˆ

Ω

du+
n

dt
(t)un (t) dx+

ˆ
Ω

F1,n (t, un (t) , vn (t)) dx

=

ˆ
∂Ω

(φi,n − a1,nun (t))un (t) dHN−1 −
ˆ

Ω

du+
n

dt
(t)un (t) dx+

ˆ
Ω

F1,n (t, un (t) , vn (t)) dx

≤
ˆ
∂Ω

φi,nun (t) dHN−1 −
ˆ

Ω

du+
n

dt
(t)un (t) dx+

ˆ
Ω

F1,n (t, un (t) , vn (t)) dx.

Take 0 < ν < 2γ
Ctrace

where γ is the positive constant of the uniform strong convexity condition (D3,n),

and Ctrace is the constant of continuity of the trace operator. Set b := max
(
|ρ

1
|, |ρ1|

)
. From (D3,n),

(3.6) and (3.9), we deduce that

γ

ˆ
Ω

|∇un (t) |2 dx ≤ ‖φ1,n‖L2
HN−1

(∂Ω)‖un (t) ‖L2
HN−1

(∂Ω)

+ bLN (Ω)
1
2

(∥∥∥∥du+
n

dt
(t)

∥∥∥∥
X

+ ‖F1,n (t, un (t) , vn (t)) ‖X
)

≤ Ctrace
2ν
‖φ1,n‖2L2

HN−1
(∂Ω) +

Ctraceν

2
‖un (t) ‖2H1(Ω)

+ bLN (Ω)
1
2

(∥∥∥∥du+
n

dt
(t)

∥∥∥∥
X

+ ‖F1,n (t, un (t) , vn (t)) ‖X
)

≤ Ctrace
2ν
‖φ1,n‖2L2

HN−1
(∂Ω) +

Ctraceν

2

(ˆ
Ω

|∇un (t) |2 dx+ b2LN (Ω)

)
+ b LN (Ω)

1
2

(∥∥∥∥du+
n

dt
(t)

∥∥∥∥
X

+ ‖F1,n (t, un (t) , vn (t)) ‖X
)
.
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Hence(
γ − Ctraceν

2

)ˆ
Ω

|∇un (t) |2dx ≤ Ctrace
2ν

sup
n
‖φ1,n‖2L2

HN−1
(∂Ω) + b2

Ctraceν

2
LN (Ω)

+bLN (Ω)
1
2 sup
n∈N

(∥∥∥∥du+
n

dt
(t)

∥∥∥∥
X

+ ‖F1,n (t, un (t) , vn (t)) ‖X
)
. (3.13)

From (3.10), estimates (3.13) and (3.6) yield that (un (t))n∈N is bounded in H1 (Ω) provided that we
establish

sup
n

∥∥∥∥du+
n

dt
(t)

∥∥∥∥
X

< +∞. (3.14)

Then from the compact embedding H1 (Ω) ↪→ L2 (Ω) we will conclude to the compactness of the set
Et. Therefore, to end Step 2, it remains to establish (3.14). This estimate requires the sharp result of
Lemma B.1.

Set Gn (t) := F1,n (t, un (t) , vn (t)). In order to apply Lemma B.1, we start by establishing the
following estimate on the total variation Var (Gn, [0, T ]) of Gn in [0, T ]:

Var (Gn, [0, T ]) =

ˆ T

0

∥∥∥∥Gndt (t)

∥∥∥∥
X

dt ≤ C

(
1 +

ˆ T

0

∥∥∥∥dvndt (t)

∥∥∥∥
X

dt+

ˆ T

0

∥∥∥∥dundt (t)

∥∥∥∥
X

dt

)
(3.15)

where C is a nonnegative constant which does not depend on n. To shorten the notation, we omit the
index i = 1. According to the structure of F1,n, to (3.7), (3.3), and hypothesis (Hs6), we have

‖Gn (t)−Gn (s) ‖X ≤ gh‖rn (t)− rn (s) ‖L2(Ω,Rl) + ‖qn (t)− qn (s) ‖X
+ sup
n∈N
‖rn‖∞ ‖gn (un (t)) · hn (vn (t))− gn (un (s)) · hn (vn (s))‖X

≤ gh

ˆ t

s

∥∥∥∥drndt (t, ·)
∥∥∥∥
L2(Ω,Rl)

dt+

ˆ t

s

∥∥∥∥dqndt (t, ·)
∥∥∥∥
X

+ sup
n∈N
‖rn‖∞ ‖gn (un (t)) · hn (vn (t))− gn (un (s)) · hn (vn (s))‖X . (3.16)

On the other hand, from (3.2) and (3.7), we infer that

‖gn (un (t)) · hn (vn (t))− gn (un (s)) · hn (vn (s))‖X
≤ gL′[ρ

2
,ρ2] ‖vn (t)− vn (s)‖X + hL[ρ

1
,ρ1] ‖un (t)− un (s)‖X

≤ gL′[ρ
2
,ρ2]

ˆ t

s

∥∥∥∥dvndσ (σ)

∥∥∥∥
X

dσ + hL[ρ
1
,ρ1]

ˆ t

s

∥∥∥∥dundσ (σ)

∥∥∥∥
X

dσ. (3.17)

Estimate (3.15) is then obtained by combining (3.16),(3.17), (3.8), and (3.3).

Hence, applying Lemma B.1, from (3.15), we deduce that∥∥∥∥du+
n

dt
(t)

∥∥∥∥
X

≤ C + C

ˆ T

0

∥∥∥∥dvndt (t)

∥∥∥∥
X

dt+

(
C +

1

t

)ˆ T

0

∥∥∥∥dundt (t)

∥∥∥∥
X

dt

and (3.14) follows from (3.8). This completes Step 2.

Step 3. We assert that
(
dun
dt ,

dvn
dt

)
⇀
(
du
dt ,

dv
dt

)
weakly in L2 (0, T,X)×L2 (0, T,X) for a non relabeled

subsequence, and that ρ
1
≤ u ≤ ρ1, ρ

2
≤ u ≤ ρ2. The first claim is a straightforward consequence of

(3.8) and Step 2. The second follows from inequality ρ
1,n
≤ un ≤ ρ1,n, ρ

2,n
≤ vn ≤ ρ2,n, (3.4), and

(un, vn)→ (u, v) in C ([0, T ], X).

Step 4. We prove that (u, v) is the unique solution of (S). The proof mimics that of [1, Theorem
4.1]. We give a sketch of the proof. According to the Fenchel extremality condition (see [4, Proposition
9.5.1]), the fact that (un, vn) solves (Sn), is equivalent to

ˆ T

0

[
Φ1,n (un (t)) + Φ∗1,n

(
G1,n (t)− dun

dt
(t)

)]
dt

+
1

2

(
‖un (T ) ‖2 −

∥∥u0
n

∥∥2
)
−
ˆ T

0

〈G1,n (t) , un (t)〉 dt = 0,
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ˆ T

0

[
Φ2,n (un (t)) + Φ∗2,n

(
G2,n (t)− dvn

dt
(t)

)]
dt

+
1

2

(
‖vn (T ) ‖2 −

∥∥v0
n

∥∥2
)
−
ˆ T

0

〈G2,n (t) , un (t)〉 dt = 0,

where Gi,n (t) = Fi,n (t, un (t) , vn (t)). Observe that the functionals defined in L2
(
0, T, L2 (Ω)

)
by

w 7→
ˆ T

0

Φi,n (w (t)) dt, w 7→
ˆ T

0

Φ∗i,n (w (t)) dt

Mosco-converge to

w 7→
ˆ T

0

Φi (w (t)) dt, w 7→
ˆ T

0

Φ∗i (w (t)) dt

respectively (refer to [1, Lemma 4.1]). Thus going to the limit in two previous equalities, from Step 2,
Step 3, and Lemma 3.1 below, we obtainˆ T

0

[
Φ1 (u (t)) + Φ∗1

(
G1 (t)− du

dt
(t)

)]
dt

+
1

2

(
‖u (T ) ‖2 −

∥∥u0
∥∥2
)
−
ˆ T

0

〈G1 (t) , u (t)〉 dt = 0,

ˆ T

0

[
Φ2 (u (t)) + Φ∗2

(
G2 (t)− dv

dt
(t)

)]
dt

+
1

2

(
‖v (T ) ‖2 −

∥∥v0
∥∥2
)
−
ˆ T

0

〈G2 (t) , u (t)〉 dt = 0,

where Gi (t) = Fi (t, u (t) , v (t)). Observe that we applied the Legendre-Fenchel inequality in order to
obtain equality above. This proves that (u, v) solves (S).

Lemma 3.1. For i = 1, 2, the functional Gi,n = Fi,n (·, un, vn) weakly converges in L2 (0, T,X) to the
functional Gi defined by Gi (t) = Fi (t, u (t) , v (t)) where F1 (t, u (t) , v (t)) = r1 (t)�h1 (v (t)) ·g1 (u (t))+
q1 (t), and F2 (t, u (t) , v (t)) = r2 (t)� h2 (v (t)) · g2 (u (t)) + q2 (t).

Proof of Lemma 3.1. We only prove the weak convergence of G1 and omit index 1. The weak convergence
of G2 is similar. Recall that Gn (t) = Hn (t) + qn (t) where

Hn (t) (x) = rn (t, x)� hn (vn (t, x)) · gn (un (t, x)) = rn (t, x) · hn (vn (t, x))� gn (un (t, x)) .

Since qn ⇀ q in L2 (0, T,X), we are reduced to prove that Hn ⇀ H in L2 (0, T,X) where

H (t) (x) = r (t, x)� h (v (t, x)) · g (u (t, x)) = r (t, x) · h (v (t, x))� g (u (t, x)) .

