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ABSTRACT
We present the first reconstruction of dark matter maps from weak lensing observational data
using deep learning. We train a convolution neural network with a U-Net-based architecture
on over 3.6 × 105 simulated data realizations with non-Gaussian shape noise and with
cosmological parameters varying over a broad prior distribution. We interpret our newly
created dark energy survey science verification (DES SV) map as an approximation of the
posterior mean P(κ|γ ) of the convergence given observed shear. Our DeepMass1 method is
substantially more accurate than existing mass-mapping methods. With a validation set of
8000 simulated DES SV data realizations, compared to Wiener filtering with a fixed power
spectrum, the DeepMass method improved the mean square error (MSE) by 11 per cent.
With N-body simulated MICE mock data, we show that Wiener filtering, with the optimal
known power spectrum, still gives a worse MSE than our generalized method with no input
cosmological parameters; we show that the improvement is driven by the non-linear structures
in the convergence. With higher galaxy density in future weak lensing data unveiling more
non-linear scales, it is likely that deep learning will be a leading approach for mass mapping
with Euclid and LSST.

Key words: gravitational lensing: weak – methods: statistical – (cosmology:) large-scale
structure of Universe.

1 IN T RO D U C T I O N

The evolving cosmological density field is rich in information about
the cosmological model of the Universe, its unknown parame-
ters, and cosmic web-dependent astrophysics. Though the largest
fraction of the density is invisible dark matter, the gravitational
lensing effect of galaxies can be used to infer fluctuations in the
total foreground matter distribution. Accurate mass maps will be
essential for the science goals of the upcoming LSST survey and
the ESA Euclid mission.

The maps considered in this paper are of the two-dimensional
convergence, κ , a weighted projection of the matter density field
in the foreground of the observed galaxies. Recovering the conver-
gence from the measured galaxy shapes, known as observed shear
γ obs in the weak lensing regime, is an ill-posed inverse problem,
troubled by survey masks (missing data) and galaxy ‘shape noise’.

A typical principled approach to reconstructing more accurate
mass maps in the presence of noisy, masked shear data is to use

� E-mail: niall.jeffrey.15@ucl.ac.uk
1github.com/NiallJeffrey/DeepMass

physically motivated priors. In Jeffrey et al. (2018b), it was shown
that using either Gaussian priors or ‘halo model’ sparsity priors
for κ improved the accuracy of the reconstructions with the dark
energy survey science verification (DES SV) data. Implemented
methods include using lognormal (Böhm et al. 2017) priors or
E-mode priors (Mawdsley et al. 2019).

However, all of these priors take functional forms that only
approximate the true object of interest, the prior on the convergence
field P (κ|M) (with model assumptions M). These approximations
are necessary because we cannot represent the probability distribu-
tion of the non-linear density field in a closed form. For example, we
cannot characterize it uniquely in terms of its moments (Carron &
Szapudi 2017). Even if the true, unapproximated prior were avail-
able, evaluation via direct calculation would likely be intractable.

Fortunately, we can still draw realizations of convergence maps
from the prior distribution P(κ) in the form of simulations,
which provides an opportunity to a new generation of methods
based on deep learning. Such an approach has been simultane-
ously proposed by Shirasaki, Yoshida & Ikeda (2018), where
a conditional adversarial network was used to learn a mapping
from noisy convergence maps to an estimate of the noise-free
convergence.

C© The Author(s) 2020.
Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
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In this work, we propose a deep learning method to estimate the
posterior mean of the convergence map from observed weak lensing
shear measurements. In Section 4, we demonstrate our method on
simulations and the DES SV data.

2 W EAK G RAVITATIONA L LENSING

2.1 Shear and convergence

Given a distribution of source galaxies n in radial comoving distance
ω, the convergence at position φ

→
on the sky is given by a weighted

integral of the density

κ(φ
→

) = 3H 2
0 �m

2

∫ ∞

0

[∫ ω

0
dω′ ω

′(ω − ω′)
ω

δ(φ
→

, ω′)
a(ω′)

]
n(ω)dω, (1)

where H0 is the present value of the Hubble parameter, a is the
cosmological scale factor, �m is the matter density parameter, and
δ is the overdensity.

