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QUANTITATIVE RATES OF CONVERGENCE TO

EQUILIBRIUM FOR THE DEGENERATE LINEAR BOLTZMANN

EQUATION ON THE TORUS

JOSEPHINE EVANS AND IVÁN MOYANO

Abstract. We study the linear relaxation Boltzmann equation on the torus
with a spatially varying jump rate which can be zero on large sections of the
domain. In [5] Bernard and Salvarani showed that this equation converges
exponentially fast to equilibrium if and only if the jump rate satisfies the geo-

metric control condition of Bardos, Lebeau and Rauch [3]. In [22] Han-Kwan
and Léautaud showed a more general result for linear Boltzmann equations un-
der the action of potentials in different geometric contexts, including the case
of unbounded velocities. In this paper we obtain quantitative rates of conver-
gence to equilibrium when the geometric control condition is satisfied, using a
probabilistic approach based on Doeblin’s theorem from Markov chains.
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1. Introduction and Main Results

In this article, we study the linear Boltzmann equation in the phase space Ω×V ,
i.e., the system

(1)

{

∂tf + v · ∇xf +∇xW (x) · ∇vf = C (f), in (0, T )× Ω× V,
f |t=0 = f0, in Ω× V,

Key words and phrases. Convergence to equilibrium; Hypocoercivity; Linear Boltzmann Equa-
tion; Degenerate Hypocoercivity, Geometric Control Condition.
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2 J. EVANS AND I. MOYANO

where the density function, f = f(t, x, v), undergoes the action of the potential
W = W (x) and the collision term

C (f) := σ(x)

∫

V

(p(v, v′)f(v′)− p(v′, v)f(v)) dv′,

for some σ ∈ L∞(Ω), assumed to be non-negative. Physically we can think of (1) as
a modeling a radiative transfer system where different parts of the space may have
different transparencies, according to the scattering function p = p(v, v′). When
σ = σ(x) is a positive constant, (1) is the linear relaxation equation, linear BGK
equation or linear Boltzmann equation.

In this work we set Ω = Td, the d-dimensional torus, with the usual identification

(2) T
d = R

d/[0, 1]d.

According to the nature of the space of velocities, V , the potential W and the
scattering function p, (1) has the following measure-valued equilibrium state

ν = νx ⊗ νv,

where

νx =
1

Z
e−W (x) dx, Z =

∫

Td

e−W (x) dx,

and

νv =

{ 1
|V | if W = 0, p(v, v′) = 1

|V | ,

M(v) if W 6= 0, p(v, v′) = M(v),

where M(v) denotes the normalised Maxwellian, i.e.,

M(v) =
1

(2π)
d
2

e−
|v|2

2 , v ∈ R
d.

In the non-degenerate case σ > 0, the study of the trend to equilibrium of
solutions to system (1) has been the object of many publications, using techniques
as hypocoercivity (see Section 1.2 for details). In the degenerate case σ ≥ 0,
the problem of characterising the trend to equilibrium is deeply connected to the
structure of the phase space T

d × V and the geometry of the set {σ > 0}, as (1)
reduces to a transport equation outside this region. In [6] Bernard and Salvarani
showed that exponential convergence towards equilibrium cannot hold in general.
On the other hand, the same authors proved in [5] that the solutions to (1) with
Ω× V = Td × Sd−1 and W = 0 converge to equilibrium exponentially in L1 if and
only if the support of σ satisfies the geometric control condition (GCC for short),
inspired from [3, 26] and characterized in the following way.

Definition 1. The function σ satisfies the Geometric Control Condition (GCC) if
there exists T = T (σ) > 0, κ > 0 such that

(3) inf
(x,v)∈Td×V

∫ T

0

σ(x + vt) dt ≥ κ.

The case W 6= 0 and σ ≥ 0 has been analysed by Han-Kwan and Léautaud
in [22], where the action of the potential may generate many different dynamics.
Considering the characteristic flow

(4) Φt(x, v) =
(

ΦX
t (x, v),ΦV

t (x, v)
)

, t ∈ R,
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where, for (x, v) ∈ Td × V given, (ΦX
t ,ΦV

t ) =
(

ΦX
t (x, v),ΦV

t (x, v)
)

= solve the
characteristic equations

(5)
d
dtΦ

X
t = ΦV

t , ΦX
0 = x,

d
dtΦ

V
t = −∇xW (ΦX

t ), ΦV
0 = v,

the autors redifine the Geometric Control Condition in the following way.

Definition 2. There exists a T = T (σ,W ) > 0, κ > 0 such that

(6) inf
(x,v)∈Td×V

∫ T

0

σ(ΦX
t (x, v)) dt ≥ κ.

This definition is again inspired from the study of the controllability of the wave
equation in [3, 26] (see Section 1.2 for more details). In this context, Han-Kwan
and Léautaud give in [22] conditions linking the collision kernel and the potential
which imply either convergence to a steady state or exponential convergence to a
steady state. Let us mention that the results in [22] are much more general (see
Section 1.2) than the setting presented here.

The methods developed in the works [5, 6, 22] do not yield constructive conver-
gence rates for the trend to equilibrium. The goal of the present work is to obtain
quantitaive rates using different methods, inspired in tools from Markov chains.

1.1. Main results. We shall consider the following three regimes

(R1): V is an open nonempty set of Rd, the scattering is isotropic and the potential
is zero, i.e.,

(7) p(v, v′) = p(v′, v) = 1, ∀v, v′ ∈ V and W = 0,

(R2): V = Sd−1 and (7) holds,
(R3): V = Rd, the scattering function is given by a Maxwellian and the potential

is nonzero, i.e.,

(8) p(v, v′) = M(v), ∀v, v′ ∈ V and W is a smooth function on T
d.

In what follows we consider measure-valued solutions to (1) and we refer to
Section 2 for details. We denote by M (Td × V ) the space of measures on Td × V ,
which is a Banach space endowed with the total variation norm, denoted ‖.‖TV

(see (19) for details). We denote P(Td × V ) the space of probability measures on
Td × V . Finally, (Tt)t≥0 denotes the semigroup generated by the free transport
operator on measures (see Definition 4).

Our first result corresponds to the situation described in (R1).

Theorem 1. Assume that V ⊆ Rd is an open set satisfying that there exists T∗ < ∞
and β ∈ (0, 1) such that for all t ≥ T∗ we have

(9) inf
x0∈Td

∫

V

Tt (δx0
⊗ νv) dv ≥ βνx.

Let σ ∈ C0(Td) such that Definition 1 holds. If (µt)t≥0 is a measure solution to
(1) with initial datum µ0 ∈ P(Td × V ), then

(10) ‖µt − ν‖TV ≤ e−λ(t−2T−T∗)‖µ0 − ν‖TV , ∀t ≥ t∗,

with the quantitative rate

(11) λ = − 1

2T + T∗
log
(

1− βκ2e−(2T+T∗)‖σ‖∞

)

.
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The lower bound in (9) is a crucial hypothesis intimately linked to Doeblin’s
theorem and is key to obtain the exponential rate (11), as can be seen in Section
4.2. In order to refine the quantitative bound in (11), we give in Lemma 1 some
sufficient conditions on V so that (9) holds with concrete choices of β and T∗.

