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LOWER SEMICONTINUITY OF INTEGRALS OF THE CALCULUS
OF VARIATIONS IN CHEEGER-SOBOLEV SPACES

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

ABSTRACT. A necessary condition called H i’p—quasiconvexity on p-coercive integrands
is introduced for the lower semicontinuity with respect to the strong convergence of
Lf (X; R™) of integral functionals defined on Cheeger-Sobolev spaces. Under polynomial
growth conditions it turns out that this condition is necessary and sufficient.
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1. INTRODUCTION

Let (X, d, i) be a metric measure space with g a nontrivial locally finite Borel regular
measure on X and (X, d) is a separable metric space. Let p €]1,00[. We assume that p is
doubling and (X, d, 1) enjoys a (1, p)-Poincaré inequality (see §2), this allows us to define
integral functionals of the calculus of variations on Cheeger-Sobolev spaces H ;i’p (X;R™)
on X by

HY (X R™) 5 u s T () = /XL (2, Vo (2)) ds (). (1.1)

The Cheeger-Sobolev space on X was introduced by Cheeger [Che99| (see §2| for the
definition). The function L : X x IM — [0, oo] is Borel measurable, IM denotes the space
of m rows N columns with N, m > 1 integers, and V,u is the p-gradient of w.

In this paper, we consider the problem of finding necessary and sufficient conditions on
p-coercive integrands L (see (1.3))) for the lower semicontinuity of I with respect to the
strong convergence of L7 (X; R™) (or equivalently with respect to the sequential weak con-
vergence in H? (X;R™)). In the setting of Euclidean space (X, d, u) = (2, |- — - |, Ly|a)
where 2 < RY is a bounded open subset and Ly|q is the Lebesgue measure on €,
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a necessary condition on finite integrands for the weak lower semicontinuity of (1.1
is the quasiconvexity of L (z,-). This condition was introduced by Morrey [Mor52]
(see also [Dac08, [AF84l Mar85|). Later a generalisation for not necessary finite inte-
grand, called WP-quasiconvexity, was developped by Ball and Murat [BM&4] (see also
[Man13],[Syc15, Kril5]). In the setting of metric measure space we introduce the following
condition playing the role of WP-quasiconvexity, by saying that L is H ;’p—quasiconvex
at £ e M if for p-a.e. ze€ X

L(x,6)<lm  inf 7{9 L Vi ) ). (1.2)

p—0 peH b (B, ();R™)

The formula on the right hand side of already appears in relaxation and homog-
enization of integral functionals see [AHMI15, [AHMIS, [AHM17| (see also [Man05]). In
the setting of Euclidean space (X, d, 1) = (RY,|- — - |, 1) with a positive Radon measure
compactly supported in RY, necessary conditions for the weak lower semicontinuity was
studied in [Fra03l Theorem 4.1, pp. 114]. This was done under Lipschitz condition for
L (x,-) and continuity for L (-,§), and relies heavily on the use of the Euclidean struc-
ture of RY. Here, we establish the necessary condition (1.2)) at every & € M satisfying
L(-¢) € L, (X) for Borel measurable integrands which are p-coercive, see Theorem .
As already said, the p-coercivity assumption on the integrand L allows to use in a equiv-
alent way the strong convergence of L? (X;R™) or the sequential weak convergence in
H ;’p (X;R™), however, the p-coercivity condition is essential in our proof; it differs from
the Euclidean framework where the quasiconvexity is established as a necessary condition,
for the sequential weak convergence in W17 (€; R™), without requiring any coercivity con-
dition, see [AF84, Theorem [I1.2], pp. 134|. The proof uses a Vitali covering of the set
where does not hold. Then using the p-coercivity we are able to construct a sequence
of H,”(X;R™) which strongly converges to 0 in L? (X;R™). The last step consists in
using the lower semicontinuity of I and the finitness condition L (-,&) € L, (X) to con-
clude that the set is necessarily of zero measure. We show that the condition (1.2)) turns
out to be sufficient (see Theorems |§] and [7) when the integrand has p-polynomial growth,
is lower semicontinuous with respect the second (matrix) variable and that the metric
measure space is in addition satisfying the annular decay property and a property of
Alexandrov type (or Portmanteau type) for uniformly bounded sequence of nonnegative
Borel measures on X (see §4).

The plan of the paper is as follows. In we provide the materials about metric
measure spaces and Cheeger-Sobolev spaces we need for our purposes. In §3| after intro-
ducing the definition and some properties of H }L’p—quasiconvex integrands, we prove that
H }L’p—quasiconvexity is a necessary condition for the lower semicontinuity with respect
to the strong convergence of Lf (X;R™). We also show, as an illustration, that convex
integrands are H ;vp—quasiconvex. In we establish a generalisation of the necessary
condition for p-coercive and lower semicontinuous abstract functionals. The §4]is devoted
to the sufficiency of H ;’p—quasiconvexity for the sequential weak lower semicontinuity of
integrals of the calculus of variations, under p-polynomial growth. We deduce, in §4.2]
that H ﬁ’p-quasiconvexity is a necessary and sufficient condition for the lower semicontinu-
ity with respect to the strong convergence of L? (X; R™) (when p is finite see Theorem @,
and when g is not necessarily finite see Theorem . In We provide and study a class of
nonconvex H }L’p—quasiconvex integrands which may not have polynomial growth, roughly,
they are composition of a convex and lower semicontinuous integrand with a finite family

of H ;’p—quasiconvex Carathéodory integrands having g-growth with ¢ €]1,p[. In §6| we
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discuss the finiteness condition L (-,£) € L} (X) by providing a result (Proposition [5)

which gives an indication for the case where L (-,§) ¢ L, (X), and it is illustrated by
Corollary [3] The last section §7]is devoted to the proofs of Proposition [I] and Theorem [4

Notation.

e We will denote by O (X) the set of all open subsets of (X,d), and B(X) the Borel
o-algebra of X.

e We will denote by B, (z) := {y € X : d(z,y) < p} the open ball, and by B, (z) := {y €
X :d(z,y) < p} the closed ball, centered at x with radius p > 0.

e For every measurable set A < X with positive measure, and for every nonnegative
measurable or integrable function f on A, we set

]ifdu = ﬁqu(w)du(w)

e The algebra of Lipschitz functions from X to R is denoted by Lip (X). B
o We will denote by L}L oot (X) the vector space of all measurable functions u : X — R
such that

/ luldp < oo for all open ball B < X satisfying p (B) < o0.

o We say u € L, (X) if for every 2 € X there exists 7 > 0 such that u (B, (r)) < ©
and u € L, (B, (z)). We have Ll1 s (X)L,

iloc (X) and when X is proper, i.e. the
closed balls of X are compact, LM o (X) = L 100 (X).
e Let L : X x M —[0,00] (resp. L: X x R™ x M — [0,0]) be a function. We say

that L is p-coercive if there exists ¢ > 0 such that for py-a.e. z € X it holds
cl¢lP < L(x,&) foralléeM (resp. cl¢|P < L(z,v,&) for all (v,&) € R™ x ]M) (1.3)

e By Q™Y < M we denote the set of m rows N columns matrices with rational number
entries.

2. THE CHEEGER-SOBOLEV SPACES

Let p > 1 be a real number, let (X,d, ) be a metric measure space, where p is a
nontrivial locally finite Borel regular measure on X and (X,d) is a separable metric
space. In what follows, we assume that p is doubling, i.e. there exists a constant Cjy
(called doubling constant) such that

VeeX Yp>0  pu(B,(x)) < Cau (Bg (@) . (2.1)

We begin with the concept of upper gradient introduced by Heinonen and Koskela (see
[HK9S]).

Definition 1. A Borel function g [ ,00] is said to be an upper gradient for
f: X—Rif [f(c(1)) — fo (c(s))ds for all continuous rectifiable curves
c:[0,1] — X.

The concept of upper gradient has been generalized by Cheeger as follows (see [Che99,
Definition 2.8|).

Definition 2. A function g € L? (X) is said to be a p-weak upper gradient for f € L? (X)
if there exist {f,}, = L% (X) and {gn}, = L%, (X) such that for each n > 1, g, is an upper
gradient for f,, f, — fin L (X) and g, — g in L} (X).
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The metric measure space (X, d, ) enjoys a (1, p)-Poincaré inequality with p €]1, oo if
there exist C}, > 0 and ¢ > 1 such that for every z € X and every p > 0,

- dp| dp (y) < pC, rd :
]ip(m) f () ]ip(m)f pl dp(y) < p p<]igp($)g u) (2.2)

for every f e L? (X) and every p-weak upper gradient g € L? (X) for f.
From Cheeger and Keith (see [Che99, Theorem 4.38| and [Kei04, Definition 2.1.1 and
Theorem 2.3.1|) we have

Theorem 1. If i is doubling, 1.e. holds, and X enjoys a (1, p)-Poincaré inequality,
i.e. holds, then there exist a countable family {( Xy, v*) }rew of p-measurable disjoint
subsets Xy of X with p(X\Upew Xi) = 0 and of functions ~* = (7{“,'-- 7%%/(1@) ;
X — RN®) with ~F e Lip (X) satisfying the following properties:

(i) there exists an integer N = 1 such that N (k) € {1,--- , N} for all k € IN;

(ii) for every k € N and every f € Lip (X) there is a unique D} f € L (X RV®)
such that for p-a.e. x € Xy,

_ Dk . k Ak
linéllf—fx\L;o(Bp(x)) i sup |f () = f(x) + DEf (x) - (4% (y) — 7" (@) o,
=0 p PP yeB, () 1Y
where Jlfx e Lip (X) is given by f. (y) = f(z) + Dif (z) - (V" (y) =" (z)); in
particular

k k .
DEf, () = DA (2) for praa. y e X
(iii) the operator D, : Lip (X) — L% (X;RY) given by
Dyuf:= > 1x,Dif,
kelN

where 1x, denotes the characteristic function of Xy, is linear and, for each f,g €
Lip (X), one has

Dy (f9) = IDug + gDuf;
(iv) for every f € Lip(X), D,f = 0 p-a.e. on every p-measurable set where f is

constant.