We express the linear data model in matrix notation,

γ = Aκ + n, (2)

where n is a vector of noise per pixel. The matrix operator
acting on the convergence Aκ is the shear contribution due to
lensing (Bartelmann & Schneider 2001). In this formulation, the
elements γ are the complex shear measurements binned into angular
pixels in a two-dimensional image format.

We do not take into account the second-order effects of reduced
shear (Schneider & Seitz 1995), flexion (Bacon et al. 2006), or
intrinsic alignments (Kirk et al. 2015). However, the deep learning
approach taken in this paper is extremely flexible; as long as an effect
can be modelled and included in the training data, it will be taken
into account in the mass map reconstruction. This is generally not
true of other methods. For example, flexion requires reformulations
of methods (e.g. Lanusse et al. 2016). Additionally, noise per pixel
is invariably approximated as Gaussian, which we do not assume in
our deep learning approach.

2.2 Previous mapping approaches

The original mass-mapping approach by Kaiser & Squires (1993)
was a direct deconvolution. In practice, Kaiser–Squires (KS) inverts
the matrix A in Fourier space, where the matrix is diagonal. As this
deconvolution is across a finite space, the edges of the data and
internal masks introduce artefacts. KS is further troubled by the
noise term in equation (2), which it does not take into account.

In a Bayesian framework, we may wish to consider the posterior
distribution of the convergence κ conditional on the observed shear
γ

P (κ |γ ,M) = P (γ |κ,M) P (κ |M)

P (γ |M)
. (3)

The denominator P (γ ) is a Bayesian evidence term conditional
on model M. The first factor of the numerator is the likelihood
P (γ |κ,M), which encodes our noise model. The second term is
the prior P (κ |M), a possible selection of which was discussed in
Section 1.

If we believe that a realization of the convergence κ is a realization
of Gaussian random field, then the form of P (κ) would be Gaussian.
If the noise per pixel is Gaussian, then the likelihood is also
Gaussian, which results in a posterior distribution with both the
mean and maximum given by the Wiener filter:

κ̂w = Wγ = SκA† [ASκA† + N
]−1

γ , (4)

where Sκ = 〈κκ†〉 and N = 〈nn†〉 are the signal and noise covari-
ance matrices, respectively (Wiener 1949, Zaroubi et al. 1995, Jef-
frey, Heavens & Fortio 2018a). The signal covariance in harmonic
space is diagonal for isotropic fields. On the sphere, its elements
are given by the κ power spectrum, Cκ (	).

This Gaussian distribution is only approximately true for large
scales where Gaussianity persists from the early Universe. On
smaller scales, non-Gaussianity grows due to non-linear structure
formation, which results in the cosmic web of the late Universe.

3 D EEP LEARNI NG MAPS

3.1 Convolution neural networks

We take a standard deep learning approach. We seek an approx-
imation F
 to the function that maps the pixelized shear to the
convergence map

κ̂ = F
(γ ), (5)

where the parameters of the function 
 are to be learned (Good-
fellow, Bengio & Courville 2016). We learn these parameters by
minimizing a mean square error (MSE) cost function

J (
) = ||F
(γ ) − κ true||22, (6)

evaluated on a set of training data, which consists of pairs of realistic
shear and ‘truth’ (noise-free) convergence maps. If the training
data ‘truth’ maps are drawn from a prior distribution P(κ), and
the corresponding noisy shear map is drawn from the likelihood
P(γ |κ), this MSE cost function corresponds toF
(γ ) being a mean2

posterior estimate (Jaynes 2003), such that κ̂ is approximating

κ̂ = F
(γ ) =
∫

κ P (κ |γ ) dκ . (7)

We use a deep convolution neural network (CNN) to approximate
the function F
, where the parameters 
 are primarily elements
of learned filters in convolutional layers. CNNs are particularly
suited for two-dimensional image or one-dimensional time-series
data with translation invariant features in the underlying signal.