Hence, since rn ⇀ r in L2 (0, T,X), it suffices to establish that

hn (vn)� gn (un)→ h (v)� g (u) (3.18)

strongly in L2
(
Ω, X l

)
, where X l denotes the space L2

(
Ω,Rl

)
. We have 4

‖hn (vn (t))� gn (un (t))− h (v (t))� g (u (t)) ‖Xl
≤ ‖hn (vn (t))� gn (un (t))− hn (vn (t))� g (u (t)) ‖Xl

+ ‖hn (vn (t))� g (u (t))− h (v (t))� g (u (t)) ‖Xl
≤ h‖gn (un (t))− g (u (t)) ‖Xl + g‖hn (vn (t))− h (v (t)) ‖Xl
≤ hL[ρ

1
,ρ1]‖un (t)− u (t) ‖X + h‖gn (u (t))− g (u (t)) ‖Xl

+ gL′[ρ
2
,ρ2]‖vn (t)− v (t) ‖X + g‖hn (v (t))− h (v (t)) ‖Xl .

Hence, to prove (3.18), it remains to establish thatˆ T

0

‖gn (u (t))− g (u (t)) ‖2Xl dt→ 0,

ˆ T

0

‖hn (v (t))− h (v (t)) ‖2Xl dt→ 0 (3.19)

4To simplify the notation we write g (v (t)) for the function x 7→ g (v (t, x)), idem for h (v (t)), gn (v (t)) and hn (v (t)).



CONVERGENCE OF TWO COMPONENTS NONLINEAR REACTION-DIFFUSION SYSTEMS 19

ˆ T

0

‖un (t)− u (t) ‖2X dt→ 0 (3.20)

ˆ T

0

‖vn (t)− v (t) ‖2X dt→ 0. (3.21)

The two convergences in (3.19) are a straightforward consequence of hypothesis (Hs4) and the Lebesgue
dominated convergence theorem. Convergences (3.20) and (3.21) follow from Step 2., this completes
the proof of Lemma 3.1. �

Step 4 completes the proof of Theorem 3.1. �

4. Convergence theorem for problems coupling r.d.e. and n.d.r.e.

We keep the notation of the previous section and assume that Φ2,n ≡ 0. For obtaining the compactness
of (vn)n∈N in C

(
[0, T ], L2 (Ω)

)
(Step 2 in the proof of Theorem 3.1), we can no longer invoke the

strict convexity of W2,n ensured by (D3,n). To overcome the difficulty, we assume additional regularity
conditions on the reaction functional and the initial condition for the non diffusive equation. To shorten
the notation we denote by Φn the functional Φ1,n and by Wn the density W1,n. The theorem below
provides a convergence result for FitzHugh-Nagumo like models (see Example 2.5).

In the following, we equip the spaces C1
(

[ρ
i
, ρi],Rl

)
, i = 1, 2, with their uniform norms defined by

‖|ϕ|‖[ρ
i
,ρi]

:= sup
ζ∈[ρ

i
,ρi]

|ϕ (ζ) |+ sup
ζ∈[ρ

i
,ρi]

∣∣∣∣dϕdζ (ζ)

∣∣∣∣ .
The spaces C1

(
[ρ

1
, ρ1],Rl

)
× C1

(
[ρ

2
, ρ2],Rl

)
and C1

(
[ρ

2
, ρ2],Rl

)
× C1

(
[ρ

1
, ρ1],Rl

)
are endowed

with their product norm.

Theorem 4.1. Assume that the sequence of densities (Wn)n∈N satisfies conditions (D1,n), (D2,n), (D3,n),
and that the sequence of TCCP-structured reaction functionals (F1,n, F2,n)n∈N satisfies conditions (3.2),

(3.3), (3.4), and (3.5). Assume furthermore that g2,n and h2,n belong to C1
loc

(
R,Rl

)
, and that r2,n and

q2,n do not depend on the spatial variable. Let (un, vn) be the unique solution of the system

(Sn)



dun
dt

(t) +DΦn (un (t)) = F1,n (t, un (t) , vn (t)) for a.e. t ∈ (0, T )

dvn
dt

(t) = F2,n (t, un (t) , vn (t)) for a.e. t ∈ (0, T )

ρ
1,n
≤ u0

n = un (0) ≤ ρ1,n, ρ2,n
≤ v0

n = vn (0) ≤ ρ2,n, u
0
n ∈ dom (Φn) , v0

n ∈ H1 (Ω) .

Assume (Hs1), (Hs2), (Hs5), (Hs6) for i = 1 and

(Hs′3) u0
n → u0 strongly in L2 (Ω) and v0

n ⇀ v0 weakly in H1 (Ω);

(Hs′4) (g1,n, h1,n) pointwise converges to (g1, h1), and (g2,n, h2,n) converges to (g2, h2) in C1
(

[ρ
2
, ρ2],Rl

)
×

C1
(

[ρ
1
, ρ1],Rl

)
.

Then the solution (un, vn) uniformly converges in C
(
[0, T ], L2 (Ω)

)
× C

(
[0, T ], L2 (Ω)

)
to the unique

solution (u, v) of the system

(S)



du

dt
(t) + ∂Φ (u (t)) 3 F1 (t, u (t) , v (t)) for a.e. t ∈ (0, T )

dv

dt
(t) = F2 (t, u (t) , v (t)) for a.e. t ∈ (0, T )

ρ
1
≤ u0 = u (0) ≤ ρ1, ρ2

≤ v0 = v (0) ≤ ρ2, u
0 ∈ dom (Φ) , v0 ∈ H1 (Ω) .

The reaction functionals Fi : [0,+∞)× L2 (Ω)× L2 (Ω)→ RΩ, i = 1, 2, are defined for all t ∈ [0, T ], all
(U, V ) ∈ L2 (Ω)× L2 (Ω) and for a.e. x ∈ Ω, by
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Fi (t, U, V ) (x) = fi (t, x, U (x) , V (x)) ,
f1 (t, x, ζ, ζ ′) = r1 (t, x)� h1 (ζ ′) · g1 (ζ) + q1 (t, x) ,
f2 (t, ζ, ζ ′) = r2 (t)� h2 (ζ) · g2 (ζ ′) + q2 (t) .

Moreover ρ
1
≤ u ≤ ρ1, ρ

2
≤ v ≤ ρ2, and

(
dun
dt ,

dun
dt

)
⇀

(
du
dt ,

dv
dt

)
weakly in L2

(
0, T, L2 (Ω)

)
×

L2
(
0, T, L2 (Ω)

)
.

Furthermore, if Φn
(
u0
n

)
→ Φ

(
u0
)
, ri,n → ri strongly in L2

(
0, T, L2

(
Ω,Rl

))
, and qi,n → qi strongly

in L2
(
0, T, L2 (Ω)

)
, then

(
dun
dt ,

dun
dt

)
→
(
du
dt ,

dv
dt

)
strongly in L2

(
0, T, L2 (Ω)

)
× L2

(
0, T, L2 (Ω)

)
.

Proof. The arguments of the proof of Theorem 3.1 remain valid, except those of Step 2. Therefore, we
only have to modify the proof of Step 2. Because of the non strict convexity of Φ2,n ≡ 0, the proof of the
relative compactness of Ft = {vn (t) : n ∈ N} in L2 (Ω) for t ∈]0, T ] cannot be obtained by following the
same arguments. The proof of the relative compactness of Et = {un (t) : n ∈ N} in L2 (Ω) for t ∈ (0, T ]
remains the same. We are going to estimate supn∈N ‖∇vn (t) ‖L2(Ω) by using Grönwall’s lemma, and will

conclude to the compactness of Ft, according to the compact embedding H1 (Ω) ↪→ L2 (Ω). Take the
distributional derivative of F2 with respect to the space variable. We obtain

∇F2 (t, un (t) , vn (t)) =

[
r2,n (t)� dh2,n

dζ
(un (t)) · g2,n (vn (t))

]
∇un (t)

+

[
r2,n (t)� h2,n (un (t)) · dg2,n

dζ ′
(vn (t))

]
∇vn (t) .

In the following, we set for all t ∈ [0, T ] and for a.e. x ∈ Ω:

r2,n (t)� dh2,n

dζ
(un (t, x)) · g2,n (vn (t, x)) := An (t, x) ,

r2,n (t)� h2,n (un (t, x)) · dg2,n

dζ ′
(vn (t, x)) := Bn (t, x) .

From (3.6),(Hs′4) and (Hs5), we deduce that

sup
(t,x,n)∈[0,T ]×Ω×N

|An (t, x) | := A < +∞

and
sup

(t,x,n)∈[0,T ]×Ω×N
|Bn (t, x) | := B < +∞.

Set Vn (t) := ∇vn (t). Take the distributional derivative with respect to the space variable of each term of
the second equation of (Sn). From the previous calculation, we infer that Vn solves the Cauchy problem

dVn
dt

(t) = An (t)∇un (t) +Bn (t)Vn (t) for a.e. t ∈ (0, T ) ,

Vn (0) = ∇v0
n,

and belongs to C
(
[0, T ], XN

)
where XN := L2

(
Ω,RN

)
(see for instance [1, Theorem 2.3] with F (t, V ) =

An (t)∇un (t) +Bn (t)V , and XN substitute for X). Hence, for all t ∈ (0, T ],

Vn (t) = Vn (0) +

ˆ t

0

(An (s)∇un (s) +Bn (t)Vn (s)) ds,

from which we deduce

‖Vn (t) ‖XN ≤ ‖∇v0
n‖XN +A

ˆ t

0

‖∇un (s) ‖XN ds+B

ˆ t

0

‖Vn (s) ‖XN ds.

According to Grönwall’s lemma, we infer that for all t ∈ (0, T ] (note that s 7→ ‖Vn (s) ‖XN is continuous
in [0, T ])

‖Vn (t) ‖XN ≤

(
‖∇v0

n‖XN +A

ˆ T

0

‖∇un (s) ‖XN ds

)
exp

(
BT
)
.