Our next result concerns the situation described by (R2).

Theorem 2. Let V = Sd−1 and assume that there exist T∗∗, β∗∗ > 0 so that if
t, s ≥ T∗∗ then

(12)

∫

V

Tt

(
∫

u∈Sd−1

Ts (δx0
1v∈Sd−1) (·, u)du1v∈Sd−1

)

dv ≥ βνx.

Let σ ∈ C0(Td) such that Definition 1 holds. Then, if (µt)t≥0 is a measure solution
to (1) with initial datum µ0 ∈ P(Td × V ), then

(13) ‖µt − ν‖TV ≤ e−λ(t−2T−T∗)‖µ0 − ν‖TV , ∀t ≥ T∗,

with the quantitative rate

(14) λ = − 1

3T + 2T∗∗
log

(

1− κ3β∗∗

2
e−(3T+2T∗∗)‖σ‖∞

)

.

Condition (12) replaces (9) as T∗ is not finite when V = Sd−1. Loosely speaking,
this set cannot be spread out to the whole of Td by the transport operator (Tt)t≥0

since its dimension is too small. The new condition (12) essentially says that we
need three jumps to spread out the initial measure.

Our last result concerns the regime (R3), with non-zero potentials.

Theorem 3. Let V = Rd and W ∈ C2(Td;Rd). Assume that there exist β∗∗∗ ∈
(0, 1) and T∗∗∗ > 0, depending on W , such that for all t ∈ [T∗∗∗, T∗∗∗ + T ] we have

(15)

∫

Tt (δx0
⊗ νv) (x, v) dv ≥ β∗∗∗νx.

Suppose that σ ∈ C0(Td) satisfies the geometric control condition (2) with W 6= 0.
Then, if (µt)t≥0 is a measure-valued solution to (1) with initial datum µ0 ∈ P(Td×
V ), then

(16) ‖µt − ν‖TV ≤ e−λ(t−2T−T∗∗∗)‖µ0 − ν‖TV ,

with the quantitative rate

(17) λ = − 1

2T + T∗∗∗
log
(

1− β∗∗∗κ
2e−(2T+T∗∗∗)‖σ‖∞

)

.

Remark. Observe that Theorems 1, 2 and 3 contain quantitative rates in terms of β
and T . We will give in Section 3 precise results with explicit rates and assumptions
in section 3.

Remark. Observe that we are assuming that σ ∈ C 0(Td) instead of just bounded
and measurable. This is a technical assumption due to the fact that we are working
with measured-valued solutions. See Section 2 for details.

1.2. Previous works: Hypocoercivity, Doeblin’s theorem and the geo-
metric control condition.
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1.2.1. Hypocoercivity results when σ is strictly positive. Finding quantitative rates
of convergence to equilibrium is a longstanding problem in kinetic theory. In the
context of spatially inhomogeneous kinetic equations this is usually done using the
tools of hypocoercivity, a name given by Villani in [30] to equations exhibiting con-
vergence like Ce−λt where C ≥ 1. In the context of kinetic equations, hypocoercive
behaviour is typically found when considering spatially inhomogeneous equations
where the dissipation of natural entropies vanishes on a large class of functions, the
local equilibria, making it impossible to prove entropy-entropy production inequal-
ities. Techniques to prove convergence for such equations based on hypoellipticity
methods were developed in [24, 28, 30] as well as in many other works.

When σ is constant, equation (1) is a key example of a hypocoercive equation,
shown to converge faster than any power of t inH1 norm in [13] using the framework
of [16]. It was then shown to converge exponentially fast to equilibrium in H1

weighted against the equilibrium in [28] and in L2 weighted against the equilibrium
in [23]. The convergence in weighted L2 can also be seen as a result of the general
theorem in [18]. There are several other works showing exponential convergence in
various norms or for various more complex versions of this equation we mention in
particular [11] since this work uses Doeblin/Harris’s theorem, which is also the tool
we will apply to the spatially degenerate case.

1.2.2. Hypocoercivity results when σ can vanish. The case where σ = σ(x) is non
constant and can vanish on areas of the spatial domain was first studied in [4] al-
though it is mentioned somewhat indirectly. This paper deals with non-equilibrium
steady states for scattering operators and is a pioneering example of the use of
probabilistic tools in statistical physics, but without quantitative rates.

The more recent works on these spatially degenerate models was begun in [15]
where the authors study a model where σ vanishes at a discrete set of points. In [6]
Bernard and Salvarani showed that there are situations where the velocity space
and form of σ together mean that there is no exponential convergence towards
equilibrium. On the other hand, Bernard and Salvarani proved in [6] that the
solutions to (1) with Ω × V = Td × Sd−1 and W = 0 convergence to equilibrium
exponentially in L1 if and only if the support of σ satisfies the geometric control
condition of Definition 1. This work is then extended in [27] to give a more delicate
sense of when exponential convergence to equilibrium will occur. The approaches
followed in [6, 27], based on semigroup theory and abstract functional analysis, do
not allow one to obtain a quantitative rate of the convergence.

An equation related to (1), the 1d Goldstein-Taylor type model, has been studied
in [7] where the authors do get explicit rates via comparing this equation to a
damped wave equation for which explicit rates were obtained by Lebeau in [26].

The case where V is unbounded is treated in [22] by Han-Kwan and Léautaud,
where the authors study linear Boltzmann type equations for a general class of
collision operators and external confining potential terms on a closed, smooth,
connected and compact Riemannian manifold M (and in particular the torus). In
this context, the authors indentify geometric control conditions in the natural phase
space T ∗M (similar to Definition 2 in the case M = Td) allowing to completely
characterise the convergence to equilibrium and exponentially fast convergence to
equilibrium for the corresponding linear Boltzmann equation. On the other hand,
the techniques developed in [22], using phase-space and microlocal tools inspired
from [3, 26] do not give explicit rates of convergence.
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In [17] the kinetic Fokker-Planck case is studied and here it is shown that the
GCC is not equivalent to exponential convergence to equilibrium.

1.2.3. Doeblin’s theorem. We use techniques which are inspired from Doeblin’s the-
orem fromMarkov process theory (see [20] for a detailed exposition of this theorem).
This theorem was used to show convergence to equilibrium for scattering equations
in [4]. It has been used several times to study convergence to equilibrium for kinetic
equations in the context of Non-Equilibrium Steady States [14] and is currently be-
ing used for studying the convergence to equilibrium for solutions of PDEs from
mathematical biology. We mention in particular the works on the renewal equa-
tion [19], and the neuron population model [12]. This last paper contains a similar
type of degeneracy to that studied in this work. In this context Doeblin’s theorem
and Harris’s theorem have been extended to PDEs which do not conserve mass
and/or have time-periodic limiting solutions rather than steady states, as in [1, 2].