The CNN is a series of iteratively computed layers. At a given
layer j, the signal xj is computed from the previous layer

xj = ρMj xj−1 (8)

with linear operator (e.g. convolution) Mj and non-linear activation
function ρ (LeCun et al. 1990, Mallat 2016). The output of a layer
is sometimes called a feature map.

Due to their additional layers, deep architectures are often able to
learn features with greater complexity than shallow architectures
and therefore can better approximate the target function. For
a general overview of deep learning and neural networks, we
recommend Goodfellow et al. (2016).

3.2 DeepMass architecture

Our DeepMass architecture is based on the U-Net (Ronneberger,
Fischer & Brox 2015), which has a so-called expanding path and
contracting path. The DeepMass contracting path differs from the
original U-Net: Usually convolutions and activation are followed by
a max pooling operation to downsample the images, whereas we use
average pooling (Géron 2017). With each downsampling operation,

2The mean posterior is not generally the maximum a posteriori.
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Deep learning DES mass maps 5025

the images decrease in resolution, but the 3 × 3 filters cover more
angular size of the image. The convolution after a pooling operation
therefore has a receptive field that covers larger physical features in
the convergence κ map.

There are similarities between U-Net architectures and sparse
recovery methods. These consider representations where the solu-
tion is sparse and employ transforms that are fixed (e.g. Fourier,
wavelets) or learned from data, and optimization is solved using
proximal theory (Starck, Murtagh & Fadili 2015). The U-Net
expanding and contracting paths are very similar to synthesis and
analysis concepts in sparse representations. This has motivated the
use of wavelets to implement the U-Net average pooling and the
expanding path (Han & Ye 2018; Ye, Han & Cha 2018). There are
nevertheless significant differences: U-Nets can learn rich sets of
features (corresponding to sparse dictionaries) from large training
data sets, and the CNN implementation of non-linearity.

We differ from the original U-Net by not using padding in the
convolutional layers, as the edge of our data mask is already many
pixels away from the edge of the square image. This choice means
that output of a convolution has the same image dimensions as the
input.

The full architecture and code can be seen online: DeepMass†. We
have added batch normalization layers (Ioffe & Szegedy 2015) after
each convolutional layer; without this, training often became stuck
in local minima of the cost function with respect to the parameters

. For all layers, except for the final, we use the rectified linear
unit activation. In the final layer, we use a sigmoid function, which
forces the output to be between 0 and 1 (inputs and outputs are
correspondingly rescaled).

For simplicity and memory efficiency, we aimed to work with
real (32-bit) numbers, thus necessitating an initial operation acting
on the complex shear γ . The best results came from using a fixed
Wiener filter operation before the first convolution (rather than KS,
as might be expected). This is equivalent to the first layer having
Mj=0 = W and ρ = 1, with no free parameters. We could also
interpret the U-Net after the initial Wiener operation as G
, where
F
(γ ) = G
(W (γ )). The Wiener filter used a power spectrum with
cosmological parameters σ 8 and �m, fixed at the mean of the
marginal posterior distributions from DES Y1 analysis (Abbott et al.
2018). The flat-sky power spectrum was an average of 102 power
spectra of projected patches.

3.3 Training data

3.3.1 L-PICOLA simulations

The training data are derived from 74 independent dark matter
simulations, with each simulation covering an octant of the sky.
The simulations used a standard flat lambda cold dark matter cos-
mological model with H0 = 70 km Mpc−1 s−1. The scalar spectral
index and baryon density were fixed at ns = 0.95 and �b = 0.044,
respectively. The values of �m and the amplitude parameter σ 8 are
distributed on a non-Euclidean grid with distances between points
giving a density according to our prior P(σ 8, �m) as shown in Fig. 1.
Weak lensing constraints are most sensitive to combinations of this
pair of parameters, so we avoid overfitting to a single cosmology
by varying them in the training data.