From (Hs′3) and the fact that (un (t))n∈N is bounded in H1 (Ω) for all t ∈ (0, T ] (see Step 2 in the proof

of Theorem 3.1), we infer from the estimate above, that (∇vn (t))n∈N is bounded in XN . Therefore un (t)

is bounded in H1 (Ω) for all t ∈ [0, T ], which completes the proof. �
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In the specific case of a coupling between two non diffusive reaction equations, we have the following
convergence of (Sn) to (S). The proof is an easy adaptation of the proof above.

Theorem 4.2 (Convergence theorem for problems coupling two n.d.r.e.). Assume that for i = 1, 2, the
sequence of TCCP-structured reaction functionals (Fi,n)n∈N satisfies conditions (3.2), (3.3), (3.4), that

gi and hi belong to C1
loc

(
R,Rl

)
, and that ri,n and qi,n do not depend on the spatial variable. Let (un, vn)

be the unique solution of the system of n.d.r.e.

(Sn)



dun
dt

(t) = F1,n (t, un (t) , vn (t)) for a.e. t ∈ (0, T )

dvn
dt

(t) = F2,n (t, un (t) , vn (t)) for a.e. t ∈ (0, T )

ρ
1,n
≤ u0

n = un (0) ≤ ρ1,n, ρ2,n
≤ v0

n = vn (0) ≤ ρ2,n, u
0
n ∈ H1 (Ω) , v0

n ∈ H1 (Ω) .

Assume (Hs5), (Hs6), and

(Hs”3) u0
n ⇀ u0 and v0

n ⇀ v0 weakly in H1 (Ω);

(Hs”4) for i = 1, 2, (gi,n, hi,n) converges to (gi, hi) in C1
(

[ρ
1
, ρ1],Rl

)
× C1

(
[ρ

2
, ρ2],Rl

)
(i = 1), and

C1
(

[ρ
2
, ρ2],Rl

)
× C1

(
[ρ

1
, ρ1],Rl

)
(i = 2).

Then the solution (un, vn) uniformly converges in C
(
[0, T ], L2 (Ω)

)
× C

(
[0, T ], L2 (Ω)

)
to the unique

solution (u, v) of the system

(S)



du

dt
(t) = F1 (t, u (t) , v (t)) for a.e. t ∈ (0, T )

dv

dt
(t) = F2 (t, u (t) , v (t)) for a.e. t ∈ (0, T )

ρ
1
≤ u0 = u (0) ≤ ρ1, ρ2

≤ v0 = v (0) ≤ ρ2, u
0 ∈ H1 (Ω) , v0 ∈ H1 (Ω) .

The reaction functionals Fi : [0,+∞)× L2 (Ω)× L2 (Ω)→ RΩ, i = 1, 2, are defined for all t ∈ [0, T ],
all (U, V ) ∈ L2 (Ω)× L2 (Ω) and for a.e. x ∈ Ω, by

Fi (t, U, V ) (x) = fi (t, x, U (x) , V (x)) ,
f1 (t, ζ, ζ ′) = r1 (t)� h1 (ζ ′) · g1 (ζ) + q1 (x) ,
f2 (t, ζ, ζ ′) = r2 (t)� h2 (ζ) · g2 (ζ ′) + q2 (t) .

Moreover ρ
1
≤ u ≤ ρ1, ρ

2
≤ v ≤ ρ2, and

(
dun
dt ,

dun
dt

)
⇀

(
du
dt ,

dv
dt

)
weakly in L2

(
0, T, L2 (Ω)

)
×

L2
(
0, T, L2 (Ω)

)
.

Furthermore, if ri,n → ri strongly in L2
(
0, T,Rl

)
, and qi,n → qi strongly in L2 (0, T ), then

(
dun
dt ,

dun
dt

)
→(

du
dt ,

dv
dt

)
strongly in L2

(
0, T, L2 (Ω)

)
× L2

(
0, T, L2 (Ω)

)
.

Sketch of the proof. We follow again the proof of Theorem 4.1 and we only have to modify the proof of
Step 2. The proof of the relative compactness of Et = {un (t) : n ∈ N} and Ft = {vn (t) : n ∈ N} in
L2 (Ω) for t ∈ (0, T ], is established following the strategy of the proof of Theorem 4.1. Set Un (t) :=
∇un (t) and Vn (t) := ∇vn (t). We are reduced to prove that

sup
n∈N
‖Un (t) ‖XN < +∞ and sup

n∈N
‖Vn (t) ‖XN < +∞.

Take the distributional derivative with respect to the space variable of each term of two equations of
(Sn). We infer that (Un, Vn) solves the Cauchy system

dUn
dt

(t) = Cn (t)Vn (t) +Dn (t)Un (t) for a.e. t ∈ (0, T ) ,

dVn
dt

(t) = An (t)Un (t) +Bn (t)Vn (t) for a.e. t ∈ (0, T ) ,

Un (0) = ∇u0
n, Vn (0) = ∇v0

n,
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in C
(
[0, T ], XN

)
×C

(
[0, T ], XN

)
, where Cn and Dn are defined as An and Bn in the proof of Theorem

4.1, with an obvious adaptation. From (3.6), (Hs4) and (Hs5), we deduce that

sup
(t,x,n)∈[0,T ]×Ω×N

|Cn (t, x) | := C < +∞

and
sup

(t,x,n)∈[0,T ]×Ω×N
|Dn (t, x) | := D < +∞.

Hence, for all t ∈ (0, T ],
Un (t) = Un (0) +

ˆ t

0

(Cn (s)Vn (s) +Dn (t)Un (s)) ds,

Vn (t) = Vn (0) +

ˆ t

0

(An (s)Un (s) +Bn (t)Vn (s)) ds,

from which we deduce
‖Un (t) ‖XN ≤ ‖∇u0

n‖XN + C

ˆ t

0

‖Vn (s) ‖XN ds+D

ˆ t

0

‖Un (s) ‖XN ds,

‖Vn (t) ‖XN ≤ ‖∇v0
n‖XN +A

ˆ t

0

‖Un (s) ‖XN ds+B

ˆ t

0

‖Vn (s) ‖XN ds.

From Grönwall’s lemma and the first equation, we infer that for all t ∈ (0, T ]

‖Un (t) ‖XN ≤
(
‖∇u0

n‖XN + C

ˆ t

0

‖Vn (s) ‖XN ds

)
exp

(
DT
)
,

so that the second equation gives

‖Vn (t) ‖XN ≤ ‖∇v0
n‖XN +A

ˆ t

0

(
‖∇u0

n‖XN + C

ˆ s

0

‖Vn (σ) ‖XN dσ

)
exp

(
DT
)
ds

+B

ˆ t

0

‖Vn (s) ‖XN ds

≤ ‖∇v0
n‖XN +AT exp

(
DT
)
‖∇u0

n‖XN +
(
T exp

(
DT
)
AC +B

)ˆ t

0

‖Vn (s) ‖XN ds.

By applying again Grönwall’s lemma, we finally obtain that for all t ∈ [0, T ],

‖Vn (t) ‖XN ≤
(
‖∇v0

n‖XN +AT exp
(
DT
)
‖∇u0

n‖XN
)

exp
(
T
(
T exp

(
DT
)
AC +B

))
.

From (Hs”1) we infer that supn∈N ‖Vn (t) ‖XN < +∞. Switching the role of Vn and Un, we obtain that
supn∈N ‖Un (t) ‖XN < +∞. �

5. Stochastic homogenization of two components reaction diffusion systems

We place this section within the framework of stochastic homogenization introduced in [1]. In all
what follows,

(
Σ,A,P, (Tz)z∈ZN

)
is a discrete dynamical system, F denotes the σ-algebra of invariant

sets of A by the group (Tz)z∈ZN and, for every h in the space LP (Σ) of P-integrable functions, EFh
denotes the conditional expectation of h with respect to F (for the relevant definitions, we refer to [6]
or [4, Section 12.4] and references therein). We first specify the random diffusion part by recalling some
results obtained in [1, Section 5].

5.1. The random diffusion part. Given α > 0 and β > 0, denote by Convα,β the class of functions
g : RN ×RN → R, (x, ξ) 7→ g (x, ξ), satisfying conditions (D1), (D2), (D3), and (D4). We equip Convα,β
with the σ-algebra denoted by TConvα,β , trace of the product σ-algebra of RRN×RN , i.e. the smallest
σ-algebra on Convα,β such that all the evaluation maps

e(x,ξ) : g 7→ g (x, ξ) , (x, ξ) ∈ RN × RN

are measurable when R is endowed with its Borel σ-algebra.

For i = 1, 2, we are given a random convex integrand Wi : Σ × RN × RN → R, that is to say, a(
A⊗ B

(
RN
)
⊗ B

(
RN
)
,B (R)

)
measurable function such that for every ω ∈ Σ, the function Wi (ω, ., ·),
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belongs to the class Convα,β . Since for all (x, ξ) ∈ RN × RN , ω 7→Wi (ω, x, ξ) is (A,B (R)) measurable,

the map W̃i : Σ → Convα,β , ω 7→ Wi (ω, ., ·), is
(
A, TConvα,β

)
measurable, and we denote by P̃ its law,

that is P̃ = W̃#P.

We assume that Wi fulfills the following covariance property with respect to the dynamical system(
Σ,A,P, (Tz)z∈ZN

)
: for all z ∈ ZN

Wi (Tzω, x., ξ) = Wi (ω, x+ z, ξ) for a.e. x ∈ RN , for all ξ ∈ RN , and for P a.e. ω ∈ Σ.

For all g in Convα,β and all z ∈ ZN , let us set T̃zg (x, ·) = g (x+ z, ·). This defines a group
(
T̃z

)
z∈ZN

acting on the class Convα,β , and clearly, for all z ∈ ZN , T̃z : Convα,β → Convα,β is TConvα,β -measurable.

Then it is easy to show that the covariance property implies that the law P̃i of W̃i is invariant under the

group
(
T̃z

)
z∈ZN

, that is T̃z#P̃i = P̃i for all z ∈ ZN . Each random function Wi is said to be periodic in

law.