1.2.4. The geometric control condition in control theory. . The geometric control
condition mentioned in the previous section plays a fundamental role in the study
of controllability and stabilisation properties of some linear PDEs, typically of hy-
perbolic type. The GCC condition was introduced in the seminal works [29,3,25] in
order to prove that the linear wave equation and the Schrödinger equation in a do-
main Ω ⊂ Rd, possibly with boundary, are exactly controllable from an open subset
ω (or a subset of the boundary) as long as ω satisfies the geometric control condi-
tion. In [9] the GCC condition is proved to be necessary for the exact controllability
of the wave equation. As for the stabilisation properties, the works [3,26,10] prove
that under the GCC condition one can expect an exponential trend to equilibrium
for the wave equation with a localised damping, which is a crucial inspiration for
the works [6, 22] on the linear Boltzmann equation.

1.3. Strategy and Outline. We first prove Theorems 1 and 3. As stated above
the proof is based around Doeblin’s theorem for Markov processes. The key ele-
ment to executing a Doeblin argument is to find a time t∗ such that we can prove a
lower bound on the solution of the equation at time t∗ which is independent of the
initial condition. We give a detailed proof of this fact based on using Duhamel’s
formula. We then explain how this implies exponential convergence to equilibrium
via Doeblin’s theorem. We then give a more stochastic flavored proof of the same
lower bound. This section is intended mainly to be illustrate the intuition behind
the first proof so we are a bit briefer with the calculations. The argument written in
terms of conditional probabilities is more clearly linked to the aspects of the trajec-
tories of the stochastic process which allow us to prove convergence to equilibrium.
Finally we prove Theorem 2. Here the proof is very similar to that of the other
theorems. However we have to use a strategy involving 3 jumps. This means it is
much simpler to write in the stochastic formulation. Lastly we have a concluding
section which includes possible extensions of this project and a discussion of the
rates.

Acknowledgements. W would like to thank many people for some useful discussion.
In particularly José Cañizo for help with the deterministic version of the proof of
Theorem 1. We had useful discussions with Francesco Salvarani, Havva Yolda̧s,
Chuqi Cao, Helge Dietert and Clément Mouhot. The first author was supported by
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FSPM postdoctoral fellowship (since October 2018) and the grant ANR-17-CE40-
0030. Much of this was written while the first author was visiting the Hausdorff
Research Institute for Mathematics on a Junior Trimester fellowship. We would
like to thank them for their hospitality. The second author was supported by the
ERC grant MAFRAN.

2. Measured-valued solutions to the linear Boltzmann equation

Let us first define some notation in order to state our results. Given (X ,Σ)
a measurable space, we denote by M (X ) the set of Radon measures on X . We
denote by P(X ) the set of probability measures on X , i.e., all measures µ ∈ M (X )
satisfying µ(X ) = 1 and µ(A) ≥ 0 for every measurable A. As usual the space P(X )
is endowed with the weak topology, denoted w − P(X ), induced by the family of
semi-norms

φ 7→
∫

X

φ(z) dµ(z), ∀φ ∈ Cb(X ),

i.e., we are using test functions which are continuous and bounded on X . Recall
that µ ∈ M (X ) is said to be non-negative whenever

(18)

∫

X

φ(x)µ( dz) ≥ 0, ∀φ ∈ Cb(X ;R+).

The total variation distance in M (X ) is defined as usual as

(19) ‖µ‖TV := sup

{
∫

X

φ(z)µ( dz); φ ∈ Cb(X )

}

.

Consider next a phase space of the form X = Ω × V , where Ω = Td or Rd. If
ΣΩ×V is the Borel σ-algebra on Ω× V , we denote by LΩ×V the Lebesgue measure
on Ω× V . If A ∈ ΣΩ×V , we simply denote by |A| the Lebesgue measure of A if no
confusion arises.

2.1. Measure-valued solutions. With the notation of the previous section, given
T > 0 and µ0 ∈ P(X × V ), we consider the transport equation

(20)

{

∂tµ+ v · ∇xµ−∇xW · ∇vµ = 0, in (0, T )× Ω× V,
µ|t=0 = µ0, in Ω× V.

Definition 3. A measure solution to (20) is an element of C0([0, T ];w−P(Ω×V )),
denoted µt = µt( dx, dv), satisfying that for every φ ∈ C1

c ([0, T )× Ω× V ),

∫ T

0

∫∫

Ω×V

(∂tφ− v · ∇xφ+∇xW · ∇vφ)µt( dxdv) dt =

∫∫

Ω×V

φ(0, x, v)µ0( dxdv).

We can write any weak solution to (20) using the transport semigroup.

Definition 4. The transport semigroup on P(Ω×V ), noted (Tt)t≥0, is defined by

(Ttµ0)(φ) =

∫∫

Ω×V

φ(Φ−t(x, v)) dµ0( dx, dv), ∀φ ∈ Cb(Ω× V ),

for any µ0 ∈ P(Ω× V ) and t ≥ 0. In particular, µt = Ttµ0( dx, dv) is a measure
solution to (20).
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In this article we work with the linear Boltzmann equation (1) in the sense of
measures. Given µ ∈ P(Ω× V ) we set

mσµ( dx, dv) := σ(x)µ( dx, dv), L+µ( dx) :=

∫

V

p(v, v′)µ( dx, dv′),(21)

which are respectively the multiplication by σ and the average in the variable v ∈ V .
Given µ0 ∈ P(Ω× V ) we set

(22)

{

∂tµ+ v · ∇xµ−∇xW (x) · ∇vµ = mσ (L
+µ− µ) , in (0, T )× Ω× V,

µ|t=0 = µ0, in Ω× V.

which is a version of (1) for measured-valued solutions.

Definition 5. A measure solution to (22) is an element of C0([0, T ];w−P(Ω×V )),
denoted µt = µt( dx, dv), satisfying that for every φ ∈ C1

c ([0, T )× Ω× V ),
∫ T

0

∫∫

Ω×V

(

∂tφ− v · ∇xφ+∇xW · ∇vµ+mσ(φ− L+φ)
)

µt( dxdv) dt

=

∫∫

Ω×V

φ(0, x, v)µ0( dxdv).

Proposition 1. Given T > 0 and given µ0 ∈ P(Ω × V ), there exists a unique
measure-valued solution to (22), namely µt = µt( dx, dv). Moreover, this solution
admits the representation

(23) µt( dx, dv) = exp

(

−
∫ t

0

σ(ΦX
s (x, v)) ds

)

(Ttµ0)( dx, dv) + St[µt]( dx, dv)

where (Tt)t≥0 is given by Definition 4 and

(24) St[µt]( dx, dv) =

∫ t

0

exp

(

−
∫ t

s

σ(ΦX
r (x, v)) dr

)

(Tt−smσL
+µs)( dx, dv) ds.