We set M = R™*¥ where N is given by Theorem [l|[i)} Let Lip (X;R™) := [Lip (X)]™
and let V, : Lip (X; R™) — L7 (X; M) given by
Duul
V,u = : with u = (ug, -+, Up) .
Dy,
From Theorem we see that for every u € Lip (X;R™) and every f € Lip (X), one
has
V. (fu) = fVu+ D,.f @u. (2.3)

Definition 3. The p-Cheeger—Sobolev space H ;vp (X;R™) is defined as the completion of
the space of Lipschitz functions Lip (X; R™) with respect to the norm

HUHH;’p(x;Rm) = [ul e xeimmy + [ Viull e (xom- (2.4)
4



Taking Proposition below into account, since [V ul g (xny < [ull g1 gom) for all
u € Lip (X;R™) the linear map V, from Lip (X; R™) to LF (X; M) has a unique extension
to H ﬁ’p (X;R™) which will still be denoted by V,, and will be called the p-gradient.

For more details on the various possible extensions of the classical theory of the Sobolev
spaces to the setting of metric measure spaces, we refer to [Hei07, 10-14] (see also [Che99)
Sha00, [GT01) Hajo3]).

The following proposition (whose proof is partly given in [AHMI15, Proposition 2.28],
nevertheless, for completeness we give a proof in provides useful properties for dealing
with calculus of variations in the metric measure setting.

Proposition 1. Under the hypotheses of Theorem (1|, we have:

(1) X satisfies the Vitali covering theorem, i.e. for every A < X and every family F
of closed balls in X, if inf {p >0:B,(x)¢e ]-"} =0 for allx € A (we say that F is
a fine cover of A) then there exists a countable disjoint subfamily G of F such that
1 (A\Upeg B) = 0; in other words, A < ({Jpeg B) v N with pu(N) = 0;

(i) the p-gradient is closable in H}P (X;R™), d.e. for every u € HP(X;R™) and
every measurable set A < X, if u(z) = 0 for p-a.a. v € A then V,u(z) =0 for
p-a.a. T € A;

(11i) the metric space X enjoys a p-Sobolev inequality, i.e. there exists C's > 0 such that

1 1

(/ mw) < pCs ( / rww) (2.5)
By () By ()

for all 0 < p < pg, with pg > 0, and all v € H/% (B, (z);R™), where, for each
0Oe0(X), le‘g (O;R™) is the closure of Lip, (O; R™) with respect to Hﬁ’p-norm
defined in (2.4]) with

Lip, (O;R™) := {u € Lip(X;R™):u=0 on X\O};
(w) for every w e Hy? (X;R™) and p-a.e. v € X there exists u, € H? (X;R™) given

by us (y) == u(x) + Vau(z) - (v* (y) —+* (z)) such that
Vuug (y) = Vyu(z) for p-a.a. ye X;

1

1 . ",
ngg); (épm u(y) — us (y) d#(.u)) = 0;

(v) for every x € X, every p > 0 and every T €0, 1] there exists a function ¢ €
Lip (X;[0,1]) such that

¢(z) =0 forallze X\B,(z), p(x) =1 forallxe B,,(z)

C
and ||Du90||Lfg(X;RN) < ﬁ for some Cy > 0.

Such a ¢ is called an Urysohn function for the pair (X\B, (z), B:, (z)).

3. H}L’p—QUASICONVEXITY IS A NECESSARY CONDITION FOR LOWER SEMICONTINUITY
3.1. H}L’p—quasiconvex integrands.

Definition 4. Let L : X x M—] — o0, 0] be a Borel measurable function. Let A be a

measurable subset of X.
5



(a) We say that L is H *-quasiconvex on A at £ € M if for p-a.e. x € A it holds

L@ <lm i f L6+ Vaedu

p—0 e H b (B, (x);R™) J B, (x)

When L is H ;’p—quasiconvex on A at every £ € M we say that L is H ;’p—quasiconvex
on A, and if A = X we say that L is HP-quasiconvex.
(b) We say that L is Lip-quasiconvexr on A at £ € M if for p-a.e. x € A

L(z,6)<lim  inf ][ (0. €+ Vo) di
( 5) pjoweLipO(Bp($);Rm) B(2) (yf ugp) 0

When L is Lip-quasiconvex on A at every £ € IM we say that L is Lip-quasiconvex
on A, and if A = X we say that L is Lip-quasiconvex.

In the following, when we write L : X x M—]—00, 0] is a Borel measurable integrand
or is an integrand, it simply means that L is a Borel measurable function.

Remarks 1.
(a) The sum and the max of two H /i’p—quasiconvex integrands is H /i’p—quasiconvex.
(b) In the Euclidean setting (X, d,u) = (2,]- — - |, Ln|a), by a change of variables, we
have
in ][ L(E+Ve)dly —  inf / L(€+ V) dLy,
W, P (By(z);R™) J B, (x) eWy P (V;R™) JY

for all (x,§) € 2 x M and all p > 0, where L : M — [0, 0] is Borel measurable and
Y = {y e RN : Jy| < 1}. It means that L is W'P-quasiconvex if and only if it is
Héﬁ—quasiconvex.

The following lemma is a direct consequence of the Lebesgue differentiation theorem
and the definition of H*-quasiconvexity.

Lemma 1. An integrand L : X xIM— |0, 0] is pr—quasz'convex (resp. Lip-quasiconver)
at £ € M satisfying L (-,€) € LY. (X) if and only if for p-a.e. v € X

w,loc

L(z,§) = lim inf ][ L(y, &+ Vup)dpu.
Ep(x)

1,
P=0 peH b (By(z);R™)

resp. L (x,&) = lim inf f L(y, &+ V,p)dpu.
( p- Liz,6) =lim - (v,€+ Vyup) u)

The following result shows that for Carathéodory integrands with p-polynomial growth,
Lip-quasiconvexity is equivalent to H bp—quasiconvexity. We follow the proof of [BM84,
proposition 2.4 (i), pp. 229| with the necessary changes.

Lemma 2. Let L : X x M — [0,0] be a Carathéodory integrand, i.e. L (-,&) is Borel
measurable for all £ € M and L (z,-) is continuous for all x € X. Assume that there exist
C>0and Ae L}, .(X) such that for p-a.e. x€ X

w,loc
L(z,§) <A(x)+C(1+P) forall&e M. (3.1)

Then L is Lip-quasiconvex at £ € M if and only if L is Hﬁ’p—quasiconvem at €.

Proof. Since Lip, (B;R™) c H ;:g (B;R™) for all ball B, H,*-quasiconvexity entails Lip-
quasiconvexity.
6



Now, assume that L is Lip-quasiconvex at £ € M. Using the growth condition ({3.1J),
by Lemma [I] we have for p-a.e. v € X

lim inf Ly, 6+ V,0)du=L(z,¢). 39
p—0 <P€Lipo(Bp(z);Rm)]{3p(z) (y.€ MSO) I (x,€) (3.2)
Fix x € X such that (3.2) holds. Let € > 0. There exists 7. > 0 such that for every
p €]0,r.[ we have

€+ inf ][ L(y,§+V,o)du > L(x,§). 3.3

peLipy(Bo(@);R™) J B, (x) 8. e dp (=:¢) (3:3)
Let p €]0,r.[ and let p € H;:g (B, (z);R™). By definition of Hijg (B, (z); R™) (see Propo-
sition [1|[(ii))), there exists a sequence {¢y }new < Lip, (B, (z) ; R™) such that V¢, (-) —
Vup () prace. in X and limy, o [|Von — V00| 128, 2)m) = 0. By Fatou lemma we have

lim Ay) + C(1+ €+ Vuenl’) = L(y, & + Vupn) du

n—00 J B,(x)

> - )A(y) F O 416+ V") = L(y, €+ Vo) du. (3.4)

On the other side, using (3.3 we have

lim Ay) +C 1+ [+ Vuenl?) = L(y, &+ Vouen) dp

n—0 J Bp(x)

<][ Aly) +CA+ [+ VyupP)dp—  inf ][ L(y, &+ V,up)du
B,(x) peLipg (Bp(z);R™) B, ()

< E()A(y)—i—C’(l—i—]f—i—Vuch’)d,u—L(ac,f)—i—&?. (3.5)

Collecting (3.4)) and (3.5 we obtain

—e+ L () <][ ( )L(y,§+Vmo)du.