We write ε to denote a sequence (εn)n∈N of positive numbers εn going to zero when n→ +∞, and we

briefly write ε→ 0 instead of limn→+∞ εn = 0. For i = 1, 2, we consider Φi,ε : Σ×L2 (Ω) −→ R+∪{+∞}
defined by

Φi,ε (ω, u) =


ˆ

Ω

Wi

(
ω,
x

ε
,∇u

)
dx+

1

2

ˆ
∂Ω

aiu
2 dHN−1 −

ˆ
∂Ω

φiu dHN−1 if u ∈ H1 (Ω) ,

+∞ otherwise

where φi ∈ L2
HN−1

(∂Ω), ai ∈ L∞HN−1
(∂Ω) with ai ≥ 0 HN−1 a.e. in ∂Ω, and ai ≥ σi on Γi ⊂ ∂Ω with

HN−1 (Γi) > 0 for some σi > 0. These functionals model random energies concerning various steady-
states situations, where the small parameter ε accounts for the size of small and randomly distributed
heterogeneities in the context of a statistically homogeneous media.

Under above hypotheses on W̃i with respect to the discrete dynamical system
(
Σ,A,P, (Tz)z∈ZN

)
, using

the subadditive ergodic theorem ([4, Theorem 12.4.3]), together with [1, Proposition 4.2] we establish
that P-almost surely, the sequence of functional Φi,ε (ω, ·)ε>0 Mosco-converges to the integral functional

Φhomi (ω, ·), Φhomi : Σ× L2 (Ω) −→ R+ ∪ {+∞} where

Φhomi (ω, u) =


ˆ

Ω

Whom
i (ω,∇u) dx+

1

2

ˆ
∂Ω

aiu
2 dHN−1 −

ˆ
∂Ω

φiu dHN−1 if u ∈ H1 (Ω) ,

+∞ otherwise.

The density Whom
i is given, for P a.s. ω ∈ Σ, and for every ζ ∈ RN , by

Whom
i (ω, ξ) = lim

n→+∞
inf

{
1

nN

ˆ
nY

Wi (ω, y, ξ +∇u (y)) dy : u ∈ H1
0 (Y )

}
= inf

n∈N∗
EF inf

{
1

nN

ˆ
nY

Wi (ω, y, ξ +∇u (y)) dy : u ∈ H1
0 (Y )

}
,

where Y denotes the unit cell (0, 1)
N

. If
(
Σ,A,P, (Tz)z∈ZN

)
is ergodic, then Whom

i is deterministic and
given for P a.s. ω ∈ Σ by

Whom
i (ξ) = lim

n→+∞
inf

{
1

nN

ˆ
nY

Wi (ω, y, ξ +∇u (y)) dy : u ∈ H1
0 (Y )

}
= inf

n∈N∗
E inf

{
1

nN

ˆ
nY

Wi (ω, y, ξ +∇u (y)) dy : u ∈ H1
0 (Y )

}
.

For a proof we refer the reader to [4, Proposition 12.4.3, Theorem 12.4.7].

For P a.s. ω ∈ Σ, the subdifferential of Φi,ε (ω, ·) (actually its Gâteaux-derivative) is the operator

Ai,ε (ω) : L2 (Ω)→ 2L
2(Ω) defined for every ω ∈ Σ by

domAi,ε (ω) =
{
v ∈ H1 (Ω) : divDξWi

(
ω,

.

ε
,∇v

)
∈ L2 (Ω) , aiv +DξWi

(
ω,

.

ε
,∇v

)
· n = φi on ∂Ω

}
and, for all v ∈ domAi,ε (ω),

Ai,ε (ω) v = −divDξWi

(
ω,

.

ε
,∇v

)
.
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Similarly the subdifferential of Φhomi (ω, ·) is the multivalued operator Ahomi (ω) : L2 (Ω)→ 2L
2(Ω) defined

for every ω ∈ Σ by

domAhomi (ω) =
{
v ∈ H1 (Ω) : divDξW

hom
i (ω,∇v) ∈ L2 (Ω) , aiv +DξW

hom
i (ω,∇v) · n = φi on ∂Ω

}
and, for all v ∈ domAhomi (ω),

Ahomi (ω) v = −div∂Whom
i (ω,∇v) .

To shorten the notation, we write indifferently ∂ξW
hom (ω, ·) to denote the subdifferential of Whom (ω, ·)

or any of its elements. When Wi is ergodic, then Ahomi is deterministic and

Ahomi v = −divDξW
hom
i (∇v) .

Recall that from [4, Proposition 17.4.6], Ahomi (ω) is the P-almost sure graph limit of the operator
Ai,ε (ω). Furthermore, under the following condition on the Fenchel conjugate of ξ 7→Wi (ω, x, ξ):

(D*3) there exists γ∗ > 0 such that
〈
ξ∗1 − ξ∗2 , ξ1 − ξ2

〉
≥ γ∗|ξ1 − ξ2|2 for P a.s. ω ∈ Σ, for a.e. x ∈ RN ,

for all (ξ1, ξ2) ∈ RN × RN and all (ξ∗1 , ξ
∗
2) ∈ ∂ξW ∗i (ω, x, ξ1)× ∂ξW ∗i (ω, x, ξ2),

the density Whom
i (ω, ·) is Gâteaux-differentiable for P a.s. ω ∈ Σ, and is the pointwise limit of

DξWi,n (ω, ·) where Wi,n (ω, ξ) = inf
{

1
nN

´
nY

Wi (ω, y, ξ +∇u (y)) dy : u ∈ H1
0 (Y )

}
.

5.2. The random reaction parts. We are given a random TCCP-structured reaction functional, i.e.
a pair (F1, F2) with Fi : Σ × [0,+∞) × L2 (Ω) × L2 (Ω) → RΩ, i = 1, 2 defined by Fi (ω, t, u, v) (x) =
fi (ω, t, x, u (x) , v (x)) where

fi : Σ× [0,+∞)× RN × R× R→ R

is a
(
A⊗ B (R)⊗ B

(
RN
)
⊗ B (R)⊗ B (R) ,B (R)

)
measurable function such that for P a.s. ω ∈ Σ,

(f1 (ω, ·, ·, ·, ·) , f2 (ω, ·, ·, ·, ·)) is a TCSVR-function associated with (ri (ω, ·) , gi, hi, qi (ω, ·)). We assume
that ri ∈W 1,2

(
0, T, L2

loc

(
RN ,Rl

))
, qi ∈W 1,2

(
0, T, L2

loc

(
RN
))

, and for all bounded Borel sets B of RN ,
the real valued functions

ω 7→ ‖ri (ω, t, ·) ‖2L2(B,Rl) for all t ∈ [0, T ],

ω 7→ ‖qi (ω, t, ·) ‖2L2(B) for all t ∈ [0, T ],

ω 7→
ˆ T

0

∥∥∥∥dridt (ω, τ, ·)
∥∥∥∥2

L2(B,Rl)
dτ,

ω 7→
ˆ T

0

∥∥∥∥dqidt (ω, τ, ·)
∥∥∥∥2

L2(B)

dτ

belong to L1
P (Σ). We also assume that ri and qi, satisfy the covariance property with respect to the

dynamical system
(
Σ,A,P, (Tz)z∈ZN

)
, i.e. for all z ∈ ZN , all t ∈ [0,+∞), a.e. x ∈ RN and P a.s. ω ∈ Σ,

ri (ω, t, x+ z) = ri (Tzω, t, x) ,

qi (ω, t, x+ z) = qi (Tzω, t, x) .

We set fi,ε (ω, t, x, ζ, ζ ′) := fi
(
ω, t, xε , ζ, ζ

′), and define the reaction functional Fi,ε by setting

Fi,ε (ω, t, u, v) (x) = fi

(
ω, t,

x

ε
, u (x) , v (x)

)
.

Observe that in the expression of condition (TCCP ) for (f1 (ω, ·, ·, ·, ·) , f2 (ω, ·, ·, ·, ·)), the functions
f i, yi, ρi, and f

i
, y

i
, ρ

i
may depend on ω (we sometimes omit it to shorten the notation), and

that (F1,ε (ω, ·, ·, ·) , F2,ε (ω, ·, ·, ·)) is a TCSVR-functional whose condition (TCCP ) is exactly that of

(F1 (ω, ·, ·, ·) , F2 (ω, ·, ·, ·)), i.e. with f i, yi, ρi, and f
i
, y

i
, ρ

i
. Since y

i
and yi do not depend on ε, condi-

tion (3.4) is automatically satisfied. Condition (3.3) holds for P-a.s. ω ∈ Σ. More precisely, in Lemma
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[1, Lemma 5.1] we obtained the following estimates for P-a.s. ω ∈ Σ, and for i = 1, 2:

lim sup
ε→0

ˆ T

0

∥∥∥∥dridt (ω, t, ·ε)
∥∥∥∥
L2(Ω,Rl)

dt ≤

[
TLN (Ω) EI

ˆ T

0

∥∥∥∥dridτ (ω, τ, ·)
∥∥∥∥2

L2(Y,Rl)
dτ

] 1
2

,

lim sup
ε→0

ˆ T

0

∥∥∥∥dqidt (ω, t, ·ε)
∥∥∥∥
L2(Ω)

dt ≤

[
TLN (Ω) EI

ˆ T

0

∥∥∥∥dqidt (ω, τ, ·)
∥∥∥∥2

L2(Y )

dτ

] 1
2

.

Finally we assume that (3.5) holds for P-a.e. ω ∈ Σ, i.e.

aiρi (ω) ≤ φi ≤ aiρi (ω) .