Denoting

(25) µt( dx, dv) = Ptµ0, t ≥ 0,

the family (Pt)t≥0 is a semigroup on M (Ω× V ) enjoying the following properties

‖Ptµ0‖TV = 1, ∀µ0 ∈ P(Ω× V ),(26)

‖Ptµ0 − Ptµ0‖TV ≤ ‖µ0 − µ0‖TV , ∀µ0, µ0 ∈ P(Ω× V ).(27)

We can equivalently treat (22) as a random system in the following way. We can
write this equation as a stochastic process in integral form in the case W = 0, V is
compact and p = 1.

Xt = X0 +

∫ t

0

Vsds, Vt = V0 +

∫ t

0

∫

V

∫ ‖σ‖∞

0

1θ≤σ(Xt) (w − Vs−)Π(ds, dw, dθ).

(28)

Here Π is a Poisson random measure with intensity being λ ⊗ λ ⊗ U where λ is
Lebesgue measure and U is the uniform measure. This is to say that the velocity
process ‘jumps’ at random times T1, T2, . . . where Ti+1 − Ti are exponentially dis-
tributed with rate A. Then the jump i is accepted with probability σ(XTi

) and
if the jump is accepted the velocity variable will jump to a new velocity chosen
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uniformly at random from V and if the jump is not accepted then the velocity
remains the same. When we work in this formulation we write Px0,v0(A) for the
probability of an event A happening when we begin this process with deterministic
initial conditions X0 = x0, V0 = v0.

3. Geometric assumptions on the phase space

In this section we introduce some hypothesis on the phase space Ω×V connecting
the geometry of Ω × V with the transport operator acting on it. We essentially
require that the phase space spreads out in a quantitative way any punctual mass
in space after thermalisation in all directions in velocity. This property ensures
that the Doeblin type argument of the next section can be applied. We also prove
that some usual choices of phase spaces, such as V containing an annulus or V a
sphere, satisfy the mentioned hypothesis with quantitative rates.

Lemma 1. If W = 0 and V contains a set like {r1 ≤ |v| ≤ r2} for some 0 < r1 < r2
then we can find such a T∗, β. In this case we can choose

T∗ = max
{

8
√
dd|B(0, 1)|

(

rd−1
1 + rd−1

2

)

,
√
d/r1

}

and

β =
|{r1 ≤ |v| ≤ r2}|

2|V | .

We begin by proving lemma 1 for the case of theorem 1

Proof of Lemma 1. Assume that there exist 0 < r1 < r2 such that

{v ∈ R
d; r1 ≤ |v| ≤ r2} ⊆ V.

Let us fix x0 ∈ Td. Then, changing variables and using the identification (2),

1

|V |

∫

r1≤|v|≤r2

δx0
(x− vt) dv =

1

td|V |

∫

S

δ(x′ = x0 mod 1) dx′ ≥ |Q|
td|V | ,

where
S = {x′ ∈ R

d; tr1 ≤ |x′ − x0| ≤ tr2}
and Q is the union of all the cubes with volume one and integer vertices contained
inside S.

Now, observe that the difference between S and Q is only along the perimeter of
S. The parts of S that are not in Q are contained in the annuli {tr1 −

√
2 ≤ |v| ≤

tr1 +
√
2} and {tr2 −

√
2 ≤ |v| ≤ tr2 +

√
2}. Therefore

||S| − |Q|| ≤|B(0, 1)|
(

(tr2 +
√
2))d + (tr1 +

√
2)d − (tr2 −

√
2)d − (tr1 −

√
2)d
)

≤|B(0, 1)|td2d
(

rd−1
2

√
2t−1 + rd−1

1

√
2t−1

)

= C(d, r1, r2)t
d−1.

In this last inequality we write

(tr +
√
2)d − (tr −

√
2)d = (tr)d

(

(

1 +
√
2/tr

)d

−
(

1−
√
2/tr

)d
)

.

Then we use the fact that for x < 1 the derivatives of (1 + x)d and (1 − x)d are

bounded by 2d. With this and Taylor’s theorem we conclude that if t >
√
2/r1

then we have that

(tr +
√
2)d − (tr −

√
2)d ≤ 2d(tr)d−1

√
2.
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As a result, we get

1

|V |

∫

r1≤|v|≤r2

δx1
(x− vt)dv ≥ (1− 1

t
C(d, r1, r2)) ≥

1

2
,

as long as t is taken large enough.
Now if the set V contains but is not equal to the anulus {r1 ≤ |v| ≤ r2} then

the argument above yields the result with

β =
|{r1 ≤ |v| ≤ r2}|

2|V | .

�

Lemma 2. If V = Sd−1 and W = 0 then we can find such a T∗∗ and β∗∗ with

T∗∗ = 8
√
d|B(0, 1)|(d− 1)/d,

and β = 1/2.

Proof of lemma 2. Lets look at this against a test function.
∫ ∫

Tt

(
∫

u∈Sd−1

Ts (δx0
1v∈Sd−1) (·, u)du1v∈Sd−1

)

dvφ(x)dx

=

∫ ∫ ∫

u∈Sd−1

Ts (δx0
1v∈Sd−1) (x, u)du1v∈Sd−1φ(x − vt)dvdx

=

∫ ∫

u∈Sd−1

∫

v∈Sd−1

δx0
(x)φ(x − vt− us)dudvdx

=

∫

φ(x′)

(
∫

Sd−1

∫

Sd−1

δx0
(x′ + vt+ us)dudv

)

dx′.

At this point the calculations become a bit technical. Firstly since we are looking
at an integral which is symmetrical in s, t we can assume w.l.o.g. that s ≤ t. Lets
introduce some notation. First lets write λd(A) for the d-dimensional Lebesgue
measure of a set A. Lets also write S

d−1(x, r) to be the d − 1 dimensional sphere
of radius r around point x. Now we introduce some notations for sets depending
on a set of parameters, s, t being positive numbers and x′, x′′ points in Rd.

As,t,x′ =
{

x ∈ R
d | t− s ≤ |x− x′| ≤ t+ s

}

,(29)

Bs,t,x′,x′′ =
{

y ∈ S
d−1(x′, t) | |x′′ − y| = s

}

.(30)

Here As,t,x′ is an annulus in Rd and Bs,t,x′,x′′ is a d−2 dimensional sphere of radius
s around the point x′′ provided that the point x′′ is in As,t,x′ and is empty if x′′ is
not in As,t,x′ . We then look at the integral

∫

Sd−1

∫

Sd−1

δx0
(x′ + vt+ us)dudv.

We then reparametrize in terms of x′′ = x′ + vt + us, y = x′ + vt. Using this we
can rewrite this integral as

(st)−(d−1)|Sd−1|−2

∫

As,t,x′

∫

Bs,t,x′,x′′

δx0
(x′′)dydx′′

=(st)−(d−1)|Sd−1|−2

∫

As,t,x′

δx0
(x′′)λd−2(Bs,t,x′,x′′)dx′′
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=s−1t−(d−1)|Sd−2||Sd−1|−2

∫

As,t,x′

δx0
(x′′)dx′′

=s−1t−(d−1)|Sd−2||Sd−1|−21x0∈As,t,x′

=s−1t−(d−1)|Sd−2||Sd−1|−21x′∈As,t,x0
.