B,
Taking the infimum over all ¢ € H ;;g (B, (z);R™) and then over all p €]0, 7| gives

L@l it L+ Vap)dn

p—0 e H,h(Bp(2);iR™) J B, ()

and the proof is finished by letting ¢ — 0.1

3.2. Necessary condition for the lower semicontinuity. Here we show that H!”-
quasiconvexity is a necessary condition for the lower semicontinuity of the integrals (1.1)
with respect to the strong convergence of L (X;R™). The proof is inspired by the proof
of Cheeger [Che99, Theorem 3.7| that a Lipschitz function, defined on a metric measure
space with doubling measure and satisfying a (1, p)-Poincaré inequality, is asymptotically
generalized linear; this was a fundamental step towards setting up a differential structure
on metric measure spaces.

Theorem 2. Let L : X x M — [0, 0] be a p-coercive Borel measurable integrand, i.e.
satisfying for some ¢ > 0, for p-a.e. x € X and for every £ e M

L(x,€) > cleP. (3.6)
7



Assume that for every u, {uc}eso © Hy? (X;R™) satisfying lim. o [ue — uf 2 x;zm) = 0,
it holds

tiw [ L (V) de> [ LG V0) de (3.7

e—-0JX X
Then L is Hﬁ’p-quasiconvex at every € € M satisfying L (-,€) € LL (X).

Proof. Let £ € M be such that L (-,£) € L, (X). By Lebesgue differentiation theorem we
have for p-a.e. e X

lim L(y,&)du = L(x,8) < .
p=0 Ep(x)

Let a > 0. We have to show that p(N,) = 0 where

Ny = {{L‘EXII_H] inf ][ L(y,§+V“g0)—L(y,§)du<—oz}
EP(I)

1,
p—0 peH 0(Bp(x);R™)

Since X is a countable union of balls with finite measure (see [HKST15, Lemma 3.3.28,
pp. 62]), we can write

o]
N, = U Bsn' N, where By is an open ball and u (B;) < o0,

s=0

so it is enough to prove that p (N3) = 0 where N := B; n N, for all s € N.
Fix s € N. For each x € N there exists p” €]0,1] such that B, (z) < B,. Fix

(k,n) € N* x IN*. For each z € N;; there exist pf, € ]O,min ((m%) ,px)[ and ¢f €
Hifg <Bpi,n (z); Rm> such that

3=

1
L(y,€+Vug® ) — Ly, &) du < —a+ . 3.8
pk,n
The family of closed balls {Eﬂi (x)} is a fine cover of N?, so by Vitali covering
" zENE ,neEIN*

theorem there exists a countable family of mutually disjoint closed balls {Epii (xz)}
Mg €N
such that -

o0 a0
[ (N;\U By (xi)> =0 and [ By (1:) < Ba. (3.9)
=0 =0

We set ¢}, := @i, , By 1= Epii (i), pj, := piiy, for all i € N. Moreover, for each [ € N
we set ;1= S, ¢ilp € H;:g (Bs; R™). Assume for the moment that

]}1}){}0 lonillzex;mmy =0  for all I € IN.

Fix [ € N. Set F} := | J._,B. ¢ B,. Let ¢ > 0. Using (3.9) we can assert that there
exists [. € IN such that p (N;\F ,is) < £. Now, we take the sum over the finite family of

closed balls {Bi} ; in (B.3)

1
/l L(y,&+ Vyuer) — L(y,&)dp < Z o~ an (Fy).
Fle
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For each i € N we have ¢} = 0 pra.e. in X\B s (xl) and thus ¢! = 0 p-a.e. in X\Bj
where B = B poi (). It follows from Proposmon ){that L (-, & + Ve )—L (-, §) =
0 p-a.e. in X\F,i‘f7 and taking account of L (-, &) € LL (X) we have

1
/XL(y,é + Viupna) =L (y, ) dp = /l Ly, €+ Viupri) =Ly, ) dp < 7 —ap (N3) +e.

(3.10)
Using lower semicontinuity of the integral (3.7) and letting k¥ — oo in (3.10) we have

0<lim [ L(y,{+ Vupr)— L(y,&)dp < —ap(N;) +e
k—oo J X

Letting € — 0, we deduce p (NZ) = 0 which completes the proof.
It remains to show that the sequence {py;}x is convergmg to 0 in L7 (X;R™). Using
the Sobolev inequality ([2.5) . the coercivity condition and 1nequahty . we have

/!sokz )P dp = Z/ |0k ()| dpa
1=0
<Z Cp/ |Vt ()] du

i=0
27’ 1cE

Z / (4, € + Vg (v) + Ly, €) dp
2 1c? 1
Z /—a+kM(BS)+2L(y,§)du

op- 105 1 )
< ot °
( . / a+kM(BS)+2L(y7§)du)k

Since L (-, €) € L, (Bs), by passing to the limit k& — oo we obtain ¢, ;—0in L? (X;R™). R

Remark 1. In the proof of Theorem [2| the finitness of [, L (y,&) du is used only in the
last step of the proof of Theorem 2] before that, it is sufficient to assume that

/ L (y,&)du < oo for all open ball B < X with p(B) < o0.
B

In fact, if we replace (3.10)) with

1
/ L(Z/v&"'vugpk,lg)_[/(yag)d:u:/l L(y75+vuwk,ls)_[’(y75)d:u< E—a,u(Nj)jte

€

and if we assume that the lower semicontinuity of the integrals holds for every open set
with finite measure, then we can conclude that L is H ;’p-quasiconvex at every £ € M

satisfying [ 5 L (y,§) dp < oo for every open ball B with finite measure.

Denote by L', . (X) the space of all measurable functions u : X — R such that

w,loc*
/ |uldp < oo for all open ball B < X satisfying p (B) < o0.
B

Remark [1 leads to a "local version" of Theorem [2
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Theorem 3. Let L : X x M—[0, o] be a p-coercive Borel measurable integrand. Assume
that for every u, {uc}e=o < HYP (X;R™) satisfying lim. o [ue — ullp(x;rm) = 0, it holds

tiw [ Lo Vyu)dp > [ L) dy (3.11)
e—0J0O O
for all open set O € O (X) with u(0O) < .
Then L 1is pr—quasiconvea: on X at every £ € M satisfying L (-, &) € L!

u,loc*

(X).

For a Borel measurable integrand L : X x M—] — 00, 0], we say that L is convex
and lower semicontinuous if for p-a.e. x € X the integrand L (z,-) : M—] — 00, 0] is
convex and lower semicontinuous. We show in Proposition [2 below that a convex and
lower semicontinuous integrand is H }L’p—quasiconvex. The proof is indirect, we deduce
the H ;’p—quasiconvexity from the lower semicontinuity of the convex integral functional
associated with L. If L does not depend on z, it is direct to see that a convex and lower
semicontinuous integrand L is H b”—quasiconvex; see {9 for related discussion.

Proposition 2. Let L : X x M—] — o0, 0] be a p-coercive, convex and lower semicon-
tinuous (Borel measurable) integrand. Then L is Hﬁ’p-quasiconvex on X at every £ e M
satisfying L (-,&) € Lt (X).

w,loc*

Proof. Define the integral functional I : H,? (X;R™) x O (X) — [0, 0] by

I (u;0) := /OL(a:, V,u) dp.

Let u, {tun }new © HYP (X;R™) satisfying u,—win L (X;R™) asn — 0. Let O € O (X)
be an open set. If lim I (u,;0) < oo then for a subsequence (not relabelled) of
{tn}new we have sup, oy I (un;0) < 0 and lim, | I (up;0) = limy, 00 I (u,; O). Hence
SUP e | Vitin|l 20y < o0 since L is p-coercive. By the reflexivity of H? (O;R™),
there exists a subsequence {u,}nen such that V,u,—V ,u in Lr (O; M) as n — o0. The
integral I (-; O) is convex since L is a convex integrand. Moreover, I (+;O) is lower semi-
continuous with respect to the strong convergence of H /}p (O; R™) by using Fatou lemma
and lower semicontinuity of L. So, I (-;O) is sequentially weakly lower semicontinuous
on H;?(O;R™), that is lim, I (un; O) = I (u;0). The proof is finished by applying
Theorem [3] W

3.3. Abstract version of Theorem [3| Let us denote by B (X) the family of Borel sets

of X. For a functional I : H? (X;R™) x B(X) — [0,90] we consider the following

conditions:

(Cy) for each u € HP(X;R™) the set function I (u;-) is a Borel measure absolutely
continuous with respect to u;

(Cy) there exists ¢ > 0 such that I (v; B) > CHVHUHZL),’;(B;]M) for all v € H!? (X;R™) and
all closed balls B with p(B) < oo; (I (+; B) is a p-coercive functional)

(Cs) for every closed ball B and every (u,v) € Hy? (X; R™)* if u = v pa.e. in B then
I (u; B) = I (v; B); (I is a local functional on closed balls)

(C4) for every open set O € O (X) with 4 (O) < oo and every (u,v) € H.? (X;R™)? if
u=wv p-a.e. in O then I (u;0) = I (v;0). (I is a local functional on open sets)

For each ue H ;”’ (X;R™) we consider the assertion:

(Cy) for every O € O (X) with 1 (O) < o the functional I (-;O) is L?-lower semicontin-
uous at u, i.e. for every {u.}eso = Hy? (X;R™) with lim. o [lue — uf 1z x;zm) = 0 it
10



holds
lim [ (u.; O) = I (u; 0).
e—0

Using arguments similar to those of the proof of Theorem [2] we can write an abstract
version of Theorem [3} for completeness the proof is given in §7]

Theorem 4. Assume that|(Cy)| [(Co)|, [(Cs)}, and|(Cy)| hold. Let u e H,? (X;R™) be such
that holds. If

I (u; B) < o0 for all open ball B < X with u(B) < o0, (3.12)
then for p-a.e. ve X

dl (u;-) (x) = lim I (u;_Ep (x)) _ im g I (u +¢; B, (x))

dy 00 (B, (x))  rVeeniim@mny (B, (x))

The following consequence justifies the introduction of the condition |(Qy )| below (see
:} which will play the role of H ;’p—quasiconvexity for integrands depending on the
triple (z,v,§).