5.3. Almost sure convergence to the homogenized system. Under above conditions, by combining
Theorem 3.1 together with the variational convergence of the sequence of random energies Φi,ε specified
above, we intend to analyze the asymptotic behavior in C

(
0, T, L2 (Ω)

)
×C

(
0, T, L2 (Ω)

)
of the solution

(uε (ω) , vε (ω)) of the random reaction-diffusion system when ε→ 0:

(Sε (ω))



duε (ω)

dt
(t) +A1,e (ω) (uε (ω, t)) = F1,ε (ω, t, uε (ω, t) , vε (ω, t)) for a.e. t ∈ (0, T ) ,

dvε (ω)

dt
(t) +A2,e (ω) (uε (ω, t)) = F2,ε (ω, t, uε (ω, t) , vε (ω, t)) for a.e. t ∈ (0, T ) ,

uε (ω, 0) = u0
ε (ω) , vε (ω, 0) = v0

ε (ω) , ρ
1

(ω) ≤ uε (ω) ≤ ρ1 (ω) , ρ
2

(ω) ≤ vε (ω) ≤ ρ2 (ω) ,

a1uε (ω, t) + divDξW1

(
ω, .ε ,∇uε (ω, t)

)
· n = φ1 on ∂Ω for all t ∈ [0, T ],

a2vε (ω, t) + divDξW2

(
ω, .ε ,∇vε (ω, t)

)
· n = φ2 on ∂Ω for all t ∈ [0, T ],

where we have expressed the domain of the subdifferential of each functional Φi (ω).

Theorem 5.1. For each ω ∈ Σ, let denote by (uε (ω) , vε (ω)) the unique solution in C
(
[0, T ], L2 (Ω)

)
×

C
(
[0, T ], L2 (Ω)

)
of the reaction-diffusion system (Sε (ω)). Assume that for P-a.s. ω ∈ Σ,

(
u0
ε (ω) , v0

ε (ω)
)

strongly converges to
(
u0 (ω) , v0 (ω)

)
in L2 (Ω) and that supε Φi,ε (ηε (ω, 0)) < +∞. Then, for P-a.s.

ω ∈ Σ, (uε (ω) , vε (ω)) uniformly converges in C
(
[0, T ], L2 (Ω)

)
×C

(
[0, T ], L2 (Ω)

)
to the unique solution

of the reaction-diffusion system

(
Shom (ω)

)



du (ω)

dt
(t) +Ahom1 (ω) (u (ω, t)) 3 Fhom1 (ω, t, u (ω, t) , v (ω, t)) for a.e. t ∈ (0, T )

dv (ω)

dt
(t) +Ahom2 (ω) (v (ω, t)) 3 Fhom2 (ω, t, u (ω, t) , v (ω, t)) for a.e. t ∈ (0, T )

u (ω, 0) = u0 (ω) , v (ω, 0) = v0 (ω) , ρ
1

(ω) ≤ u (ω) ≤ ρ1 (ω) , ρ
2

(ω) ≤ v (ω) ≤ ρ2 (ω) ,

a1u (ω, t) + divDξW
hom
1 (ω,∇u (ω, t)) · n 3 φ1 on ∂Ω for all t ∈ [0, T ],

a2v (ω, t) + divDξW
hom
2 (ω,∇v (ω, t)) · n 3 φ2 on ∂Ω for all t ∈ [0, T ],

where Fhomi is given by Fhomi (ω, t, u, v) (x) = fhomi (ω, t, x, u (x) , v (x)) with

fhom1 (ω, t, ζ, ζ ′) = rhom1 (ω, t)� h1 (ζ ′) · g1 (ζ) + qhom1 (ω, t) ,

fhom2 (ω, t, ζ, ζ ′) = rhom2 (ω, t)� h2 (ζ) · g2 (ζ ′) + qhom2 (ω, t)

rhomi (ω, t) = EF

(ˆ
(0,1)N

ri (ω, t, y) dy

)
,

qhomi (ω, t) = EF

(ˆ
(0,1)N

qi (ω, t, y) dy

)
.
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Moreover, for P-a.e. ω ∈ Σ,
(
duε(ω)
dt , dvε(ω)

dt

)
⇀
(
du(ω)
dt , du(ω)

dt

)
weakly in L2

(
0, T, L2 (Ω)

)
×L2

(
0, T, L2 (Ω)

)
and y

1
(ω, T ) ≤ u (ω) ≤ y1 (ω, T ), y

2
(ω, T ) ≤ v (ω) ≤ y2 (ω, T ).

When the the dynamical system
(
Σ,A,P, (Tz)z∈ZN

)
is ergodic, the initial conditions are deterministic,

i.e. u0
ε (ω) = u0

ε and v0
ε (ω) = v0

ε for P-a.s. ω ∈ Σ, together with ρ
i
, ρi, f i, and f i, then

(
Shom

)
is

deterministic and the expectation operator must be replaced by the mathematical expectation operator in
formulas expressing ri and qi.

If in addition Wi satisfies (D*3), then div∂ξW
hom
i (ω,∇u (t)) or div∂ξW

hom
i (∇u (t)) are univalent

equal to divDξW
hom
i (ω,∇u (t)) or divDξW

hom
i (∇u (t)), and the differential inclusions are equalities.

Proof. The proof is a straightforward consequence of Theorem 3.1, and [1, Lemma 5.1, Lemma 5.2]. �

5.4. The case of a coupling between a random r.d.e. and a random n.d.r.e. We place ourselves
within the framework of Section 4. We assume that the random reaction functional F1 fulfills the
conditions of Section 5.2 and that f2 does not depend on the space variable. Note that under these
conditions, F2,ε (ω, ·, ·, ·) = F2 (ω, ·, ·, ·). Theorem 5.2 below whose proof is a direct consequence of
Theorem 4.1 and [1, Lemma 5.1, Lemma 5.2], expresses the homogenized problem of the following
random system:

(Sε (ω))



duε (ω)

dt
(t) +Ae (ω) (uε (ω, t)) = F1,ε (ω, t, uε (ω, t) , vε (ω, t)) for a.e. t ∈ (0, T ) ,

dvε (ω)

dt
(t) = F2 (ω, t, uε (ω, t) , vε (ω, t)) for a.e. t ∈ (0, T ) ,

uε (ω, 0) = u0
ε (ω) , vε (ω, 0) = v0

ε (ω) , ρ
1

(ω) ≤ uε (ω) ≤ ρ1 (ω) , ρ
2

(ω) ≤ vε (ω) ≤ ρ2 (ω) ,

a1uε (ω, t) + divDξW1

(
ω, ·ε ,∇uε (ω, t)

)
· η = φ1 on ∂Ω for all t ∈ [0, T ].

Theorem 5.2. For each ω ∈ Σ, let denote by (uε (ω) , vε (ω)) the unique solution in C
(
[0, T ], L2 (Ω)

)
×

C
(
[0, T ], L2 (Ω)

)
of the system (Sε (ω)). Assume that for P-a.s. ω ∈ Σ,

(
u0
ε (ω) , v0

ε (ω)
)

strongly

converges to
(
u0 (ω) , v0 (ω)

)
in L2 (Ω) and that supε Φε (ηε (ω, 0)) < +∞. Then, for P-a.s. ω ∈ Σ,

(uε (ω) , vε (ω)) uniformly converges in C
(
[0, T ], L2 (Ω)

)
×C

(
[0, T ], L2 (Ω)

)
to the unique solution of the

system

(
Shom (ω)

)



du (ω)

dt
(t) +Ahom (ω) (u (ω, t)) 3 Fhom1 (ω, t, u (ω, t) , v (ω, t)) for a.e. t ∈ (0, T )

dv (ω)

dt
(t) = F2 (ω, t, u (ω, t) , v (ω, t)) for a.e. t ∈ (0, T )

u (ω, 0) = u0 (ω) , v (ω, 0) = v0 (ω) , ρ
1

(ω) ≤ u (ω) ≤ ρ1 (ω) , ρ
2

(ω) ≤ v (ω) ≤ ρ2 (ω) ,

a1u (ω, t) + div DξW
hom
1 (ω,∇u (ω, t)) · n 3 φ1 on ∂Ω for all t ∈ [0, T ],

where Fhom1 is given by Fhom1 (ω, t, u, v) (x) = fhomi (ω, t, x, u (x) , v (x)) with

fhom1 (ω, t, ζ, ζ ′) = rhom1 (ω, t)� h1 (ζ ′) · g1 (ζ) + qhom1 (ω, t) ,

rhom1 (ω, t) = EF

(ˆ
(0,1)N

r1 (ω, t, y) dy

)
,

qhom1 (ω, t) = EF

(ˆ
(0,1)N

q1 (ω, t, y) dy

)
.

Moreover, for P-a.e. ω ∈ Σ,
(
duε(ω)
dt , dvε(ω)

dt

)
⇀
(
du(ω)
dt , du(ω)

dt

)
weakly in L2

(
0, T, L2 (Ω)

)
×L2

(
0, T, L2 (Ω)

)
and y

1
(ω, T ) ≤ u (ω) ≤ y1 (ω, T ), y

2
(ω, T ) ≤ v (ω) ≤ y2 (ω, T ).
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When the the dynamical system
(
Σ,A,P, (Tz)z∈ZN

)
is ergodic, the initial conditions are deterministic,

i.e.
(
u0
ε (ω) , v0

ε (ω)
)

=
(
u0
ε, v

0
ε

)
for P-a.e. ω ∈ Σ, F2 is deterministic together with ρ

i
, ρi, f i, and f i, then(

Shom
)

is deterministic and the expectation operator must be replaced by the mathematical expectation

operator in formulas expressing rhom1 and qhom1 .

If in addition W satisfies (D*3), then ∂ξW
hom (ω,∇u (t)) or ∂ξW

hom (∇u (t)) are univalent equal to
DξW

hom (ω,∇u (t)) or DξW
hom (∇u (t)), and the differential inclusions are equalities.

Remark 5.1. By applying Theorem 4.2 and [1, Lemma 5.1, Lemma 5.2], one can easily express the ho-
mogenized problem of a random system of two non diffusive reaction equations with obvious adaptations.