We can see that if s and t are big enough we will cover enough of the torus
several times so we can repeat the argument of lemma 1. We look at Qs,t,x0

being
the union of all the cubes with integral points contained inside As,t,x0

. As in lemma
1 the set difference between As,t,x0

is contained in two small annuluses containing
the perimiter of As,t,x0

specifically the annuluses
{

x | t− s−
√
d ≤ |x− x0| ≤ t− s+

√
d
}

,
{

x | t+ s−
√
d ≤ |x− x0| ≤ t+ s+

√
d
}

.

Emmulating the calculations in lemma 1 we can bound the area of these annuluses
by

2
√
2d
(

(t+ s)d−1 + (t− s)d−1
)

.

Going back to our original calculation we have
∫ ∫

Tt

(
∫

u∈Sd−1

Ts (δx0
1v∈Sd−1) (·, u)du1v∈Sd−1

)

dvφ(x)dx

≥
∫

φ(x′)s−1t−(d−1)|Sd−2||Sd−1|−21x′∈As,t,x0
dx′

≥
∫

φ(x′)s−1t−(d−1)|Sd−2||Sd−1|−21x′∈Qs,t,x0
dx′

≥
∫

Td

φ(x′)dx′s−1t−(d−1)|Sd−2||Sd−1|−2|Qs,t,x0
|

=

∫

Td

φ(x′)dx′

( |Qs,t,x0
|

|As,t,x0
|

)

.

Now we can compute that

|Qs,t,x0
|

|As,t,x0
| ≥ 1− 2

√
2|B(0, 1)| (t+ s)d−1 + (t− s)d−1

(t+ s)d − (t− s)d
.

We have that

(t+ s)d − (t− s)d ≥ dtd−1s,

and

(t+ s)d−1 + (t− s)d−1 ≤ 2(d− 1)td−1.

Therefore
|Qs,t,x0

|
|As,t,x0

| ≥ 1− 2
√
2|B(0, 1)|2(d− 1)td−1

dtd−1s
.

So our lemma holds with β∗∗ = 1/2 and T∗∗ = 8
√
d|B(0, 1)|d/(d− 1). Therefore, if

t, s are sufficiently large then this will be greater than 1/2. �

Lemma 3. For V smooth, periodic and positive we can find such (β∗∗∗, T∗∗∗). With
T∗∗∗ = 1/2 and

β =

(
∫

Td

e−W (x)dx

)

exp (−(T + 1) (1 + ‖Hess(W )‖∞))
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Proof of Lemma 3. The first thing to note is that since the x space is compact we
have that |∇xV (x)| ≤ G for some G. This means that we move from very high to
other high velocities. We can see that we have for any x0 if t ≤ T then

Tt ({x0} × {R1 ≤ |v| ≤ R2}) ⊃ {R1 +GT ≤ |v| ≤ R2 −GT } × S1(v),

with S1(v) = {x | x = ΦX
t (x0, u) for some u with φV

t (x0, u) = v} which is non-
empty for any v in the anulus on the right hand side. This is since

∫

Tt

(

δx0
⊗ 1R1≤|v|≤R2

)

φ(x, v)dxdv =

∫

δx0
1R1≤|v|≤R2

φ(T−t(x, v))dxdv,

and T−t moves the v variable by a distance of at most GT since ΦV
t (x, v) = v −

t∇xW (ΦX
s (x, v)) for some s ∈ [0, t].

Now in a similar way we have that ΦX
t (x, v) = x + vt + 1

2 t
2∇xW (ΦX

s (x, v)) for
some s ∈ [0, t] this means we can approximate Tt by free transport for t small
enough. Using this we want to show that if we take R large enough then for
t ∈ [1/2, 1] we have

Tt ({x0} × {R1 ≤ |v| ≤ R2}) ⊃ {2R1 +G ≤ |x0 − x| ≤ R2/2−G} × S2(v),

with S2(v) = {v | v = ΦV
t (x0, u) for some u with ΦV

t (x0, u) = v} which is non-
empty for any v in the anulus on RHS. Therefore if t ∈ [1/2, T + 1] then we have

∫

Tt

(

δx0
1R1≤|v|≤R2

)

dv ≥ α12R1+2GT+G≤|x0−x|≤R2/2−GT/2−G.

Here α is minx,v |Jac(T−t(x, v))| ≥ exp(−t(1 + ‖Hess(W )‖∞)) where the last in-
equality follows from the lioville formula. So provided we choose R1, R2 such that

R2/2− 2R1 − 5GT/2− 2G ≥ 1,

then this anulus will contain at least one square with integral vertices. Hence, we
have

∫

Tt

(

δx0
1R1≤|v|≤R2

)

dv ≥ α.

Now since e−W (x)/Z is bounded above we have some β = Zα such that
∫

Tt

(

δx0
1R1≤|v|≤R2

)

dv ≥ βe−W (x)/Z.

�

4. Proof of Theorems 1 and 3 (Duhamel version)

4.1. Some key lemmas. The strategy of this section is to prove the two theorems
1 and 3 in an entirely deterministic way, based on the strategy of Doeblin’s theorem.
The proofs of the two theorems are identical except for the crucial lemmas 1 and
3. First we will prove both these lemmas and then write the remainder of the
argument in a general framework which covers both cases.

Lemma 4. Assume that V satisfies Assumption 9 and σ satisfies the geometric
control condition 2 or we are in the situation where V = Rd with the Maxwellian
measure and we have a confining potential W 6= 0 and σ satisfies the GCC. Let
µt = µt( dx, dv) be the solution to (1) with initial datum

(31) µ0 = δx0
⊗ δv0 ,
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for (x0, v0) ∈ Td×V given. Let T∗ be as in lemma 1 or T∗∗∗ as in lemma 3 and and
T given as in (3, 2). Then, for t = 2T + T∗ in the case W = 0 or T = 2T + T∗∗∗

in the case W 6= 0 we have

(32) µt( dx, dv) ≥ βκ2e−t‖σ‖∞ν in M (Ω× V ).

Proof. Using Duhamel’s formula (23) we have that, for every t ≥ 0,

µt( dx, dv) = exp

(

−
∫ t

0

σ(ΦX
s (x, v)) ds

)

(Ttµ0)( dx, dv) + St[µt]( dx, dv)(33)

≥ exp

(

−
∫ t

0

σ(ΦX
s (x, v))ds

)

(Ttµ0)( dx, dv)

≥ e−t‖σ‖∞(Ttµ0)( dx, dv),

as, according to (24),

St[µt]( dx, dv) ≥ 0 in M (Ω× V ).