Corollary 1. Let L : X x R™ x M — [0, 0] be a p-coercive Borel measurable integrand.

Assume that for every u, {u:}.so < Hi’p (X5 R™) satisfying lim. o |[ue — ulrzx;rm) = 0,
it holds

lim | L(z,u.,V,u:)dp = / L(z,u,V,u)duy (3.13)
e—=0J0O o
for all open set O € O (X) satisfying pu (O) < 0.
Let w € H,P (X;R™) be such that L(-u(-),V,a()) € L, o
rzeX

L(z,u(z),V,u(x)) =lim inf ][ L(y,u+¢,V,u+ V,p)du.  (3.14)
Bp(x)

1,
P=0 e B(B, (z);R™)

(X). Then for p-a.e.

Proof. Define I : H}? (X;R™) x B(X) — [0, 0] by

I (w;A):= / L(y,w,V,w)dp.
A

The conditions |(C3)| and |[(C,)| are satisfied since of Theorem || It is clear that
holds. Since L (-,u(-),V,u(-)) € LL’IOC* (X) we have I (u; B) < oo for all open ball
B c X with u(B) < o0, so (3.12)) holds with u = w. We see that holds since L is
p-coercive. The condition

is satisfied with u = @ since (3.13). Therefore applying
Theorem 4] we obtain

4. Hi’p—QUASICONVEXITY IS A NECESSARY AND SUFFICIENT CONDITION FOR LOWER
SEMICONTINUITY UNDER POLYNOMIAL GROWTH

We say that the metric measure space (X,d, u) satisfies the annular decay property
(which was introduced independently by [Buc99, pp. 521 and §2 pp. 524] and [CM9S)) if

(ADy) there exist n > 0 and K > 1 such that for every z € X, every p > 0 and every
7 €]0, 1],
(B, (2)\Brp () < K (1 =7)" pu(B, (z)).
The annular decay property holds, for instance, when the metric space is a length space,
i.e. metric space in which the distance between points is the infimum of lenghts of
rectifiable paths joining those points, see [Buc99, Corollary 2.2|, [CM98, Lemma 3.3,

[Che99l Proposition 6.12] and [HKST15, Proposition 11.5.3, pp. 328|). We can remark
11



that, when the annular decay property holds, the boundary of balls is of zero measure,
indeed, if z € X, p>0and 7 e]%, 1[, we have

(08, (2 < e (B (08, @) < & (1= 1) (B @) < 1 (1 1) By o),

letting 7 — 1 we obtain that p (0B, (z)) = 0.
To prove the sufficiency of H ;’p—quasiconvexity for the lower semicontinuity, we need
the following property of Alexandrov type (or of Portmanteau type)
(ALy) for every open set O € O (X) and for every sequence {my, },cn of nonnegative Borel
regular measures on O satisfying sup,,cn m, (O) < o there exist a subsequence
(not relabelled) {m,},en and m a locally finite Borel regular measure on O such

that
lim m, (V) =m (V) for all open set V < O.
n—ao0
lim m, (B) <m(B) for all closed ball B < O.
n—o0

For instance, if X is compact or locally compact then the property |(ALx )| holds.

4.1. Sufficiency of H}L’p-quasiconvexity under polynomial growth conditions.
In this subsection we prove the sequential weak lower semicontinuity on H? (X;R™) of

integral functionals under polynomial growth conditions and condition below.
If¢ e M, ve R™and x € X, are given with £ € IN, we can find Ai,v,g € Lip (X; R™) such

that V,A% =& prae in X and AF . (z) = v. Indeed, we set A% . = (Ag,v,s,»i:l,...,m
with
Ai,v,g,i (y) == v; + & - (Vk (y) — 7k (f)) for y € X, (4.1)

where &, € R is the ith row of ¢ and where (X k,’y’“) are given by Theorem . Note
that u, = A:’z,u(:r),vuu(x) where u, is given by Proposition .

The following condition will play the role of H ;’p—quasiconvexity for integrands depend-
ing on the tripe (z, v, §):
(Qr) for every (v,&) € R™ x M, for every k € IN and for p-a.e. x € X

Log<lin it f LA+ 6+ V) du

p—0 soerj,S (Bp(z);R™) JB,(x)

Remark 2. If L does not depend on v then |(Qp )| is nothing but the HP-quasiconvexity
of L at every £ € M. We also see that implies that for p-a.e. x € X and for every

(v,§) e Q™ x Q™Y

L(xz,v,&) < lim inf ][ L (y, Ai,v,é +p, &+ Vugo) du
Ep(x)

p—0 peH b (B, (x);R™)

where Q™ < R™ (resp. Q™Y < M) is the m rows vectors set (resp. the m rows N
columns matrices set) with rational number entries.

For a Borel measurable integrand L : X x R™ x M — [0, 0], we denote by I :
HP (X5R™) x O(X) — [0, 0] the associated integral functional which is given by

I (u;0) = / L(z,u,V,u)dp.
)

Theorem 5. Assume that (X, d, ) satisfies|(ADx) and|(ALx)l Let L : X x R x M —

[0, 0] be a Borel measurable integrand. Assume that
12




(1) L satisfies|(Qp )k
(it) L has p-polynomial growth, i.e. there ewist ¢,C > 0 and A € L. (X) such that
for p-a.e. e X

L(z,v,6) <A(x)+CA+wP+[P) forall (v,§) e R™ x M,; (4.2)

(111) for p-a.e. x € X the function R™ x M 3 (v,§) — L (x,v,&) is lower semicontinu-
ous.

Then for all open sets O € O(X) the integral functional I (-;O) is sequentially weakly
lower semicontinuous on Hﬁ”’ (X;R™), i.e. foreveryue Hﬁ’p (X;R™) and every sequence
{ucheso © HyP (X;R™) satisfying lim, g |[ue—ul| 1 x;zgm) = 0 and sup,.g HV#“*:HZ;‘;(X;]M) <
0, we have

lim [ (u.;0) = I (u;0)  for all open set O € O (X).

e—0
Proof. Let O € O(X) be an open set. Let u,{uc}eso < HP (X;R™) be such that
lim. o [ue — ul|zpx;mgmy = 0 in LE (X;R™) and sup,. ”v#ufuif;(x;m) < . Consider
a sequence {e,}nen <0, 1[ satisfying lim,, .o, £, = 0, lim,, o |Ju, — ul|prx;rmy = 0 and
SUD,eiy ||Vuun\|ip( xapy < % where u, := u,, for all n € N. Without loss of generality we
" )
can assume, up to a subsequence (not relabelled), that

sup I (u,; O) < o0, lim I (u,;0) < o0, Sup/ IV, [Pdp < o0
0

nelN n—00 nelN
and 7}1_r)r010 |un — ul Lz (xmm) = 0. (4.3)

For each n € IN we set
Vp =L (", Vyun () plo  and Ay = [V,u,|" plo

which are nonnegative Borel regular measures on O. Apply [(ALy )| by using the bound-
edness conditions in (4.3)), there exist subsequences (not relabelled) {v, }new, {An }new and
locally finite Borel regular measures v, A such that

lim v, (V)= v (V) and lim A\, (V)= X(V) for all open set V < O (4.4)
n—o0 n—a0
lim v, (B) <v(B) and lim A\, (B) < A(B) for all closed ball B < O. (4.5)
n—0o0 n—00

Stepl: localization. By the Lebesgue decomposition theorem and the Radon-Nikodym
theorem there exist v*, which is mutually singular with respect to o, and ® € L, (O)
such that

e )
v=®ulo+ d @ (2) leOM(Bp@))

Similarly, there exist A*, which is mutually singular with respect to u, and % e L, (O)
such that

p-a.e. in O. (4.6)

d\ d\ A(B
A= —plo+A* and — (z)= limﬂ

0 p-a.e. in O. (4.7)

(Note that because of the doubling property of u, we can replace closed balls by open

balls in the differentiation formula above, see [HKST15, Remark 3.4.29, pp. 86].)
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Let t €]0, 1[. By (4.5, (4.6) and the annular decay property ((ADx )| we have for p-a.e.
xeO

(B () | v (By (@) 1 (By (@)

p—0n— 1 (B, (x)) T =00 (Bip (2)) p (B, (2))
— +— Un (Btp (J;»

> (1-K (- Ty Ty S’

letting ¢ — 1 we have

® (r) = lim lim lim L (y,un, V,uy,) dp.

t—1 p—0n—o0 Bip()