To generate a convergence map from a simulation, the matter
particles were binned using the HEALPIX (Górski et al. 2005)
pixelization of the sphere with NSIDE = 2048 in comoving radial
shells of 50 Mpc h−1. The density ρ map in a given redshift
was converted into an overdensity δ = ρ/ρ̄ − 1 using the average

Ωm = 0.32+0.21
−0.18
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−0.29

Figure 1. Prior range of cosmological parameters �m and σ 8 of the training
data. Simulations were run at the marked points.

density in the shell ρ̄. The convergence was calculated per pixel
using equation (1). We wish to have the n(z) in the lensing kernel
match the DES SV data (Section 4.1), which we approximate by
summing the individual posterior redshift distributions per galaxy
from the BPZ photometric redshift code (Coe et al. 2006). The
convergence maps were downgraded to NSIDE = 1024.

The dark matter simulations are generated using the L-PICOLA

code (Howlett, Manera & Percival 2015), which is based on the
COLA (Tassev, Zaldarriaga & Eisenstein 2013) algorithm. This uses
a combination of second-order Lagrangian perturbation theory and
a particle mesh that requires fewer time-steps than ‘full’ N-body
(e.g. Gadget Springel 2005) and therefore can generate simulations
more quickly. This allows more training data to be generated in a
given amount of compute time.

We used a 1250 Mpc h−1 comoving simulation box, 7683 parti-
cles, and a 15363 grid. A z < 1.6 light-cone was generated with up
to four box replicates, using 30 time-steps from z = 20. The initial
conditions used Eisenstein & Hu (1999) for the linear matter power
spectrum.

The drawback of this approach is the accuracy of the dark matter
distribution. The finite spatial resolution and fewer time-steps used
by the COLA method particularly affects small distance scales.
Our experiments have shown a suppression of the L-PICOLA power
spectrum at scales of 	 > 700 of the order of 10 per cent [relative to
NICAEA3 (Kilbinger et al. 2009) theory], as is expected with COLA

methods. We correct the power of the L-PICOLA convergence by
estimating the smooth part of the Cκ (	) using a polynomial order
1 Savgol filter with window size 91 for each convergence map and
reweighting spherical harmonics. Using the ratio of NICAEA and
only the smooth part of the measured simulation, power spectrum
ensures that the natural fluctuations inherent in Cκ (	) for a given
realization are preserved.

3.3.2 Training images

From the 74 independent HEALPIX convergence maps over an octant
of the sky, we generate 376 684 DES SV mock data realizations.
A given realization is generated from the HEALPIX convergence
map by randomly choosing a position on the sphere, applying a
uniform random rotation between 0 and 360 deg, and extracting a

3nicaea.readthedocs.io

MNRAS 492, 5023–5029 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/4/5023/5707418 by guest on 23 M
ay 2024



5026 N. Jeffrey et al.

Figure 2. Convergence κ reconstruction from DES SV observational data with KS, Wiener filtering, and DeepMass.

square patch using a gnomonic projection with 2562 pixels of size
4.52 arcmin2. If the generated image has pixels outside the octant,
it is rejected. The rotation step is not to make the reconstruction
rotation invariant, which happens naturally as P (κ) is isotropic by
the cosmological principle, but it is to augment the training data and
learn F
 better.

From the projected square κ convergence map, the complex
noise-free shear map is generated using the A matrix from equa-
tion (2). The mask is applied and a random shape noise map is added.
The noise map is generated by randomly shuffling the positions
of galaxies in the original catalogue; this keeps the density of
galaxies the same, but destroys the coherent lensing signal. This
way, we forward model the non-Gaussian noise inherent in the data
(something that other methods do not do).

4 R ESULTS

4.1 Dark energy survey SV data

DES is a ground-based photometric galaxy survey, observing in
the southern sky from the 4 m Blanco telescope in Chile with five
photometric filters (Flaugher et al. 2015). The SV (A1) data4 come
from an initial run of 139 deg2, but with depth approximately that
of the full 6 yr survey (Chang et al. 2015). We make a redshift cut
of 0.6 < zmean < 1.2, where zmean is the mean of the z posterior for
each galaxy. Data selection choices match Jeffrey et al. (2018b),
although some maps appear different due to changes in pixel size
and flat-sky projection.