Injecting (33) in (23) we get

µt( dx, dv) ≥
∫ t

0

exp

(

−
∫ t

s

σ(ΦX
τ (x, v)) dτ

)

(Tt−smσL
+µs)( dx, dv) ds

≥
∫ t

0

e−(t−s)‖σ‖∞(Tt−smσL
+µs)( dx, dv) ds

≥ e−t‖σ‖∞

∫ t

0

(Tt−smσL
+Tsµ0)( dx, dv) ds.

Now we can substitute this in a second time to get

(34) µt( dx, dv) ≥ e−t‖σ‖∞

∫ t

0

∫ s

0

(Tt−smσL
+Ts−τmσL

+Tτµ0)( dx, dv) dτ ds.

Now using (31) we may write

Ts−τmσL
+Tτµ0 = Ts−τmσL

+
(

δΦX
τ (x0,v0) ⊗ δΦV

τ (x0,v0)

)

= Ts−τmσ

(

νv(dv)δΦX
τ (x0,v0)( dx)

)

= Ts−τ

(

σ(x)δΦX
τ (x0,v0)(dx)νv(dv)

)

= σ(ΦX
τ (x0, v0))Ts−τ

(

δΦX
τ (x0,v0)(dx)νv(dv)

)

.

Now assuming that s− τ ≥ T∗, the definition of T∗ in Assumption 9 implies

L+Ts−τmσL
+Tτµ0 = νvσ(Φ

X
τ (x0, v0))

∫

V

Ts−τ

(

δΦX
τ (x0,v0)νv

)

dv ≥ βσ(ΦX
τ (x0, v0))ν.

Therefore

Tt−smσL
+Ts−τmσL

+Tτf0 = βσ(ΦX
τ (x0, v0))σ(Φ

X
t−s(x, v))ν.

Now, taking t = 2T + T∗ as in the statement and integrating (34) with respect to
τ ∈ [0, T ], s ∈ [T + T∗, 2T + T∗] we get

µt( dx, dv) ≥ e−(2T+T∗)‖σ‖∞

∫ 2T+T∗

T+T∗

∫ T

0

σ(ΦX
t−s(x, v))σ(Φ

X
τ (x0, v0))βν dτ ds

≥ βκ2e−(2T+T∗)‖σ‖∞ν,

whence (32) follows. �
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The next result is an extension of Lemma 4, valid for Dirac masses, to any initial
data that is a probability measure.

Lemma 5. Under the same hypothesis of Lemma 4, let µ0 ∈ P(Ω×V ) and let µt

be the associated solution to (22). Then, for t = 2T + T∗, 2T + T∗∗∗ we have

(35) µt( dx, dv) ≥ βκ2e−t‖σ‖∞ν in M (Ω× V ).

Proof. Let µ0 ∈ P(Ω × V ) and let µt be given as in the statement. According to
(25), we can write µt = Ptµ0. We claim that it suffices to prove that

(36) µt =

∫∫

Ω×V

(Ptδx0,v0)µ0(dx0, dv0).

If (36) holds, Lemma 4 implies

Ptµ =

∫∫

Ω×V

(Ptδx0,v0)µ0( dx0, dv0) ≥ βκ2e−t‖σ‖∞

∫∫

Ω×V

νµ0( dx0, dv0) = βκ2e−t‖σ‖∞ν.

In order to prove (36), we observe that it is sufficient to check that

νt :=

∫

(Ptδx0,v0)µ0(dx0, dv0)

is indeed a measure-valued solution to (22) with initial datum µ0, as uniqueness of
solutions (Proposition 1) would imply νt = µt and a fortiori (36) .

According to Definition 5, let φ ∈ C1
c ((0, T ] × Ω × V ). As φ and ∇t,xφ are

bounded and compactly supported, then

Pφ = ∂tφ+ v · ∇xφ− σ
(

φ̄− φ
)

∈ C1
c ((0, T ]× Ω× V ).

Then, using Fubini’s theorem,
∫ T

0

∫∫

Td×V

(

∂tφ+ v · ∇xφ− σ
(

φ̄− φ
))

νt(dx, dv)

=

∫ T

0

∫∫

Td×V

Pφ

(
∫∫

Td×V

Ptδx0,v0µ0(dx0, dv0)

)

(dx, dv)

=

∫∫

Td×V

(

∫ T

0

∫∫

Td×V

Pφ (Ptδx0,v0) (dx, dv)

)

µ0(dx0, dv0)

= −
∫∫

Td×V

φ(0, x0, v0)µ(dx0, dv0).

This ends the proof.
�

4.2. Doeblin type argument and exponential decay. Now we want to make
a Doeblin type argument.

Proof of Theorem 1. Let t∗ = 2T + T∗ in the case W = 0 and V is compact, or
t = 2T + T∗∗∗ in the case W 6= 0 as in Lemma 5 and set.

α := βκ2e−t∗‖σ‖∞ .

Step 1: Estimate for positive disjoint probability measures. Assume that are such
that

(37) µ1, µ2 ∈ P(Ω× V ) suppµ1 ∩ suppµ2 = ∅.
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This implies that

(38) ‖µ1 − µ2‖TV = 2.

Using the conservation of mass and Lemma 5, we can write

Pt∗µ1 − αν = (1− α) f1, Ptµ2 − αν = (1− α) f2,

for some f1, f2 ∈ P(Ω× V ). Hence,

‖Pt∗µ1 − Ptµ2‖TV ≤ ‖Ptµ1 − αν‖TV + ‖Ptµ1 − αν‖TV

≤ (1− α)‖f1‖TV + (1 − α)‖f2‖TV

≤ 2(1− α)

= (1− α)‖µ1 − µ2‖TV ,

as a consequence of (38). Iterating this estimate and using that (Pt)t≥0 is a semi-
group, we obtain
(39)

∀µ1, µ2 satisfying (37) ∀k ∈ N, ‖Pkt∗µ1 − Pkt∗µ2‖TV ≤ (1− α)k‖µ1 − µ2‖TV .

Step 2: Estimate for positive measures with the same mass. Assume now that
µ1, µ2 ∈ M (Ω× V ) are such that

(40) suppµ1 ∩ suppµ2 = ∅ and µ1(Ω× V ) = µ2(Ω× V ) > 0.

Then, setting

µ1 :=
µ1

µ1(Ω× V )
, µ2 :=

µ2

µ2(Ω× V )
,

we readily have that

suppµ1 ∩ suppµ2 = ∅ and µ1, µ2 ∈ P(Ω× V ).

Hence, using (39),

‖Pkt∗µ1 − Pkt∗µ2‖TV =

∥

∥

∥

∥

1

µ1(Ω× V )
Pkt∗µ1 −

1

µ2(Ω× V )
Pkt∗µ2

∥

∥

∥

∥

TV

=
1

µ1(Ω× V )
‖Pkt∗µ1 − Pkt∗µ2‖TV

≤ (1− α)k

µ1(Ω× V )
‖µ1 − µ2‖TV ,

for any k ∈ N. Hence,
(41)

∀µ1, µ2 satisfying (40) ∀k ∈ N, ‖Pkt∗µ1 − Pkt∗µ2‖TV ≤ (1− α)k‖µ1 − µ2‖TV .