Let k € N and fix x € O n X}, where (Xk, 7'“) is given by Theorem |1| satisfying

R™ x M 3 (v,&) —> L(x,v,&) is lower semicontinuous; (4.8)
. v(B,(x))
o> d(z) = lim —L"2~: 4.9
= (B, () -
® (7) = lim lim lim L (y,un, V) dp; (4.10)
t—1 p—0n—o0 Bip()
0 > A(x) =lim Ay)du(y); (4.11)
P70 By ()
0 > |u(z) [" = lim [u(y) [Pdp (y) ; (4.12)
= Bp(x)
dA . A(B,(x))
0 > — (x) := lim £ ; 4.13
an 7= (B, () (413
w0 > |V,u(x)|P; (4.14)
1
0 = lim — u(y) — ua (y) [Pdp (y) - (4.15)
=0 pp By(z)

The equalities and inequalities above are fullfilled p-a.e. in X because of the assumptions

of Theorem [5| and Proposition

For each 6 > 0, there exist v € Q™ and F¥ € Q™ (that is with rational numbers
entries) such that |[v§ —u (x)| < ¢ and |[Fy =V, u(x)| < 6. Weset uy (-) := A’;:‘,v(?,Fg” (1) =
vf + F¢ - (7F () = +* (x)). By Remarkwe have

L(z,v5, FY) < lim inf ][ L(y,uzs + @, Fy + V) dp. (4.16)
p—0 goeH;:g(Bp(x);lRm) B, ()

Step 2: cut-off technique. Fix p €]0, 1] satisfying B, () < O. By Proposition we

consider an Urysohn function ¢ € Lip, (B, (z)) for the pair (X\By, (z), Bz, (z)) which

means that ¢ € Lip (X; [0, 1]) with ¢ = 0 on X\ By, (z) and ¢ = 1 on By, (x) (note that

t? < t since t €]0, 1[). Moreover, there exists Cy > 0 such that 1D e (xirmy < t(lcfot)p.
Fix ne N and € €]0,1[. We set 6 = § (g,t,p) :=t (1 —t) pec and

U= PUp + (1 - ‘10) Ug s = P (un - ux,é) + Ug,5
14



where u, 5 (-) = A¥ . were () = Vsicon + Fierp - (v*(-) = ¥*(x)), and which satisfies for
p-a.e. y € B, (z)

V iy on §t2p (x)
V=1 oV, +(1—¢)Ff + Do ® (uy, —uys) on By, (x) \thp (x)

£y on B, (x)\By, (z) -

We see that 4 € u, 5 + Hizg (B, (z);R™), and we have

I(ﬂ;Bp(x))<](un;Btp(x)) 1 - \E .
B e ) (B2 B 0 (s <>\Btp(<4>12)

We estimate the last two terms on the right hand side of (4.17)) by using the growth
condition (4.2). We have

1 (% By (2)\Bey (1)) + I (s By (2)\Byy (1))

</ (y) + C (L +|ul” + |V, al’) du
Btp xT \Bt2
b AW O sl +IFEP) d
(z)\Btp(z)
</ (AW +Cydu+cr [ P
(2)\B,2,(z) Btp(l)\§tzp(x)
ro@te) | nslPdp + CIEZ P (B, (2)\Byy ()
Bp(x)\Btp( )

+ CQQpQ/B ( )\E " ‘Vuun|p + ‘F(S |p + HDNISOHLOC XRN) |un - U{E,5|pd:u
tp(T +2 x

<) AW Ot €27 1) [P (B, )\ B, ()

+ C2%~2 (/ |, — ulPdp + / \ulPdp
Biy(x)\B2 () By (2)\By2,,(x)

+/ |ty s — u|pd,u)
By (z)\Btp(x)
Cy

+C22p2/ IV un|P + ————— (Jun, — u|’ + |u— uys|”) du
Bi@)\Ba, (@) tr (1 —t)° pr
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Set C" := C (272 4+ 1). Using the estimate above in (4.17)), we have

inf ][ L(y,ups+ @, Fy +V,0)du

et E(Bo(a)iR™) J B, ()
< L@ B, (2))
H (Bp (7))
I (up; By (2)) 1
p(By (@) (B, @) /Bp(@\BtQp(z) (A0 +C)du
o (Bp () \Be, (2)) C’ P
e @) #(Bp (7)) /Bt,xx)\Btzpw Vit

C/
+ — / |un, — ulPdp + / \ulPdp
(B, () \ /B, ) By(2)\B 2, (x)

—I—/ U5 — u]pdu>
Bp(x)\Biy(z)

P
+C"f — 0 (Ju, —ulP + u— uys|P) dp.
e ()

Step 3: estimates and passing to the limit. We set

1
Agip = —/ e
(B, () J B, Ba, )

et (B, () \Ba, (@)
Az,t,p =C ‘Fé ’ /L(Bp (l'))
!

NP —/ IV ysttn|"dpe
P, :U’(BP (:U)) Btp(x)\gﬂp(m) '

c'ct
ton " ( Op + C/) ][ |un, — ulPdp
tr (1 —1t)" pp B,(x)

c'ch 1
AS, = (—0—1—#’0’)—][ U — Uy 5|Pdp
e tr(1—t)" PP JB, ) | d

C’
Agt = —/ |u|pd'u
P w (B () JBy@)\Be, )

Since limy, o [un — ulzz(xrmy = 0 in LE (X;R™) we have

lim A7, =0. (4.18)
Set C” := 2PC" max (1, C}). We have
Ai‘,t,p,e

" - 1 1
<C ((t(l—t)) p—l—pp) (E]é()|u—um|pd,u+ﬁ]i()|u$—u$75|pdu>

1 1
<20 ((t(1—1) 7+ 1) (;]i fowldut S f (0007 (14 L) du>,
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where C, is the Lipschitz constant of the Lipschitz function 7*, i.e.
7V (y) =" (2)| < Crd (2,y) for all (y,2) € X*.

On one hand, using (4.15)) we have
1
lim 2°C" ((t (1 — ¢ _p+1—][ u—u, P dp = 0.
€ (=) 1) S of el
On the other hand, if we set C” := 2PT1C” (1 + C¥) we have

orc” ((t (1 — t))‘p + 1) %]{B o (t (1 — t) p)l’ P (1 + C}Spp) du < O"eb.

It follows that

lim lim lim A?,
e—=0t—1 p—0 el

=0. (4.19)

By the annular decay property (ADx)|and [.14) we have A2, < C'|Ff[PK (1—1t%)",

so letting p — 0 and ¢ — 1 we obtain

HE%)A;W = 0. (4.20)
We have
1 .s _ ) — B (2)) < An (Etﬂ (‘T)) Y (B2, (7))
¢t = (B, () O B 00 = (B () < g Ty =B )

Passing to limit n — o0 and using (4.5]), we have by the annular decay property

L AF@)  ABe, @)
e O Sen S (B, @) (B, ()

A(Buy @) 1 (B () A(Bay (@) 1 (B (1)
(B, () 1(B,(z))  p (B, (z)) p(B,(x))

_A(By(@)  A(Boy (@) i (Bo, ()

T (Biy(2)) 1 (Be, () p(B,(x))

CA(Bip (@) | A(Bp, (@) (1(B, (x)\Be, (x))

1 (B, (2)) " (B, (7)) ( 1 (B, (x)) 1)
A (Etp (x)) A (Be, (7)) N

S By @) " p By KO

Now, on taking account of (4.13|) we have

- X
T . 3 ! 2\ 7
fin o Ay < O (1= 15)70 0 (),
it follows by letting ¢ — 1 that
lim lim lim A}, = 0. (4.21)

t—1 p—0n—o0
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We have

L  (Be, @) (B, (2) \Ba, ()
Al,, - ]ipmA(y)du(y) e ]iﬂp(x)fl(y)dﬂ(yﬂc‘ iR

- ]ip(x)A(y) du (y) + <”(B” (=) \Bﬁg’ @) 1) ]{32 Aly) du(y)

M(Bp (z) 12,()
(B, (x) \Bz, (2))
u(Bp (z))

<]{3()A(y)du(y)+(K(1—t2)"—1)]i Aly)dpu(y) + C (K (1—2)").

t2p(m)

+ ot

Taking (4.11)) into account and passing to the limit p — 0 we have
hrn A}m (A(z)+C) (K (1-t%)"),

and letting t — 1 we obtain

lim lim AL,
t—1 p—0 P

= 0. (4.22)

6 . . .
For A}, , we proceed similarly, i.e.

Lo g, BB @) o
LA, ]{W)Hdu o (x))]i ulPdy

- ]ip(x) uftdu+ ( o %BZ;;\g;;( )) - 1> ]igp(x) ufdu

t

< f ]u|pdu+(K(l—t2)”—1)][ ulPdp
T B

B, () 2, (@)
Using (4.12) and letting p — 0 we have
ImAS, <K (1—1*)"C'u(x) |,

p—0
and by passing to the limit ¢ — 1 we obtain

lim lim Ag .
t—1 p—0 P

Step 4: end of the proof. Collecting (4.18]), (4.19)), (4.20), (4.21), (4.22) and (4.23)) we
have by (4.8)), (4.16]) and (4.10))

L(z,u(z),V,u(r)) < lmlimlim L (z, v, F{)

e—0t—1p—0

~ 0. (4.23)

<TmTmbm  inf f Ly, ttes + 0, FE + V) d
By ()

1, .
e0t=1 00 el F (B (2);R™)

< lim lim lim L (y,un, Vyu,) dp < @ ().

t—1 p—0n—ow0 Bip(z)

Now, to finish the proof we use (4.4]) and (4.6))
[(w:0) = / L(z,u(x), Vyu () dp (x)
0

</(I>(x)d,u(x)<l/(0)< lim v, (O) = lim I (u,;0) .1
)

n—0o0 n—0o0
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4.2. Necessary and sufficient condition for lower semicontinuity. Consider the
integral functional I : H,? (X;R™) x O (X)—[0, o] associated with a Borel measurable
integrand L : X x IM — [0, 0], defined by

I (u;0) := /OL(;E, V,u) dp.

