Deep learning dark matter map reconstructions from DES SV weak lensing data - Archive ouverte HAL
Article Dans Une Revue Monthly Notices of the Royal Astronomical Society Année : 2020

Deep learning dark matter map reconstructions from DES SV weak lensing data

Niall Jeffrey
  • Fonction : Auteur
François Lanusse
Ofer Lahav
  • Fonction : Auteur

Résumé

We present the first reconstruction of dark matter maps from weak lensing observational data using deep learning. We train a convolution neural network with a U-Net-based architecture on over 3.6 × 10^5 simulated data realizations with non-Gaussian shape noise and with cosmological parameters varying over a broad prior distribution. We interpret our newly created dark energy survey science verification (DES SV) map as an approximation of the posterior mean P(κ|γ) of the convergence given observed shear. Our DeepMass^1 method is substantially more accurate than existing mass-mapping methods. With a validation set of 8000 simulated DES SV data realizations, compared to Wiener filtering with a fixed power spectrum, the DeepMass method improved the mean square error (MSE) by 11 per cent. With N-body simulated MICE mock data, we show that Wiener filtering, with the optimal known power spectrum, still gives a worse MSE than our generalized method with no input cosmological parameters; we show that the improvement is driven by the non-linear structures in the convergence. With higher galaxy density in future weak lensing data unveiling more non-linear scales, it is likely that deep learning will be a leading approach for mass mapping with Euclid and LSST.
Fichier principal
Vignette du fichier
staa127.pdf (1.68 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02290809 , version 1 (23-05-2024)

Licence

Identifiants

Citer

Niall Jeffrey, François Lanusse, Ofer Lahav, Jean-Luc Starck. Deep learning dark matter map reconstructions from DES SV weak lensing data. Monthly Notices of the Royal Astronomical Society, 2020, 492 (4), pp.5023-5029. ⟨10.1093/mnras/staa127⟩. ⟨hal-02290809⟩
104 Consultations
9 Téléchargements

Altmetric

Partager

More