5.5. Application to stochastic homogenization of a prey-predator random model with sat-
uration effect. For the notation refer to Example 2.3. For each i = 1, 2, we are given two func-
tions W±i in Convα,β,γ , where W−i , W+

i do not depend on x, and satisfy (D*3), and two functions
α±i : [0, T ] → (0,+∞) in W 1,2 (0, T ) for which there exist positive real numbers α±1 , α±2 , and α±2 such
that  α±1 (t) ≥ α±1 > 0;

α±2 ≥ α
±
2 (t) ≥ α±2 > 0.

We also consider two functions K± : [0, T ] → (0,+∞) in W 1,2 (0, T ) satisfying K (t)
± ≥ K± > 0 for

some positive real numbers K±, and two functions a± : [0, T ]→ (0,+∞) in W 1,2 (0, T ) for which there
exist a constant a± > 0 such that a± ≥ a± (t) > 0.

We now consider the random environment described in [1, Appendix B2] with N = 2. Recall that the
spherical heterogeneities of size of order ε have centers independently randomly distributed with a given
frequency λ, following a Poisson point process with intensity λ. This random environment is modeled
by an ergodic dynamical system

(
Σ,A,Pλ, (Tx)x∈R2

)
where Txω = ω − x, and, for every bounded Borel

set B, and every k ∈ N,

Pλ (# (Σ ∩B) = k) = λkL2(B)
k exp (−λLN (B))

k!

so that Eλ [#Σ ∩B] = λLN (B). Given R > 0, define the random density Wi associated with the random
diffusion part, by

Wi (ω, x, ξ) =

W
−
i (ξ) if x ∈

⋃
i∈N

BR (ωi) ,

W+
i (ξ) otherwise.

Similarly we set

αi (ω, t, x) =

α
−
i (t) if x ∈

⋃
j∈N

BR (ωj) ,

α+
i (t) otherwise.

Kcar (ω, t, x) =

K
− (t) if x ∈

⋃
j∈N

BR (ωj) ,

K+ (t) otherwise.

a (ω, t, x) =

a
− (t) if x ∈

⋃
j∈N

BR (ωj) ,

a+ (t) otherwise.

We define the following constants

αi = inf
t∈[0,+∞)

min
(
α−i (t) , α+

i (t)
)
, i = 1, 2;

α2 = sup
t∈[0,+∞)

max
(
α−2 (t) , α+

2 (t)
)

;

a = sup
t∈[0,+∞)

max
(
a− (t) , a+ (t)

)
;

K = inf
t∈[0,+∞)

min
(
K− (t) ,K+ (t)

)
.
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Let b and c be two positive constants and assume that the the extinction threshold satisfies µext :=
c
α1α2

aα2
≥ 4. Then, choosing ρ

1
, ρ1 and ρ2 fulfilling (2.3), we consider the following system stemming

from Example 2.3:

(Sε (ω))



duε
dt

(ω, t)− divDξW1

(
ω,
·
ε
,∇uε (ω, t)

)
= α1

(
ω, t,

.

ε

)
uε (ω, t)

(
1− uε (ω, t)

Kcar

(
ω, t, .ε

))

−a
(
ω, t, ·ε

)
vε (ω, t) (1− exp (−buε (ω, t)))

for a.e. t ∈ (0, T ) ,

dvε (ω)

dt
(t)− divDξW2

(
ω,
·
ε
,∇vε (ω, t)

)
= α2

(
ω, t,

.

ε

)
vε (ω, t)

(
1− c vε (ω, t)

uε (ω, t)

)
for a.e. t ∈ (0, T ) ,

uε (ω, 0) = u0
ε (ω) ∈ H1 (Ω) , vε (ω, 0) = v0

ε (ω) ∈ H1 (Ω) , ρ
1
≤ u0

ε (ω) ≤ ρ1, 0 ≤ v0
ε (ω) ≤ ρ2,

uε (ω, t) = 0 on Γ1, DξW1

(
ω, ·ε ,∇uε (ω, t)

)
· n = 0 on ∂Ω \ Γ1,

vε (ω, t) = 0 on Γ2, DξW2

(
ω, ·ε ,∇vε (ω, t)

)
· n = 0 on ∂Ω \ Γ2.

According to Proposition 2.3 and Theorem 2.1, (Sε (ω)) admits a unique solution (uε (ω, ·) , vε (ω, ·))
in the space C

(
[0, T ], L2 (Ω)

)
× C

(
[0, T ], L2 (Ω)

)
, which satisifies ρ

1
≤ uε (ω, t) ≤ ρ1 exp (α1t) and

0 ≤ vε (ω, t) ≤ ρ2 for all t ∈ [0, T ]. Furthermore, uε (ω, ·) and vε (ω, ·) admit a right derivative at each
t ∈ (0, T ). The system models the evolution of two species with density uε (ω, ·) and vε (ω, ·) of a prey
and a predator respectively, whose birth growth rate, maximum carrying capacity, and saturation effect,
take two values at random depending on whether the species reside in the environment made up of the
union of small balls of size ε or not (refer to the comments of Example 2.3). The homogenized system is
expressed in the Proposition below. It is interesting to note that the effective growth rate αhomi of each two

species is the mean value of αi with respect to the product probability measure L2b(0, 1)
2 ⊗Pλ, while the

effective maximum carrying capacity Khom
car is now a function of the growth rate α1 and Kcar, illustrating

the interplay between the growth rate of the prey and the maximum carrying capacity of the environment
when the size of the spatial heterogeneities, with a constant frequency λ, is very small compared with the
size of the domain 5.

Proposition 5.1. Assume that the initial conditions are deterministic, that
(
u0
ε, v

0
ε

)
strongly converges

to
(
u0, v0

)
in L2 (Ω) and that supε Φ1,ε

(
u0
ε

)
< +∞, supε Φ1,ε

(
u0
ε

)
< +∞. Then, for P-a.s. ω ∈ Σ,

(uε, vε) uniformly converges in C
(
[0, T ], L2 (Ω)

)
× C

(
[0, T ], L2 (Ω)

)
to the unique solution (u, v) of the

deterministic reaction-diffusion system

(S)



du

dt
(t)− divDξW

hom
1 (∇u (t)) = αhom1 (t)u (t)

(
1− u (t)

Khom
car (t)

)
−ahom (t) v (t) (1− exp (−bu (t))) for a.e. t ∈ (0, T ) ,

dv

dt
(t)− divDξW

hom
2 (∇v (t)) = αhom2 (t) v (t)

(
1− c v (t)

u (t)

)
for a.e. t ∈ (0, T ) ,

u (0) = u0 ∈ H1 (Ω) , v (0) = v0 ∈ H1 (Ω) , ρ
1
≤ u0 ≤ ρ1, 0 ≤ v0 ≤ ρ2,

u (t) = 0 on Γ1, DξW
hom
1 (∇u (t)) · n = 0 on ∂Ω \ Γ1,

v (t) = 0 on Γ2, DξW
hom
2 (∇v (t)) · n = 0 on ∂Ω \ Γ2

5To shorten the notation, for i = 1, 2, we assume that W±i satisfy (D*3) so that Whom
i is Gâteaux differentiable.
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where

αhomi (t) = E

(ˆ
(0,1)2

αi (·, t, y) dy

)

= α−i (t) +
(
α+
i (t)− α−i (t)

)
exp

(
−λπR2

)
i = 1, 2;

ahom (t) = E

(ˆ
(0,1)2

a (·, t, y) dy

)

= a− (t) +
(
a+ (t)− a− (t)

)
exp

(
−λπR2

)
;

Khom
car (t) =

E

(ˆ
(0,1)2

α1 (·, t, y) dy

)

E

(ˆ
(0,1)2

α1 (·, t, y)

Kcar (·, t, y)
dy

)

=
α−1 (t) +

(
α+

1 (t)− α−1 (t)
)

exp
(
−λπR2

)
α−1 (t)
K−(t) +

(
α+

1 (t)
K+(t) −

α−1 (t)
K−(t)

)
exp (−λπR2)

.

Furthermore ρ
1
≤ u ≤ ρ1 exp (α1T ) and 0 ≤ v ≤ ρ2.

Proof. Apply Theorem 5.1 with

f1 (ω, t, x, ζ, ζ ′) = α1 (ω, t, x) ζ

(
1− ζ

Kcar (ω, t, x)

)
− a (ω, t, x) ζ ′ (1− exp (−bζ))

= α1 (ω, t, x) ζ − α1 (ω, t, x)

Kcar (ω, t, x)
ζ2 − a (ω, x, t) ζ ′ (1− exp (−bζ)) ,

f2 (ω, t, x, ζ, ζ ′) = α2 (ω, t, x) ζ ′ − cα2 (ω, t, x)
ζ ′2

ζ
.

Then

fhom1 (t, ζ, ζ ′) = E

(ˆ
(0,1)2

α1 (·, t, y) dy

)
ζ −E

(ˆ
(0,1)2

α1 (·, t, y)

Kcar (·, t, y)
dy

)
ζ2

−E

(ˆ
(0,1)2

a (·, t, y) dy

)
ζ ′ (1− exp (−bζ))

which can be written, according to the structure of the reaction function of the system (Sε),

fhom1 (t, ζ, ζ ′) = E

(ˆ
(0,1)2

α1 (·, t, y) dy

)
ζ

1−
E
(´

(0,1)2
α1(·,t,y)
Kcar(·,t,y) dy

)
E
(´

(0,1)2
α1 (·, t, y) dy

)ζ


−E

(ˆ
(0,1)2

a (·, t, y) dy

)
ζ ′ (1− exp (−bζ))

= αhom1 (t) ζ

(
1− ζ

Khom
car (t)

)
− ahom (t) ζ ′ (1− exp (−bζ)) .

Similarly we have

fhom2 (t, ζ, ζ ′) = αhom2 (t) ζ ′ − cαhom2 (t)
ζ ′2

ζ

= αhom2 (t) ζ ′
(

1− cζ
′

ζ

)
.
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It remains to compute αhomi , ahom and Khom
car . Observe the equivalence

∃ω ∈ Σ s. t. y ∈
⋃
i∈N

BR (ωi) ⇐⇒ # (Σ ∩BR (y)) ≥ 1.