When X = O we write I (u) in place of I (u; X) for all u e H? (X;R™).
If 11 is finite and L is p-coercive and has p-polynomial growth, by using Theorem 5, The-

orem [2] and Lemma [2] we have the following characterization of the lower semicontinuity
of I.

Theorem 6. Assume that (X, d, ) satisfies|(ADx)), [((ALx)| and p is finite.

Let L : X x M — [0,00] be a Borel measurable (resp. Carathéodory) integrand such
that for p-a.e. x € X the function L(x,-) is lower semicontinuous. Assume that there
exist c,C > 0 and A€ L), (X) such that for p-a.e. x € X

P < L(x,&) <A(z)+C(1+|£P)  forall e M.

Then L is H}L’p—quasiconve:ﬂ (resp. Lip-quasiconvex) if and only if I (+) is lower semicon-
tinuous with respect to the strong convergence of L7 (X;R™).

In case p not necessarily finite, by using Theorem [f, Theorem [3] and Lemma [2], we
have:

Theorem 7. Assume that (X, d, ) satisfies|(ADx)| and [(ALx)|.

Let L : X x M — [0,00] be a Borel measurable (resp. Carathéodory) integrand such
that for p-a.e. x € X the function L(x,-) is lower semicontinuous. Assume that there
exist c,C >0 and Ae L', . (X) such that for u-a.e. x€ X

w,loc*
clllP < L(x,&) < A(x) +C(1+[£P)  forall £ € M.

Then L is Hﬁ’p-quasiconvex (resp. Lip-quasiconvez) if and only if I (+; O) is lower semi-
continuous with respect to the strong convergence of Lt (X;R™) for all O € O (X) with
w(0) < .

5. A CLASS OF NONCONVEX INTEGRANDS WITHOUT p-GROWTH

In the spirit of the class of polyconvex integrands, see for instance [BM84], we provide a
class of H ;p—quasiconvex integrands which are nonconvex and that may not have polyno-
mial growth. These are composition of convex functions and H ;’p—quasiconvex integrands.
In the Euclidean setting with the Lebesgue measure (X,d,pu) = (2,]- —- |, Lx|q), it is
direct to see that if g (+) is convex and nondecreasing with respect to each of its variables
then the composite integrand L (-) =g (fi (), -+, fi(-), -, fs(-)) with each f; () qua-
siconvex, is quasiconvex because of the Jensen inequality. In the metric measure space
setting, we can also use the Jensen inequality to have a similar result.

Proposition 3. Let g : R® — [0,0] be a convex and lower semicontinuous function
which is nondecreasing with respect to each of its variables, i.e. for everyie {1,--- s}
and every t; € R with j + i the function

Rati—>g(ty, -t ,ts) is nondecreasing.

Let {fiYi_y, fi: X x M —[0,0] be a finite family of H\?-quasiconvex integrands. The
composite integrand L = go F where F (x,&) = (f1 (,&),-+, fi (z,&), -, fs (x,&)) for
all (x,£) € X x M is H)P-quasiconvez.
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Proof. Let € e M. By Jensen inequality and the properties of g, we have for p-a.e. x € X

lim inf ][ L(y,&+ Vyup)du

p—0 peH b (B,(x);R™) J B

Bpy()
>h_m ) inf g(][ f1(y,§+vu90)d,u,,][ fs(y,g‘f'vu@)d,u)
p—0peH ((Bp(x);R™)

By() By()

> lim g inf f Ji(y, €+ Vup)dp
peH,

p—0 , (Bp(x)va) Ep(w)

S, . 1nf ][ fs(yaf_‘_v/ﬁ(p)d:u
SOEHHZIS(BP(‘T);R”L) By ()

>y <hm inf ][ fi(y, £+ Vyup)dp

p—0 peH, b (Bp(z);iR™) J B, ()

R Jy T
p—0 LPEHilg(Bp(x)ﬂRm) Eﬂ(w)
> g(F(2,§)=L(z¢) .1

In Corollary [2[ below we extend Proposition |3|for convex function g depending on (z, §).
To achieve this task we first show a lower semicontinuous result for such g.

Lemma 3. Assume that (X, d, ) satisfies|(ADy)| and|[(ALx)| Let L : X x M — [0, o0]
be a Hﬁ’p-quasiconvex Carathéodory integrand. Assume that L has q-polynomial growth
with q €]1,p[, i.e. there exist C >0 and A€ L', (X) such that for y-a.e. v € X

w,loc
L(z,&) <A(x)+C(1+€7)  forall§ e M. (5.1)
Then for every u, {uc}eso Hﬁ’p (X;R™) satisfying

< o,

li_{% |lue — uHLﬁ(X;]Rm) =0 and S;EE’ HvuusHiﬁ(X;]M)

we have
lim [ ¥ (x)L(x,V,u)du= / VU (z) L (z, V,u)du
e—=0JX X

for all nonnegative measurable function W : X — [0, o0].

We consider the following structure condition on L : X x M—] — o0, o] a Borel
measurable integrand:

(Comp) there exist s € N*, a finite family {fi};_,, fi : X xIM——[0, o] of H,?-quasiconvex
Carathéodory integrands, and a convex and lower semicontinuous function g :
X x R*—] — o0, o0] such that for every (z,£) € X x M

L(I’,f) :g(x7f1 (l‘,g), 7fi(x7€)7"' afS(xag))7
og(z,t) ={ceR :VTeR® g(z,7) =g (z,t)+{@,7—t)} c R, forallteR"

The condition on the subdifferential dg (z,-) of g (z,-) means that the convex function
g (z,-) is nondecreasing with respect to each of its variables.

Theorem 8. Assume that (X,d, u) satisfies |(ADx)| and [(ALx)| Let L : X x M—] —

©, 0] be a Borel measurable function satisfying|(Comp)|. Moreover, we assume that each
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fi satisfies q-polynomial growth with q €|1,p|, i.e. there exist C; > 0 and A; € L', . (X)

w,loc*
be such that for p-a.e. x € X

0< fi(z, &) <Ai(x)+C(L+[£)  forall§ e M.
Then for every u, {uc}eso < H,P (X;R™) satisfying

ll_r)% Hue . U”LZ(X;R’”) =0 and S51>113 ”vyueHifL(X;]M) < 00,

we have

lim L(x,VMug)d/L)/L(x,Vuu) dj.
e—=0J0O o

for all open set O € O (X).

Proof. Set F (x,&) = (fi(z,6),-, fs(x,€)) € RS for all (z,§) € X x M. Let u €
H/},7p (X5 R™) and {uy fnew © Hi’p (X; R™) satisfying

lim [u, — vz xgm)y =0 and  sup |V, un||Lp < 0.

n—o nelN XM)

By [Roc69, Corollary 4.6.], the multifunction X 3 z — dg (z, F (z,V,u (z))) is mea-
surable. By measurable selection theorem (see [CVT7, Chap. III|) there exists a mea-
surable function @ (-) = (1 (:), -+ ,7s(-)) such that 3; = 0 for all i € {1,---,s} and
o (z) e dg(x, F (x,V,u(x))) for all x € X. It follows that for p-a.e. x € X and for every
n € IN we have

L(z,Vyuy (2)) = g (z, F (2, V u, (2)))

g z))
9 (@, F(z,Vyu () + @ (), F (2, Vyu, (2) - F (2, V,u(z))

WV

L(z,V,u(zx Z ) (fi (2, V,u, () — fi (2, V,u(2))) . (5.2)
Apply Proposition [3| with ¥ = 7;, we have for every i € {1,--- s}
lim [ @; () (fi (=, Vyun) = fi (x, V) dp = 0.

n—oo J O

Hence

s

lim [ L(z,V,u,)du 2/ L(z,V,u) du+2 lim [ ; (x) (fi(x, V,u,)—fi (z,V,u)) du

n—o J O O i:ln_’w O
2/ L(z,V,u)dp. 1
o
As a consequence of Theorem|[§] we obtain an extension for z-dependent convex function
g of Proposition [3|
Corollary 2. We assume that the integrand
X xM > (‘/Eag) — L(ZL‘,f) :g(‘rafl (:E7£)7 afi(xag)a"' 7fs(xa€)) € [0,00]

s p-coercive and that the hypotheses of Theorem@ hold. Then L is Hlp-quaszconvem at
every £ € M satisfying L (-,&) e L', (X).

w,loc*®
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Proof of Lemma Let u e H? (X;R™) and let {u.}.~0 = H,” (X;R™) be a sequence
such that lim. o |ue —u 1z (x;rm)= 0 and sup.., [V, uEHLP ay < 0 Let e X —s [0, 0]

be a nonnegative measurable function.

