Lower semicontinuity of integrals of the calculus of variations in Cheeger-Sobolev spaces - Archive ouverte HAL
Article Dans Une Revue Calculus of Variations and Partial Differential Equations Année : 2020

Lower semicontinuity of integrals of the calculus of variations in Cheeger-Sobolev spaces

Résumé

A necessary condition called $H_\mu^{1,p}$-quasiconvexity on $p$-coercive integrands is introduced for the lower semicontinuity with respect to the strong convergence of $L^p_\mu(X;{\mathbb R}^m)$ of integral functionals defined on Cheeger-Sobolev spaces. Under polynomial growth conditions it turns out that this condition is necessary and sufficient.
Fichier principal
Vignette du fichier
LSC-CHEEGER_SOBOLEV_FINAL.pdf (555.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02295885 , version 1 (24-09-2019)

Identifiants

Citer

Omar Anza Hafsa, Jean Philippe Mandallena. Lower semicontinuity of integrals of the calculus of variations in Cheeger-Sobolev spaces. Calculus of Variations and Partial Differential Equations, 2020, 59 (2), ⟨10.1007/s00526-020-1702-1⟩. ⟨hal-02295885⟩

Collections

UNIMES
185 Consultations
199 Téléchargements

Altmetric

Partager

More