Step 3: Estimate for general measures probability measures. Consider µ1, µ2 ∈
P(Ω× V ). Using the Jordan’s decomposition (cf. [8, Eq. (32.3), p. 421]), we can
write

µ1 − µ2 = (µ1 − µ2)+ − (µ2 − µ1)+,

which satisfy

supp(µ1−µ2)+∩supp(µ2−µ1)+ = ∅ and (µ1−µ2)+(Ω×V ) = (µ2−µ1)+(Ω×V ),

for (µ1 − µ2)(Ω× V ) = 0. As a consequence, we can use (41) and this gives
(42)

∀µ1, µ2 ∈ P(Ω× V ), ∀k ∈ N, ‖Pkt∗µ1 − Pkt∗µ2‖TV ≤ (1− α)k‖µ1 − µ2‖TV .

Step 4: Conclusion and quantitative exponential bound.
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We observe that the equilibrium distribution satisfies

(43) Ptν = ν, ∀t ≥ 0 and ν ∈ P(Ω× V ).

Let t > t∗ and set k ∈ N be such that

t

t∗
≤ k + 1.

Then, using (43), (42) and (27),

‖Ptµ0 − ν‖TV = ‖Ptµ0 − Ptν‖TV

≤ ‖Pkt∗µ0 − Pkt∗ν‖TV

≤ (1− α)k‖µ0 − ν‖TV

≤ exp

(

t− t∗
t∗

log(1− α)

)

‖µ0 − ν‖TV .

where we have used that, thansk to the choice of k,

(k + 1) log(1− α) ≤ t

t∗
log(1− α).

This gives (10) with the rate (11).
�

5. Proof of Theorem 1 (Stochastic version)

We now look at a more stochastic proof of Theorem 1 as similar proof would also
work in the case of Theorem 3. We split this into two Lemmas. Here we only prove
the lower bound on Ptµ as afterwards we would argue exactly as in the previous
section. We want to look at paths where the velocity process jumps exactly once
in [0, T ], no times in [T, T + T∗] and exactly once in [T + T∗, 2T + T∗]. Here T is
from the GCC and T∗ is from above.

Lemma 6. Given an arbitrary set S we want to have for the following probability
conditional on starting at (x0, v0) for our process (28)

Px0,v0 ((Xt, Vt) ∈ S | jump exactly once in [0, T ], no times in [T, T + T∗],

and exactly once in [T + T∗, t]) ≥ βν(S).

Here β is as before and ν is the steady state which in this case is the uniform
measure on Td × V .

Remark. This is essentially the same as computing a lower bound on the integrand
in the Duhamel’s formula in the previous section. We repeat the computations
briefly since it is technically a different quantity.

Proof. Suppose the process jumps once at time r in [0, T ] and again at time s in
[T + T∗, t]. and we start with law δx0

⊗ δv0 . Immediately before the first jump we
have only undergone pure transport so the law is

Tr(δx0
⊗ δv0) = δx0+v0r ⊗ δv0 .

Now after the first jump we thermalise the velocity so they become uniform over
V .The operator L+ acts on measures by

(

L+µ
)

(Ax ×Av) = µ(Ax × V )λ(Av),
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where λ is the uniform measure on V . Then immediately after the first jump we
have the law being

L+(δx0+v0r ⊗ δv0) = δx0+v0r ⊗ λ.

Now from our conditions on s and r we know that s− r > T∗. So this means that
immediately after the second jump we have from our earlier calculation

L+Ts−r (δx0+v0r ⊗ λ) =
1

|V |

∫

V

Ts−r

(

δx0+v0r
1

|V |

)

dv ≥ β

|V | .

The transport semigroup preserves the uniform measure. So we have shown that
after a jump at exactly on point in [0, T ], exactly one point in [T + T∗, t] and no
other jumps then we are uniformly distributed. Therefore,

Px0,v0((Xt, Vt) ∈ S | jump exactly once in [0, T ], no times in [T, T + T∗],

and exactly once in [T + T∗, t]) ≥ βν(S).

�

So now we need to calculate the probability of jumping exactly once in [0, T ] no
times in [T, T + T∗] and exactly once in [T + T∗, t].

Lemma 7. For our process (28) we have for any (x0, v0).

Px0,v0(exactly one jump in [0, T ], none in [T, T + T∗]

and once in [T + T∗, 2T + T∗]) ≥ C2e−‖σ‖∞(2T+T∗).

Proof. First lets look at the probability of jumping exactly once in [T + T∗, t] con-
ditional on having jumped exactly once in [0, T ] and zero times in [T, T + T∗]. By
our earlier calculation we can see that after the process has jumped once in [0, T ]
and then transported to time T +T∗ then the x marginal of the law will be uniform.
That is to say we want to study the probability

Px0,v0(jump exactly once in [T + T∗, t] | jumped exactly once in [0, T ], never in [T, T + T∗]).

Using the GCC and the fact that the number of jumps in time T is a Poisson

random variable with mean
∫ T

0
σ(Xt(x, v))dt we have

Px∗,v∗(jump exactly once in time [0, T ]) =

∫ T

0

exp

(

−
∫ T

0

σ(x∗ + v∗s)ds

)

σ(x∗ + v∗t)dt

≥e−‖σ‖∞T

∫ T

0

σ(x∗ + v∗t)dt ≥ e−‖σ‖∞TC.

This is uniform over all starting points so for any distribution µ

P(jump exactly once in [T + T∗, 2T + T∗] |(XT+T∗ , VT+T∗) ∼ µ) ≥ Ce−‖σ‖∞T .

So if we set t = 2T = T∗ then we have

Px0,v0(jump exactly once in [T + T∗, t] | jumped exactly once in [0, T ],

never in [T, T + T∗]) ≥ Ce−‖σ‖∞T .

Similarly, we can look at

Px0,v0(No jumps in [T, T + T∗] |exactly one jump in [0, T ]).
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Like before we have that

Px∗,v∗(jump no times in [0, T∗]) = exp

(

−
∫ T∗

0

σ(x∗ − v∗t)dt

)

≥ e−‖σ‖∞T∗ .

Again this is uniform over starting points so we have that

P(jump no times in [T, T + T∗] |(XT , VT ) ∼ µ) ≥ e−‖σ‖∞T∗ .

Furthermore we have

Px0,v0(exactly one jump in [0, T ]) ≥ Ce−‖σ‖∞T .

Therefore, putting all these together we have

Px0,v0(exactly one jump in [0, T ], none in [T, T + T∗],

and one in [T + T∗, 2T + T∗]) ≥ C2e−‖σ‖∞(2T+T∗).

�

Finally we conclude by Bayes’s Theorem.