Assume first that ¥ = 1, with M < X a measurable set with finite measure. Let
d > 0. Since p is Borel regular, there exists an open set Os € O (X) such that O5 > M
and pu (Os5\M) + fO;\M Adp < 6. Since g €]1,p[, for p-a.e. z € X we have L (z,§) <

A(x) +2C (1 + [¢|P) for all £ e M. Applying Theorem [5| we have

lim L (y, V,uus) dp = lim (/ L (Z/, v,uus) dp — / L (ya V,uue) dﬂ)
Os Os\M

e=0JM e—0
2/ L(y,V,u)dp — lim L(y,V,ue)dp
Os =0 Jos\M
2/ L(y,V,u)dyu — lim L(y,V,u.)dpu.
M =0 Jos\M

We are reduced to show that lims_glim._o 1 (u.; Os\M) = 0. By (5.1) and Hélder in-
equality, we have for every e > 0 and § > 0

/ L (y,V,u.) dué/ Adp + Cp (Oa\M)+/ |V e |*dp
05\M O5\M Oé\M

<max (1,C)d + HvuuquLﬁ(X;M)u (Os\M)* ">
q
<max(1,0)d + <Sup ]VMUEHLg(X;]M)) sir
e>0

Therefore limg_,gsup..o! (ue; Os\M) = 0. Now, if M < X has not necessary finite
measure, since X can be written as a nondecreasing union of open sets with finite measure
X = U, Os, we apply the previous argument to M n O which has finite measure and is
contained in M. Letting s — oo and using the monotone convergence theorem we obtain

tim [ L )L (V) di = [ L ) L V) d (5.

e—0JX

Now, assume that U is a nonnegative simple function, i.e. W := ., a;1y; for some

finite family of nonnegative real numbers {a;},c; € R, and some finite family of mutually

disjoints measurable sets {M;};c; of X. Using (5.3) we have

lim | U (z)L(z,V,u.)dp= h_mZ/ a; L (z,V,u.)dp
M,

e—>0JX e—0 il

Z a; lim (x, V,ue) dp

iel e—0

2%/ (x,V,u)dp = / () L (x,V,u)dpu.

el

If ¥ is a nonnegative bounded measurable function, there exists a sequence of non-
negative simple functions {¥j}renw such that limg_,q | ¥y — W\|Lf(x) = 0. Consider a
nondecreasing union of open sets with finite measure such that X = (J .y Os. Since the
growth condition we have for every s € IN

hm sup/ |V (x )|L(x V,u.)dp = 0.

k—00 >0



Now, for every k,s € IN we have

lim \IJ () L (x,V,u.) dp

e—0

—sup/ |W (x () |L (z, V“us)d,u—i—/ Uy (x) L (x,V,u)dp.

e>0 Os

Letting k — o0 and using Fatou Lemma we obtain

lim [ ¥ (x)L(x,V,u)dp > lim Uy (z) L (z,V,u)dp > / VU (z) L (z,V,u)dp,

e—>0JX k—o0 Os

letting s — o0 we have by the monotone convergence theorem

i [ @ (2) L (2, V) dy > / W (2) L (2, V ) dpi. (5.4)
e—0JX X

In case ¥ not bounded, set ¥,, := min (¥, n) for all n € N. Using (5.4) we have for every

nelN

lim | V(z)L(z,V,u:)dp = lim [ U, (x)L(x,VMua)du>/ U, (z) L (z,V,u)dy,

e—0JX e—=0JX X

letting n — o0 and using Fatou lemma we obtain the desired result. Bl

Remark 3 (Quasiaffine integrands). It can be interesting to extend, in the setting of
metric measure spaces, some notions of the calculus of variations. For instance, the
concept of quasiaffine integrands can be stated as follows: we say that a real valued Borel
measurable integrand L : X x M — R is H}L’p—quasmﬂcine at £ € M if L and —L are

H P-quasiconvex at &, i.e if for p-a.e. 2 € X we have

L@ <lm it f L+ Vap)du
Bp(x)

p—0 peH b (B, ();R™)

L(z,§)=lim  sup ][ L(y,&+ Vyup) dp.
BP(I)

-
0
P eH B (By(a);R™)

That means

L(z,&) —lim  inf ]{B()Lw,uvw)du

pﬁosoeH o(Bp(z);R™) J B, (x

= lim sup ][ L(y,&+ V,up)dp. (5.5)
)iR™) J By()

—0 1
P77 peH B (By(x);

We say that L is H Ii’p—quasiafﬁne ifitis H ;’p-quasiafﬁne at every £ € M.

It is well known that, in the Euclidean setting, a necessary condition for the weak
continuity of the integral associated with L (not depending on z) is that L is quasiaffine,
i.e. L and —L are quasiconvex, see for instance [Dac08, Theorem 8.19, pp. 393|. We do
not know how to prove a similar result in the setting of metric measure spaces. However,
for the sufficiency of the condition we have:

Proposition 4. Assume that p is finite and L is a Carathéodory integrand which is H ;4’—

quasiaffine. Assume that |L| has q-polynomial growth with q €)1, p|[, i.e. for some C > 0 it

holds | L (x,&) | < C (1 + [€]7) for all (z,&) € X xM. Then for everyu € H* (X;R™) and
23



every sequence {uc}eso © HP (X;R™) satisfying supe.q |Vue|p < o0 and lim, g |lu. —
ullzr = 0 we have

1irr(1) L(z,V,u.)dp = / L(z,V,u)dp  forallOe O(X). (5.6)
=vJo 0]

Proof. Let u e Hy? (X;R™) and {u.}eso © HYP (X;R™) be such that sup...q | V,ue| s <
oo and lim. o [u. — u|zz = 0. Following one approximation argument of [BZ90, pp.
371], we set Ly (z,§) := k + max (L (z,§),—k) for all k e N, x € X and £ € M. By
Remarks the Carathéodory integrands L, are H bp—quasiconvex and it is easy to
check that 0 < Ly (z,§) < k+2C (1 +|{P) for all k € N, z € X and £ € M. Apply
Theorem [ to each L we get for every k> C + 1

lim [ L(z,V,yu.)dp=lim [ Ly (z,V,u:)dp+ lim | (L — Ly) (z, V,ue) du
e—0J0O e—0JO e—>0J0O

> / Ly, (x, V,u) dp + lim L(z,V,u. () +k du.
o

€20 JON[L(-Vyue () +k<0]

Noticing that L > L and using the ¢g-growth we have

lim L(x,Vqu)d/L}/L(ac,Vuu)du—Au,
e—=0J0O O

where

A, = lim sup/ k+C (14 |V, ul?)dp.
k—w0 50 [|vuu6|q>%]

We have A, = 0 since ¢ < p and sup.., |V,ue|z < . Now, apply the previous
arguments with —L in place of L we get ([5.6)). H

6. ON THE FINITENESS CONDITION L (-,§) € L, (X)

When for instance X is compact, in Theorem [2]and Theorem [3] the finiteness condition
L(-,¢)¢€ L}L (X) is needed to conclude that H ﬁ’p—quasiconvexity of L at £ is necessary for
the lower semicontinuity. Proposition [5 below gives an indication when L (-, &) € L, (X)
is not satisfied.

For each £ € M and | € IN U {0}, we set, for a Borel measurable integrand L :
X x M — [0, ],

Vii=[L(¢ <!] where L(z,¢):=lim inf ][ L(y,&+ V,p)dpu.

p—0 weHﬁjﬁ(Bp(x);lRm) B,(z)

It is easy to see that the family {Vg} e 18 nondecreasing and | . Vgl =V~

Proposition 5. Assume that p is finite and X is proper. Let L : X x M — [0, 0] be a
p-coercive Borel measurable integrand. Assume that for every u, {u.}e=o < H;’p (X;R™)
satisfying lim. o [ue — u| Lz (xzm) = 0, it holds

lim | L(z,V,u.)dp=> / L(z,V,u)dp  for all open set O € O (X). (6.1)
e—=0J0O (@]
Let & € M be such that L(-,€) is upper semicontinuous. Then L(-,§) € L. (V)

whenever [ (Vg’o) > 0.
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Proof. Let € € M be such that L (-, €) is upper semicontinuous. Assume that s (Vgoo) > 0.
There is [y € IN such that p (Vg) > 0 for all [ > [y, note that Vfl is open since L (-, ) is
upper semicontinuous. Assume for the moment that we have proved that fvg L(y, &) dp <
[ for all I = Iy, then since every compact subset T' = V. satisfies T' Vg for some [ = Iy,
we have L (-,§) € L, (T).

Let [ = ly. Let us show that fvg L(y,&)dp <. Fix (n,k) e N* x N*. For each z € V{

there exist pf , € ]O, (k2")7%[ and ¢ , € Hijg <Bﬂin (x); ]Rm> such that Elfén (z) c V¢

and

1
Ty T2 ][ L(y,&+ Vupi,) dp = c][ €+ Vg ,|” du (6.2)
1 (X) By (@) o7, @)
where we have used the p-coercivity assumption. The family {Eﬂi . (x)} of closed

eV} nelN*

57
balls is a fine cover of Vgl , so by Vitali covering theorem there exists a countable family
of mutually disjoint closed Ealls {B o (:E,)}ielN such that p <V§\Ui:0 B o (xz)> 0.
We set ¢ := ¢y, , B = By (i), Py 1= Py, for all i € N, and @ 1= D cpfc]lBi €
H;:g (X;R™). Assume for the moment that the sequence {¢g}rews < Hi:g (X;R™) is
converging to 0 in L%, (X;R™), i.e. limy o [@rlp = 0. Set Fy := ey Bi and Fy, =
Miens i € B(X). We see that u (Vg) = p (Fo Vg) Take the sum over all closed balls
B} in (6.2)), we obtain

1
2”2/ L(y,€+Vusok)du>/ L(y,€+Vusok)du=/ L(y,§ + Vyupr) du.
F,

1
Ve

e}

letting k — oo and using (6.1])) we find that fvg L(y,&)du <.

