Characterization of the undesirable global minima of the Godard cost function: case of noncircular symmetric signals - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2006

Characterization of the undesirable global minima of the Godard cost function: case of noncircular symmetric signals

Résumé

The deconvolution of a filtered version of a zero-mean normalized independent and identically distributed (i.i.d.) signal (s/sub n/)/sub n/spl isin/z/ having a strictly negative Kurtosis /spl gamma//sub 2/= E[|s/sub n/|/sup 4/]-2(E[|s/sub n/|/sup 2/])/sup 2/-|E[s/sub n//sup 2/|/sup 2/] is addressed. This correspondence focuses on the global minimizers of the Godard function. A well-known result states that these minimizers achieve deconvolution at least if the input signal shows the symmetry E[s/sup 2/]=0. When this constraint is relaxed, (s/sub n/)/sub n/spl isin/z/ is said to be noncircular symmetric: It is shown that the minimizers achieve deconvolution if and only if 2|E[s/sub n//sup 2/]|/sup 2/<-/spl gamma//sub 2/(s). If this condition is not met, the global minimizers are found to be finite-impulse-response filters with two taps
Fichier principal
Vignette du fichier
Houcke2006.pdf (200.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02291178 , version 1 (13-07-2022)

Licence

Identifiants

Citer

Sébastien Houcke, Antoine Chevreuil. Characterization of the undesirable global minima of the Godard cost function: case of noncircular symmetric signals. IEEE Transactions on Signal Processing, 2006, 54 (5), pp.1917-1922. ⟨10.1109/TSP.2006.872584⟩. ⟨hal-02291178⟩
46 Consultations
56 Téléchargements

Altmetric

Partager

More