Lemma 8. For the stochastic process (28) we have that if t = 2T + T∗ then

Px0,v0((Xt, Vt) ∈ S) ≥ βC2e−‖σ‖∞tν(S),

Proof. We want to use the fact that

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc) ≥ P(A|B)P(B).

We apply this with A = {(Xt, Vt) ∈ S} and B being the event of jumping exactly
once in [0, T ], no times in [T, T + T∗] and exactly once in [T + T∗, 2T + T∗]. �

Remark. This gives a more stochastic flavored proof of Lemma 4. We can then
pick up at that point and conclude the same way as the previous section.

6. Proof in the case that V = S
d−1.

Here we emulate the stochastic proof as in the previous section since it is better
adapted when we have more jumps. First we need to prove our control on the
transport semigroup.

Proof of Theorem 2. Lets fix t = 3T + 2T∗∗ We emulate the probabilistic proof we
want to look at paths with one jump in [0, T ] another jump in [T + T∗∗, 2T + T∗∗]
another in [2T + 2T∗∗, 3T + 2T∗∗] and no other jumps. The probability of such a
sequence is given by the same calcualtions as in lemma 7

C3e−‖σ‖∞(3T+2T∗∗).

Lets call J1 the event that the process jumps exactly once in [0, T ], J2 the event
that the process jumps no times in [T, T + T∗∗], J3 the even the process jumps
exactly once in [T + T∗∗, 2T + T∗∗], J4 the even that the process jumps no times in
[2T + T∗∗, 2T + 2T∗∗] and finally J4 the event that the process jumps exactly once
in [2T + 2T∗∗, 3T + 2T∗∗]. Then by our calculations in Lemma 7 we know that

P(exactly one jump in [0, T ] | (X0, V0)µ̃) ≥ Ce−‖σ‖∞T ,

for every probablity µ. Furthermore by similar calculations to in Lemma 7 we have

P(no jumps in [0, T∗∗] | (X0, V0)µ̃) ≥ e−‖σ‖∞T∗∗ ,
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for every probability µ. Consequently we have

Px0,v0 (J1, J2, J3, J4) =Px0,v0 (J2, J3, J4 | J1)Px0,v0(J1)

=Px0,v0(J3, J4|J2, J1)Px0,v0(J2|J1)
=Px0,v0(J4|J3, J2, J1)Px0,v0Px0,v0(J3|J2, J1)Px0,v0(J2|J1)Px0,v0(J1)

=Px0,v0(J4|J3)Px0,v0(J3|J2)Px0,v0(J2|J1)Px0,v0(J1)

≥C3e−‖σ‖∞(3T+2T∗∗).

In this calculations we can replace conditioning by J2, J1 by just conditioning by
J2 by the Markov property and similarly in the later lines only conditioning by the
most recent event.

Lets write J = {J1, J2, J3, J4} then we want to show that

Px0,v0((Xt, Vt) ∈ S|J) ≥ 1

2
ν(S).

Lets look at the law conditional on jumping at times q, r, s lying in the right sets.
Immediately before the jump at time q the law will be

Tq(δx0
δv0) = δx0+qv0δv0 .

Then after the first jump the law becomes

δx0+qv01v∈Sd−1 .

We procede like this to see that immediately before the third jump we have

Ts−r

(
∫

Sd−1

Tr−q (δx0+qv01v∈Sd−1) (·, u)du1v∈Sd−1

)

.

Since s− r, r − q ≥ T∗∗ we have that the x marginal of this is greater than

1

2

1

|Td| =
1

2
νx.

Now immediately after the third jump we have that the measure is bounded bellow
by

1

2
ν.

Then since the transport part does not change the uniform measure this shows that

Px0,v0((Xt, Vt) ∈ S|jumps at times q,r,s) ≥ 1

2
ν(S).

Since this result is uniform over the even J we have that

Px0,v0((Xt, Vt) ∈ S|J) ≥ 1

2
ν(S).

Now putting this together gives that

Px0,v0((Xt, Vt) ∈ S) ≥ 1

2
C3e−‖σ‖∞tν(S).

We can now repeat the arguments for the proofs of Theorems 1 and 3 starting from
the end of Lemma 4 �
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7. Comments on the rates

Lastly we comment on the rates we get. For the main model our rate is

λ = − log
(

1− C2e−‖σ‖∞(2T+T∗)/2
)

2T + T∗
.

This is almost definitely not optimal. To the best of our knowledge the rate should
vary quite strongly depending on the geometry. We can give a little bit of infor-
mation about a bound on the spectral gap and examples of situations where the
spectral gap is well below this bound. In [21] the authors prove some results on the
spectrum of this operator. Defining the constants

C−
∞ = sup

T>0
inf
x,v

1

T

∫ T

0

σ(ΦX
t (x, v))dt, C+

∞ = inf
T>0

sup
x,v

∫ T

0

σ(ΦX
t (x, v))dt,

it is proven in [21] that the essential spectrum of the linear Boltzmann operator
lies in the strip {z : C−

∞ ≤ Re(z) ≤ C+
∞}. They also show that the spectrum is

contained in a strip of the form {0 ≤ Re(z) ≤ L∞}, where L∞ is related to the
supremum of the collision kernel. We can give an upper bound on the spectral gap
in total variation using a simple probabilistic argument.

Lemma 9. If there exists λ > 0, A > 0 such that for all initial data

‖f(t)− ν‖TV ≤ Ae−λt,

then λ ≤ C+
∞ using the notation above.

Proof. If we initally start with a delta function we get no closer in total variation
until we have jumped at least once, then we have that

‖f(t)− ν‖TV ≥ P(jumped no times in time t) = exp

(

−
∫ t

0

σ(ΦX
s (x, v))ds

)

.

Fixing ǫ there exists T (ǫ) such that

sup
x,v

∫ T (ǫ)

0

≤ (C+
∞ + ǫ)T (ǫ).

Therefore,

‖f(nT (ǫ))− ν‖TV ≥ exp

(

−
∫ nT (ǫ)

0

σ(ΦX
s (x, v))ds

)

≥ exp
(

−nT (ǫ)(C+
∞ + ǫ)

)

,

for every n. Therefore λ ≤ C+
∞ + ǫ and ǫ is arbitrary which gives the result. �

The consideration of optimal rates raises several natural further questions. The
first is to investigate the optimal rates. Secondly it would be interesting to char-
acterize which possible choices of σ lead to the fasted and slowest rates. This is
especially interesting since it is not obvious that having constant σ gives the fasted
rates, particularly in the presence of a confining potential. If it is possible to choose
a degenerate σ so that the convergence to equilibrium was much faster than the
optimal choice of constant σ then this could have implications for Hamiltonian
Markov chain Monte-Carlo simulation.
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[11] J. Cañizo, C. Cao, J. Evans, and H. Yoldas. Hypocoercivity of linear kinetic equations via

Harris’s Theorem. arXiv e-prints, page arXiv:1902.10588, Feb 2019.
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