Finite-Volume approximation of the invariant measure of a viscous stochastic scalar conservation law - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Finite-Volume approximation of the invariant measure of a viscous stochastic scalar conservation law

Approximation Volumes-Finis de la mesure invariante d'une loi de conservation scalaire stochastique visqueuse

Résumé

We aim to give a numerical approximation of the invariant measure of a viscous scalar conservation law, one-dimensional and periodic in the space variable, and stochastically forced with a white-in-time but spatially correlated noise. The flux function is assumed to be locally Lipschitz and to have at most polynomial growth. The numerical scheme we employ discretises the SPDE according to a finite volume method in space, and a split-step backward Euler method in time. As a first result, we prove the well-posedness as well as the existence and uniqueness of an invariant measure for both the spatial semi-discretisation and the fully discrete scheme. Our main result is then the convergence of the invariant measures of the discrete approximations, as the space and time steps go to zero, towards the invariant measure of the SPDE, with respect to the second-order Wasserstein distance. A few numerical experiments are performed to illustrate these results.
Fichier principal
Vignette du fichier
InvariantMeasureApproximation.pdf (608.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02291253 , version 1 (19-09-2019)
hal-02291253 , version 2 (06-01-2021)
hal-02291253 , version 3 (26-05-2021)

Identifiants

Citer

Sébastien Boyaval, Sofiane Martel, Julien Reygner. Finite-Volume approximation of the invariant measure of a viscous stochastic scalar conservation law. 2019. ⟨hal-02291253v1⟩
590 Consultations
190 Téléchargements

Altmetric

Partager

More