In Fig. 2, we apply KS, Wiener filtering, and the trained
DeepMass CNN. KS uses a 10 arcmin Gaussian smoothing as in
Jeffrey et al. (2018b). The Wiener filtering uses a power spectrum
with �m and σ 8 at the mean of their respective marginal posterior
distributions from the year 1 DES cosmology result (Abbott
et al. 2018). The DeepMass CNN was trained using the Adam
optimizer (Kingma & Ba 2015) with a learning rate = 1 × 10−5 for

4http://des.ncsa.illinois.edu

20 epochs (retraining over the full training set). The final Wiener
and DeepMass maps were smoothed with a Gaussian kernel of σ =
2.25 arcmin (half pixel size) to remove very small-scale artefacts
arising from the HEALPIX projection.

The DeepMass reconstruction clearly shows more non-linear
structure than the Wiener filter. Individual peaks, which are sup-
pressed by Wiener filtering, are resolved by DeepMass. The accurate
recovery of non-linear and peak structures using DeepMass is
studied quantitatively in Section 4.2.

4.2 Validation on simulations

Of the originally generated training images (Section 3.3), 8000
were reserved for validation and not used for training. One such
example can be seen in Fig. 3, with the corresponding Wiener filter
and DeepMass reconstructions. As with the reconstruction from
observational data, DeepMass can be seen to recover the non-linear
(cosmic-web) structure better than Wiener filtering. Compared to
Wiener filtering, the MSE over all 8000 maps is improved using
DeepMass by 11 per cent.

As DeepMass is estimating the mean of a posterior probability
distribution (equation 7), there are inevitably structures that appear
in the map (Fig. 3) but do not appear in the truth, and structures that
appear in the truth but not in the reconstruction. Exploring the full
posterior distribution, and thereby quantifying uncertainty, is a rich
topic for future work.

To understand how DeepMass performs over different regimes,
we can measure the MSE for a subset of pixels in the map with
true value greater than some threshold, κ > X. Fig. 4 shows this for
three different examples (labelled A, B, and C), chosen from the
validation sample for their different power spectra.

The bottom row of Fig. 4 shows the MSE difference between
DeepMass and Wiener filtering (MSEDeepMass − MSEWiener) for
these three examples. In each case, the DeepMass improvement
over Wiener filtering is shown to be driven by pixels with large
true convergence κ truth. That is, DeepMass improves over Wiener
filtering more for pixels with larger κ values (with increased
improvement for those with κ truth > 0). Compared to Wiener

MNRAS 492, 5023–5029 (2020)
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Figure 3. Example L-PICOLA validation simulation (centre) and the corresponding Wiener (left) and DeepMass (right) reconstructions. The colour scale for
the truth (target) is larger to accommodate the larger dynamic range and make comparison easier by eye.
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Figure 4. The top row shows the power spectra of three example convergence κ truth maps (A, B, and C) from the validation sample. The bottom row shows
the corresponding change in MSE from Wiener filtering to DeepMass as a function of κ threshold of the pixels. This shows (1) DeepMass improves over
Wiener mostly in the high κ regime, and (2) DeepMass improves over Wiener more when the underlying map has more structure (higher power).

filtering, DeepMass is able to better reconstruct high κ value, non-
linear structures in the convergence κ fields.

The error bars in the bottom row of Fig. 4 are given by√
σ 2

MSE, DeepMass + σ 2
MSE, Wiener)/Nκ>X , where Nκ > X is the number

of pixels in the sample above the threshold, and σ 2
MSE is the variance

of the measured MSE over the sample for a given method.
The three map examples in Fig. 4 were chosen to demonstrate

performance when the underlying true maps have different power
spectra (top row). The map with the smallest power (example C) has
the least improvement of DeepMass over Wiener filtering (though

the improvement is still larger for high-valued pixels). Example
A, with a larger power spectrum, shows a much more significant
improvement in MSE.

Fig. 4 demonstrates that (1) DeepMass improves over Wiener
more for pixels with larger κ value, and (2) DeepMass improves
over Wiener more when the underlying map has more structure
(higher power).