It remains to show that limy |¢r Lz = 0. By using the Sobolev inequality (2.5) and
the coercivity condition, we have

o0
/ ol dp <) (pi)pCfé/, |V upi]” dp
X Bi

=0

(1) 2r~C% (/ €+ Vu%\pduﬂL/, f!%)
5 B} B;

() 2 ey ( /

1 .
et V) i+ / | Iflpdu)
& By,

P&, 1 .
p—1~'S i\P P i
<22 ;_O () </B;’;l+ e )du+c|£| M(Bk)>

L, CP 2
< 271 (1 (X) + 1+ elélP e (X)) 7.

By passing to the limit k — oo, we obtain that ¢, — 0 in LF (X;R™). B

~
Il

RgE

<

.
Il

<

s

-
Il
o

As an illustration of Proposition [ we have:

Corollary 3. Assume that X is compact. Let L : X x M — [0,0] be a p-coercive
Borel measurable integrand. Assume that for every u, {uc}eso < H,i’p (X;R™) satisfying
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hmsg,() ||U€ — UHL;Z(X;]R"") = 07 it hOldS

tiw [ Lo Vyu)dp > [ L) dp (6.3
e—=0J0O (@)

for all open set O € O (X).

Assume that L (-, €) is continuous for all ¢ € M, and that there exists Lo : IM — [0, o]
a Borel measurable function such that for some o, 8 > 0 we have for p-a.e. x € X

aLy(§) < L(x,8) <B(+Lo(§) forall€eM.

Then L 1ws H ;’p-quasiconvex.

Proof. Let £ € M. 1If Ly () < o then pu (X\Vg’o) = 0. By Proposition |5 we have
L&) €L (Vg@) = L} 1oc (X) = L, (X) since X is compact, and_ so Theorem (3| gives
that L is HP-quasiconvex at £. Otherwise, Lg (§) = o hence o0 = L (z,&) = L (z,§) for
paa re X.

7. PROOFS OF PROPOSITION [I] AND THEOREM [4]

Proof of Proposition

Proof of . Since p is doubling, X satisfies the Vitali covering theorem see [HKST15,

Theorem 3.4.3, pp. 73].

Proof of (i), The closability of the p-gradient in Lip (X; R™), given by Theorem [I][(iv)]

can be extended from Lip (X;R™) to H)” (X;R™) by using the closability theorem of

Franchi, Hajtasz and Koskela (see [FHK99, Theorem 10]).

Proof of . According to [BB11, Corollary 4.24 pp. 93|, since p is doubling and X

supports a (1,p)-Poincaré inequality, we can assert that X supports a (p,p)-Poincaré

inequality, i.e. there exist C}, > 0 and ¢ > 1 such that for every z € X and every p > 0,
1

- du| d < oC Pd '
(7{%@) T ]{am)f 8 My)) = p<7{30p<x>g M) =

for every f € L? (X) and every p-weak upper gradient g € L% (X) for f. Now, we can
use the Sobolev inequality in [BB11, Theorem 5.51, pp. 142] to assert that there exists
Cg > 0 such that

1
<][ !w!”du> < pCs <][ gﬂdu) (7.2)
B, (x) By (x)

for all 0 < p < pg, with pg > 0, all w € H;:g (B, (z)), and where g,, is the minimal p-weak
upper gradient for w. Moreover (see [Che99, §4| and also [BB11l, §B.2, pp. 363], [B;j600]
and [GHI3, Remark 2.15]), there exists o > 1 such that for every w € H* (X) and p-a.e.
reX,

1
= 190 (@)] < |Dyw (2)] < erlgu ()],
where D), corresponds to V,, with m = 1. As for v = (v;),_; .. ,,, € H,” (X; R™) we have

Vv = (Dyv;),_, ., it follows that o

i=1,-,

"o (2)] < (V0 (2)] < gy (@) (7.3)

for p-a.a. x € X, where g, := (gu,) i=1... ;m 18 naturally called the minimal p-weak upper

gradient for v. Combining (7.2)) with (7.3) we obtain ({2.5).
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Proof of [(iv) From Bjérn (see [Bj00, Theorem 4.5 and Corollary 4.6] and also [GHI3,
Theorem 2.12]) we see that for every k € IN, every u € H* (X;R™) and p-a.e. z € Xy,

Vuu, (y) = Vyu(z) for p-aa. ye Xy,
where u, € H,? (X;R™) is given by
U (y) = u(2) + Vyu(z) - (V* (y) = 7" (2))

and v is LP-differentiable at x, i.e.,
/{{%; lu = vall L (5, () ) = O-
Proof of . For every p > 0, t €]0,1] and every x € X, there exists a function ¢ €
Lip (X; [0, 1]) such that
¢(z) =0 forallze X\B, (z), ¢(z) =1 for all z € B,, (z)
. — le(y) — v (2)]
——— where Li = lim ——————=forallye X.
p(1—1) pe (v) dy)—~0  d(y,2) ’

But, since p is doubling and X supports a (1, p)-Poincaré inequality, from Cheeger (see
I[Che99, Theorem 6.1]) we have Lipyp (y) = g, (y) for p-a.a. y € X, where g, is the
minimal p-weak upper gradient for . Hence

and ||Lipp|zzx) <

(6]
D w0 ( X < ——
H HSOHL# (X;RY) P (1 — t)

because |D,¢ (y)| < alg, (y) | for p-a.a. ye X. 1A

Proof of Theorem [ Let u € H,”(X;R™) be such that (3.12) holds. By [(Cy)
and (3.12), the theorem of differentiation of measures (see [HKSTI15, pp. 82]) gives
for p-a.e. xe X

I (u;- I (w;B
dr(us-) (x) = lim —(U_ () < 0.
du —0 1 (B, (z))
Let a > 0. We have to show that u (N,) = 0 where
I ;B I (u; B,
Ny :=<2xe X :lim inf (u—i—_gp, p(x))_ (u,_p(ac))<_a :
p—0geHL (B @)Rm) 1 (B, (1)) 1 (B, (2))

Since X is a countable union of balls with finite measure, we can write N, = UZO:O B,nN,
where By is an open ball and p (Bs) < o0, so it is enough to prove that p (N2) = 0 with
N := Bs;n N, for all s e IN.

Fix s € N. For each x € NZ there exists p® €]0,1[ such that B, (z) = B Fix

(k,n) € IN* x IN*. For each x € N there exist pf, € ]O,min ((k?%); ,p$>[ and ¢f €
H'? <Bpi ()5 Rm> such that

©,0
! l1(+I§()1§()<+1 (7.4)
1 (By, @) ki (B,)
The family of closed balls {Eﬂi (x)} is a fine cover of N3, so by Vitali covering
" zeNZ ,nelN*

theorem there exists a countable family of mutually disjoint closed balls {EpZi (xz)}
g €N
27



such that
a0 o 0 .
[ (N;\U B (xi)> =0 and | JB,: (w)c B, (7.5)
i=0 i i=0 o

We set ¢}, = @i, Bj = Eﬂifni (:), pi = pyiip, for all i € N. Moreover, for each [ € IN

we set g 1= Zi‘:o go}'c]lBIic € H;:g (Bs; R™).
Fix [ € N. We have by using the Sobolev inequality (2.5) and the coercivity condi-
tion |(Cy)|
o0

a0
/X [kt ()7 dps < Z/B ok () dp < ) (pZ)pCﬁ/B, IV 0k ()" dps
i=0+ B}, %

1=0

Qp—l(jg o » o 4
< Z (pﬁg) 1 (u + Vs B,’g) +17 (u; B,i)

=0

w10 1 2
< e oI (u: By) | =.
( c / ar ku(Bs)dM+ (u )> k

Since I (u; B;) < 0, by passing to the limit k — oo we find that ¢y, — 0 in L (X;R™).

We set F} := Ui:o Bi < O foralll € N. Let € > 0. Because of there exists [. € IN
such that u (N;’\F ,is) < £.Take the sum over the finite family of mutually closed balls
{Bi}, in (74), we obtain

Cc

le o 1
Zl(u—kng;B}g) — I (u;By) < T on (F,is)
i=0

By and the locality condition we have

1
1 (u + QOME;F,@E) —1 (u; F,ff) < T ap(N3) + e.
since i = @, p-a.e. in Bi. But, by we have [ (u + Ok BS\F,iE) -1 (u; BS\F,ie) =
0 and then
1

I'(u+ pa; Bs) — 1 (u; By) =1 (U+ Spk,le;FliE) -1 (U; F;is) < - ap (N) +e. (7.6)

Letting k — oo in ([7.6) and using the lower semicontinuity assumption we have
0< lim I (u+ g Bs)—I(u;Bs) < —ap(N)) +e.

k—o0

Letting € — 0 we obtain p (NZ2) = 0 which finishes the proof. B
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