QUANTITATIVE RATES OF CONVERGENCE TO EQUILIBRIUM FOR THE DEGENERATE LINEAR BOLTZMANN EQUATION ON THE TORUS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

QUANTITATIVE RATES OF CONVERGENCE TO EQUILIBRIUM FOR THE DEGENERATE LINEAR BOLTZMANN EQUATION ON THE TORUS

Résumé

We study the linear relaxation Boltzmann equation on the torus with a spatially varying jump rate which can be zero on large sections of the domain. In [5] Bernard and Salvarani showed that this equation converges exponentially fast to equilibrium if and only if the jump rate satisfies the geometric control condition of Bardos, Lebeau and Rauch [3]. In [22] Han-Kwan and Léautaud showed a more general result for linear Boltzmann equations under the action of potentials in different geometric contexts, including the case of unbounded velocities. In this paper we obtain quantitative rates of convergence to equilibrium when the geometric control condition is satisfied, using a probabilistic approach based on Doeblin's theorem from Markov chains.
Fichier principal
Vignette du fichier
quantitativedegeneratehypocoercivity.pdf (285.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02285239 , version 1 (12-09-2019)

Identifiants

Citer

Josephine Evans, Iván Moyano. QUANTITATIVE RATES OF CONVERGENCE TO EQUILIBRIUM FOR THE DEGENERATE LINEAR BOLTZMANN EQUATION ON THE TORUS. 2019. ⟨hal-02285239⟩
40 Consultations
108 Téléchargements

Altmetric

Partager

More