Then using Fubini’s theorem, we infer that

αhomi

= α+
i (t)

ˆ
Σ

ˆ
(0,1)2

1[#(Σ∩BR(y))=0] (ω, y) dy dP (ω) + α−i (t)

ˆ
Σ

ˆ
(0,1)2

1[#(Σ∩BR(y))≥1] (ω, y) dy dP (ω)

= α+
i (t)

ˆ
(0,1)2

ˆ
Σ

1[#(Σ∩BR(y))=0] (ω, y) dP (ω) dy + α−i (t)

ˆ
(0,1)2

ˆ
Σ

1[#(Σ∩BR(y))≥1] (ω, y) dP (ω) dy

= α+
i (t) exp

(
−λπR2

)
+ α−i (t)

((
1− exp

(
−λπR2

)))
= α−i (t) +

(
α+
i (t)− α−i (t)

)
exp

(
−λπR2

)
.

We express ahom and Khom
car by a similar calculation. �

Appendix A. Proofs of Propositions 2.1–2.5

A.1. Proof of Proposition 2.1. Clearly the functions fi satisfy the structure condition of TCCP-
structured reaction functions with l = 3 and

ri (t, x) =

(
αi (t, x) ,− αi (t, x)

Ki (t, x)
,−ai,i+1

αi (t, x)

Ki (t, x)

) (
i+ 1 ∈ Z

2Z

)
,

h1 (ζ ′) = (1, 1, ζ ′) , h2 (ζ) = (1, 1, ζ) ,
g1 (ζ) =

(
ζ, ζ2, ζ

)
, g2 (ζ ′) =

(
ζ ′, ζ ′2, ζ ′

)
.

Let us show that condition (TCCP ) is fulfilled. Take f
i

= 0, and ρ
i

= 0. Then y
i

= 0 and

f1

(
t, x, y

1
(t) , ζ ′

)
= 0 ≥ f

1

(
t, y

1
(t)
)

for all ζ ′ ∈ R. Similarly f2

(
t, x, ζ, y

2
(t)
)

= 0 ≥ f
1

(
t, y

2
(t)
)

for

all ζ ∈ R.

On the other hand take f1 (t, ζ) = α1ζ, where ρ1 > 0 is any real number. Similarly f2 (t, ζ ′) =
α2ζ

′, where ρ2 > 0 is any real number. Then yi (t) = ρi exp (αit) and f1 (t, x, y1 (t) , ζ ′) ≤ α1y1 (t) =
f1 (t, y1 (t)) for all ζ ′ ≥ 0. Similarly f2 (t, x, ζ, y2 (t)) ≤ α2y2 (t) = f2 (t, y2 (t)) for all ζ ≥ 0. This proves
the claim since [y

i
(T ) , yi (T )] = [0, ρi exp (αiT )].

A.2. Proof of Proposition 2.2. As in the previous example, the functions fi satisfy the structure
condition of TCCP-structured reaction functions with l = 3 and

ri (t, x) =

(
αi (t, x) ,− αi (t, x)

Ki (t, x)
, bi,i+1

αi (t, x)

Ki (t, x)

) (
i+ 1 ∈ Z

2Z

)
,

h1 (ζ ′) = (1, 1, ζ ′) , h2 (ζ) = (1, 1, ζ) ,
g1 (ζ) =

(
ζ, ζ2, ζ

)
, g2 (ζ ′) =

(
ζ ′, ζ ′2, ζ ′

)
.

Let us show that condition (TCCP ) is fulfilled. Take f
i

= 0, and ρ
i

= 0. Then y
i

= 0 and

f1

(
t, x, y

1
(t) , ζ ′

)
= 0 ≥ f

1

(
t, y

1
(t)
)

for all ζ ′ ∈ R. Similarly f2

(
t, x, ζ, y

2
(t)
)

= 0 ≥ f
1

(
t, y

2
(t)
)

for

all ζ ∈ R.

Because of the signs positive preceding the b’s, we cannot proceed as in the previous example for
completing the condition (TCCP ). We take f i = 0 and look for yi in the form of constants ρi > 0. For
all ζ ′ ∈ [0, ρ2] we have

f1 (t, x, ρ1, ζ
′) = α1 (t, x) ρ1

(
1− ρ1

K1 (t, x)
+ b1,2

ζ ′

K1 (t, x)

)
≤ α1 (t, x) ρ1

(
1− ρ1

K1

+ b1,2
ρ2

K1

)
. (A.1)

Take ρ1 and ρ2 positive, satisfying

1− ρ1

K1

+ b1,2
ρ2

K1

≤ 0. (A.2)
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With this choice, from (A.1) and (A.2), we infer that for all ζ ′ ∈ [0, ρ2]

f1 (t, x, y1 (t) , ζ ′) ≤ 0 = f1 (t, y1 (t)) .

Similarly, with ρ1 and ρ2 positive, satisfying

1− ρ2

K2

+ b2,1
ρ1

K2

≤ 0, (A.3)

for all ζ ∈ [0, ρ1], we have

f2 (t, x, ζ, ρ2) ≤ 0 = f2 (t, y2 (t)) .

Therefore, ρi > 0, i = 1, 2, satisfying the system of two inequalities (A.2) and (A.3), i.e.

ρ1 ≥
K1K1

K1 − b1,2K1

,

ρ2 ≥
K2K2

K2 − b2,1K2

,

are suitable for (TCCP ) to be fulfilled. It is easy to see that ρ1 = ρ2 ≥ max
(

K1K1

K1−b1,2K1
,

K2K2

K2−b2,1K2

)
is

a solution provided that
K1K1

K1−b1,2K1
> 0 and

K2K2

K2−b2,1K2
> 0. These two conditions are ensured by (2.2).

A.3. Proof of Proposition 2.3. Fix δ := ρ
1
> 0 satisfying 0 < ρ

1
< K, and chosen later. Set

f2,δ (t, x, ζ, ζ ′) =

{
f2 (t, x, ζ, ζ ′) if ζ ≥ δ
f2 (t, x, δ, ζ ′) if ζ < δ.

At the end of the proof, we show that f2,δ = f2 for ζ and ζ ′ in suitable intervals. We claim that the pair
(f1, f2,δ) satisfies the structure condition of TCCP-structured reaction functions with l = 3: indeed take

r1 (t, x) =

(
α1 (t, x) ,

α1 (t, x)

Kcar (t, x)
,−a (t, x)

)
,

h1 (ζ ′) = (1, 1, ζ ′) ,
g1 (ζ) =

(
ζ,−ζ2, 1− exp (−bζ)

)
;

and
r2 (t, x) = (α2 (t, x) ,−cα2 (t, x) , 0) ,

h2,δ (ζ) =


(

1,
1

ζ
, 0

)
if ζ ≥ δ(

1,
1

δ
, 0

)
if ζ < δ,

g2 (ζ ′) =
(
ζ ′, ζ ′2, 0

)
.

It remains to show that (f1, f2,δ) fulfills condition (TCCP ). First take ρ
2

= 0, f
2,δ

= 0, then y
2

= ρ
2

and f2,δ

(
t, x, ζ, y

2
(t)
)

= 0 ≥ f
2,δ

(
t, y

2
(t)
)

for all ζ ∈ R. To complete condition (TCCP ), we look for
ρ2 > 0, f2,δ = 0, y2 = ρ2;

ρ
1
, f

1
= 0, y

1
= ρ

1
;

ρ1 > ρ
1
, f1 (t, ξ) = α1ξ, y1 (t) = ρ1 exp (α1t) .

We first look for ρ2 satisfying

f2,δ (t, x, ζ, ρ2) ≤ ρ2

(
α2 − cα2

ρ2

ρ1

)
≤ 0 = f2 (t, ρ2) ,

for all ζ ≥ ρ
1
, which furnishes the first condition:

α2

cα2

ρ1 ≤ ρ2. (A.4)
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Secondly, we look for ρ
1
, 0 < ρ

1
< K, satisfying

f1

(
t, x, ρ

1
, ζ ′
)

= α1 (t, x) ρ
1

(
1−

ρ
1

Kcar (t, x)

)
− a (x, t) ζ ′

(
1− exp

(
−bρ

1

))
≥ α1ρ1

(
1−

ρ
1

K

)
− aζ ′ ≥ 0

for all ζ ′ ∈ [0, ρ2], which requires the following second condition

ρ2 ≤
α1

a
ρ

1

(
1−

ρ
1

K

)
. (A.5)

Combining (A.4) and (A.5), we infer that the choice of ρ2, ρ1 and ρ
1

is conditioned by the following
inequality

α2

cα2

ρ1 ≤
α1

a
ρ

1

(
1−

ρ
1

K

)
,

or equivalently

ρ1 ≤ µext ρ1

(
1−

ρ
1

K

)
. (A.6)

Hence, we can choose ρ2 with

ρ2 ∈
[
α2

cα2

ρ1,
α1

a
ρ

1

(
1−

ρ
1

K

)]
.

which is the last condition in (2.3).

Set ρ1 = θρ
1

where θ ≥ K

ρ
1

(recall that
K

ρ
1

> 1). Then (A.6) and the previous condition on θ are

equivalent to
K

ρ
1

≤ θ ≤ µext
(

1−
ρ

1

K

)
,

so that the possible choice of θ and 0 < ρ
1
≤ K is governed by

1

µext
≤
ρ

1

K

(
1−

ρ
1

K

)
(A.7)

Since µext ≥ 4, condition (A.7) is fulfilled by any ρ
1
∈

[
K

1−
√

1− 4
µext

2 ,K
1+

√
1− 4

µext

2

]
which is the first

condition in (2.3). The choice of θ is then given by

θ ∈

[
K

ρ
1

, µext

(
1−

ρ
1

K

)]
. (A.8)

which is the second condition in (2.3).