In Jeffrey et al. (2018b), use of a ‘halo-model’ sparsity prior
did not outperform Wiener filtering in terms of MSE, and so we
expect DeepMass MSE to outperform GLIMPSE. However, MSE
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Figure 5. Power spectrum of the residuals (κ = κ̂ − κ truth) normalized
by the power spectrum of the truth Ptruth. The ratio P/Ptruth is averaged
over 8000 maps in the validation set with cosmological parameters drawn
from the prior (Fig. 1).

minimization relates just to the posterior mean, so alternative
metrics (e.g. constraints from peak statistics) remain to be explored.

Using 18 non-overlapping mock DES SV data from the
MICE (Fosalba et al. 2015) simulations, we apply a Wiener
filter with an optimal power spectrum calculated using the known
cosmological parameters (not available in real data applications).
Nevertheless, without using the known cosmological parameters as
input, DeepMass still recovers maps with an average of 2 per cent
better MSE.

The smaller improvement of DeepMass over Wiener with the
MICE simulated data can be explained both by the fact that we
have used the known cosmological parameters in the Wiener filter
(whereas DeepMass uses no specified input cosmological parame-
ters) and by the intrinsically low power of the MICE simulations.
The MICE cosmological parameters (inc. �m = 0.25, σ 8 = 0.8)
lead to a relatively low-amplitude power spectrum, so DeepMass is
in the regime demonstrated by example C in Fig. 4. The low power
effectively means that there are fewer non-Gaussian structures
above a detectable signal-to-noise level. The largest improvement
over Wiener filtering comes when there are more non-linear (non-
Gaussian) structures.

With the same MICE simulations, and restricting ourselves to
pixels where the truth is greater than two standard deviations from
the mean κ > 2σ (where σ is the standard deviation of pixels in
the true map), compared to Wiener filtering, DeepMass improves
the MSE by 8 per cent. As is to be expected, therefore, DeepMass
improves over Wiener filtering due to its ability to reconstruct the
non-linear structures in the cosmological signal.

Fig. 5 shows the power spectrum P of the residual maps
κ̂ − κtruth, normalized by dividing by the true power Ptruth, averaged
across all the maps in the validation sample. The residual power
shows no particular scale at which DeepMass performs better
or worse than the Wiener filter; DeepMass outperforms Wiener
filtering at all length-scales.

At the smallest scales, the average P/Ptruth for both methods
tend towards one. This is evidence that both reconstruction methods
are suppressing structure on the smallest scales, and the residual
power is tending towards the power of the true map. On these
smallest scales the signal to noise is so low that the minimum
variance reconstructions damp fluctuations.

The Wiener filter uses the same fiducial power spectrum for each
map included in the averaged result shown in Fig. 5. Although
DeepMass has no input cosmology, it outperforms Wiener filtering
on large scales, which we may expect to be approximately more
Gaussian. We can interpret this as DeepMass inferring power
spectrum or cosmological parameter information from the data,
information which is being used in the reconstruction.

In this work, we drew the cosmological parameters of the training
data from broad priors (see Fig. 1) to generalize the DeepMass
method for the realistic situation where the true underlying param-
eters are unknown. However, in future work it would be interesting
to compare Wiener filtering with DeepMass trained at a single
fiducial cosmology, to find whether DeepMass would outperform
Wiener filtering only at small (presumably more non-Gaussian)
scales.

5 C O N C L U S I O N

With DeepMass, we have presented a deep learning method to
reconstruct convergence κ maps from shear measurements. With
DES SV, we have shown the mass map reconstruction with deep
learning from observational data.

By training with simulations over a broad prior distribution
of cosmological parameters, we have a generalized method that
needs no input cosmological parameters. This method has shown
substantial improvement over Wiener filtering both qualitatively (by
eye) and quantitatively (11 per cent MSE reduction on the validation
data). The flexible approach also takes into account non-Gaussian
noise in the weak lensing data. As our simulated training data are
samples drawn from the prior P(κ), the approach has a principled
Bayesian interpretation, without the need for evaluation of closed-
form priors.

The quality of the reconstruction with these initial experiments,
and its flexibility, makes the deep learning approach a pre-eminent
candidate for mass mapping with future weak lensing surveys.
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