Needle Segmentation in 3D Ultrasound Volumes Based on Machine Learning for Needle Steering - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Needle Segmentation in 3D Ultrasound Volumes Based on Machine Learning for Needle Steering

Résumé

To achieve needle steering and guide a flexible needle, it is necessary to localize it first. In the case of 3D ultrasound (US) in B-mode, the poor imaging quality and artefacts make it difficult to determine the needle pose. Needle localization issues specific to needle steering are reviewed in [1]. In [2], we proposed an observer of the needle tip pose. In [3], we detailed a machine learning approach for needle localization in 3D US volumes. In this paper, we describe the interconnection of both methods for precise curved needle localization in the context of needle steering.
Fichier principal
Vignette du fichier
LAP_YOU_POI_VOR_TRO_Hamlyn_2019-V2.pdf (730.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02276986 , version 1 (03-09-2019)

Identifiants

  • HAL Id : hal-02276986 , version 1

Citer

Guillaume Lapouge, Hatem Younes, Philippe Poignet, Sandrine Voros, Jocelyne Troccaz. Needle Segmentation in 3D Ultrasound Volumes Based on Machine Learning for Needle Steering. Hamlyn Symposium on Medical Robotics, Jun 2019, Londres, United Kingdom. ⟨hal-02276986⟩
2232 Consultations
242 Téléchargements

Partager

More