It is easily checked that ρ1 = θρ
1

satisfies

f1 (t, x, y1 (t) , ζ ′) ≤ α1y1 (t) = f1 (t, y1 (t))

for all ξ′ ∈ [y
2

(T ) = 0, ρ2 = y2 (T )]. Note that f2,δ = f2 for (ζ, ζ ′) ∈ [ρ
1
, ρ1 exp (α1t)] × [0, ρ2]. This

ends the proof.

A.4. Proof of Proposition 2.4. Clearly the pair (f1, f2) satisfies the structure condition of TCCP-
structured reaction functions with l = 1. Let us show that (f1, f2) fulfills condition (TCCP ). From the
fact that f1 (t, x, 0, ζ ′) = f2 (t, x, ζ, 0) = 0 we see that f

1
= f

2
= 0 and ρ

1
= ρ

2
= 0, y

1
= y

2
= 0 are

suitable. Take ρ1 > 0 arbitrary and f1 = 0, y1 = ρ1. We have

f1 (t, x, y1 (t) , ζ ′) ≤ 0 = f1 (t, y1 (t))

for all ζ ′ ≥ 0. Finally, from inequality

f2 (t, x, ζ, ζ ′) = α2 (t, x) ζp exp

(
γ − γ

ζ ′

)
≤ α2ρ

p
1 exp (γ)



CONVERGENCE OF TWO COMPONENTS NONLINEAR REACTION-DIFFUSION SYSTEMS 33

fulfilled for all ζ ′ > 0 and all ζ ∈ [0, y1 (T ) = ρ1], the constant function f2 (t, ζ ′) = α2ρ
p
1 exp (γ), and

the affine function y2 (t) = α2ρ
p
1t exp (γ) + ρ2, with ρ2 > 0 arbitrary, are suitable to complete condition

(TCCP ).

A.5. Proof of Proposition 2.5. The pair (f1, f2) satisfies the structure condition of TCCP-structured
reaction functions with l = 3: indeed, take

r1 (t, x) = (α1 (t, x) ,−α1 (t, x) a (t, x) ,−b (t, x)) ,
h1 (ζ ′) = (1, 1, ζ ′) ,
g1 (ζ) =

(
ζ2 (1− ζ) , ζ (1− ζ) , 1

)
;

and
r2 (t, x) = (α2 (t, x) ,−c (t, x) , 0) ,
h2 (ζ) = (ζ, 1, 0) ,
g2 (ζ ′) = (1, ζ ′, 0) .

Let us show that (f1, f2) fulfills condition (TCCP ) with ρ
i
ρi, and f

i
, f i given by (2.4). We take y

i
= ρ

i
,

yi = ρi and ρ
i

and ρi must satisfy

f1

(
t, x, ρ

1
, ζ ′
)
≥ 0, ∀ζ ′, ρ

2
≤ ζ ′ ≤ ρ2, (A.9)

f1 (t, x, ρ1, ζ
′) ≤ 0, ∀ζ ′, ρ

2
≤ ζ ′ ≤ ρ2, (A.10)

f2

(
t, x, ζ, ρ

2

)
≥ 0, ∀ζ, ρ

1
≤ ζ ≤ ρ1, (A.11)

f2 (t, x, ζ, ρ2) ≤ 0, ∀ζ, ρ
1
≤ ζ ≤ ρ1. (A.12)

We look for ρ
i
≤ 0 for i = 1, 2, ρ1 ≥ 1, and ρ2 > 0. For all ζ ∈ [ρ

1
, ρ1] we have

f2

(
t, x, ζ, ρ

2

)
= α2ζ − cρ2

≥ α2ρ1
− cρ

2
,

then, for obtaining (A.11), it suffices to set

ρ
2

=
α2

c
ρ

1
.

Similarly, for all ζ ∈ [ρ
1
, ρ1] we have

f2 (t, x, ζ, ρ2) = α2ζ − cρ2

≤ α2ρ1 − cρ2,

so that, for obtaining (A.12), it suffices to set

ρ2 =
α2

c
ρ1.

On the other hand, for all ζ ′ ∈ [ρ
2
, ρ2] = [α2

c ρ1
, α2

c ρ1], we have (recall that ρ1 ≥ 1 > a)

f1 (t, x, ρ1, ζ
′) = α1ρ1 (ρ1 − a) (1− ρ1)− bζ ′

≤ α1ρ1 (ρ1 − a) (1− ρ1)− bα2

c
ρ

1

so that, for obtaining (A.10), it suffices to take ρ
1

and ρ1 satisfying

ρ1 (ρ1 − a) (1− ρ1) ≤ γ ρ
1
. (A.13)

By a similar calculation, for obtaining (A.9), it suffices to take ρ
1

and ρ1 satisfying

ρ
1

(
ρ

1
− a
)(

1− ρ
1

)
≥ γ ρ1. (A.14)

Set ρ
1

= −γρ1. Then (A.13) and (A.14) yield
(ρ1 − a) (ρ1 − 1) ≥ γ2;(
ρ

1
− a
)(

ρ
1
− 1
)
≥ γ

γ .
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The first inequality is fulfilled for ρ1 ≥ γ + 1, the second for ρ
1
≤ a −

√
γ
γ , i.e. for ρ1 ≥

√
γ
γ−a
γ . Hence

(A.9) and (A.10) are satisfied for ρ1 satisfying the first condition in (2.4).

Appendix B. An estimate for the right derivative

For a proof of the following Lemma, refer to [1, Lemma 3.3].

Lemma B.1. Let X be a Hilbert space, T > 0, G ∈W 1,1 (0, T,X) and Φ : X → R ∪ {+∞} be a convex
proper lower semicontinuous functional. Let u satisfy

du

dt
(t) + ∂Φ (u (t)) 3 G (t) for a.e. t ∈ (0, T ) ,

u (0) ∈ dom (∂Φ).

(B.1)

Then the right derivative of u satisfies for all t ∈]0, T ] the following estimate∥∥∥∥d+u

dt
(t)

∥∥∥∥
X

≤ 1

t

ˆ t

0

∥∥∥∥dudt (s)

∥∥∥∥
X

ds+

ˆ t

0

∥∥∥∥dGdt (s)

∥∥∥∥
X

ds.

Appendix C. Basic notions on variational convergences

Let (T, τ) be a topological space, (Fn, F )n∈N a sequence of functionals mapping T into R∪{+∞}. The
following notion of convergence, equivalent to the convergence of the epigraph of Fn to the epigraph of F
in the Kuratowski-Painlevé sense, is of central importance in Calculus of Variations and Homogenization
theory.

Definition C.1. The sequence (Fn)n∈N (sequentially) Γ-converges to F at x in T iff both assertions
hold:

(i) there exists a sequence (xn)n∈N of T, converging to x, such that

F (x) ≥ lim sup
n→+∞

Fn (xn) ,

(ii) for every sequence (yn)n∈N, converging to x in T,

F (x) ≤ lim inf
n→+∞

Fn (yn) .

When (i) and (ii) hold for every x in T, we say that (Fn)n Γ-converges to F in (T, τ) and we write
F = Γ− limFn.

The main interest of this concept is its variational nature made precise in the first item of the following
proposition.

Proposition C.1. Assume that (Fn)n Γ-converges to F.

(i) Let xn ∈ T be such that Fn (xn) ≤ inf{ Fn (x) : x ∈ T } + εn, where εn > 0, εn → 0. Assume
furthermore that {xn, n ∈ N} is τ -relatively compact, then any cluster point x of {xn, n ∈ N}
is a minimizer of F and

lim
n→+∞

inf{Fn (x) : x ∈ T} = F (x) .

(ii) If G : X → R is continuous, then (Fn +G)n Γ to F +G.

For a proof and more about Γ-convergence, we refer the reader to Attouch [3] and Dal Maso [8]. We
now consider the case where (T, τ) is a Banach space (V, ‖.‖). Being endowed with strong and weak
topology, we have two notions of Γ-convergence. Given a sequence (Φn)n∈N of functionals Φn : V →
R∪{+∞}, according to Definition C.1, we denote by Γw− lim Φn and Γs− lim Φn the Γ-limits associated
with the weak and the strong convergence in V respectively, when they exist.

Definition C.2 (Mosco convergence). Let (V, ‖.‖) be a Banach space, a sequence (Φn)n∈N of extended
real-valued functions Φn : V → R ∪ {+∞}, and Φ : V → R ∪ {+∞}. The sequence (Φn)n∈N Mosco-

converges to Φ and we write Φn
M→ Φ if

Φ = Γw − Φn = Γs − Φn.
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The argument which naturally led us to introduce the Mosco-convergence notion yields the bicontinuity
of the Fenchel duality transformation in the context of convex functions. More precisely

Theorem C.1. Let (V, ‖.‖) be a reflexive Banach space and (Φn)n∈N, Φ a sequence of convex proper
lower semicontinuous functions from V into R ∪ {+∞}. The following statements are equivalent:

(i) Φn
M→ Φ on V ;

(ii) Φ∗n
M→ Φ∗ on V ∗.

For a proof, we refer the reader to [4, Theorem 17.4.3].

The following Proposition whose proof is straightforward, states an equivalent formulation interesting
from practical point of view.

Proposition C.2. Let (V, ‖.‖) be a reflexive Banach space, and (Φn)n∈N, Φ a sequence of convex proper
lower semicontinuous functions from V into R ∪ {+∞}. The following statements are equivalent:

(i) Φn
M→ Φ;

(ii) ∀v ∈ V, ∃vn → v such that Φn (vn)→ Φ (v);
∀v ∈ V, ∀vn ⇀ v, Φ (v) ≤ lim infn→+∞ Φn (vn);

(iii) ∀v ∈ V, ∃vn → v such that Φn (vn)→ Φ (v),
∀v∗ ∈ V ∗, ∃v∗n → v∗ such that Φ∗n (vn)→ Φ∗ (v).
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