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INTRODUCTION 
   To achieve needle steering and guide a flexible needle, 
it is necessary to localize it first. In the case of 3D 
ultrasound (US) in B-mode, the poor imaging quality and 
artefacts make it difficult to determine the needle pose. 
Needle localization issues specific to needle steering are 
reviewed in [1]. In [2], we proposed  an observer of the 
needle tip pose. In [3], we detailed a machine learning 
approach for needle localization in 3D US volumes. In 
this paper, we describe the interconnection of both 
methods for precise curved needle localization in the 
context of needle steering. 

MATERIALS AND METHODS 
Approach 
   3D US compatible needle localization algorithms are 
reviewed in [4]. Localizing the needle in the whole US 
volume is computationally expensive. To manage real-
time localization, we propose the interconnection of an 
observer that automatically provides a volume of interest 
(VOI), and a segmentation algorithm. Because the needle 
visibility in 3D US volume changes during the insertion, 
we propose machine learning to select adaptively needle 
voxels among the VOI voxels.   
 

Needle Pose Estimation 
   The needle tip behavior is modeled by a unicycle 
kinematic model. The tip follows a circular path when it 
is inserted without rotation. In this work, we consider that 
the needle shaft follows the path of the needle tip. In this 
hypothesis, segmenting the needle tip over time is 
equivalent to segmenting the whole needle shaft. This 
hypothesis is validated experimentally. 
   The needle tip position and orientation are estimated in 
real time by the multi-rate unscented Kalman filter 
(MUKF) described in [2]. It takes as inputs the robot 
control commands and the measurement coming from the 
robot’s sensors, needle tip segmentation results in the 3D 
US volumes and stiffness information of the surrounding 
tissue. The estimated path traced by the needle tip Φ  
defines a tubular volume of interest, of radius set by the 
user, for needle segmentation. 
   If the needle cannot be segmented in the ultrasound 
volume, the estimation continues until the needle 
becomes visible again. The segmentation results are then 
considered as measurements to update the estimation. 
 

 
Naïve Bayes classification 
   As explained in [3], the VOI histogram can be modeled 
using an additive Gaussian Mixture Model (GMM): 

P(I(v)) =  πv୧
 P୧(I(v))
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Where v is a voxel and I(v) its intensity value, M is the 
number of mixed components, πv୧  represents the 

coefficient of the ith component and  P୧ is the Gaussian 

probability density function that defines the ith 

component. Here we consider two classes (i=2): 
Cl = {Needle (Xn), Background (Xb)}. 

Given the observed feature I(v), the Bayesian classifier 
assigns the most likely class as next equation:  

C௬௦(I(v)) = arg max
୴

 P(Cl = X୧|I(v)). 

In the case of binary classification, Bayesian classifier is 
summarized by the followed inequalities:  

 Xn 

π୶
P(I(v) |Cl = Xn)   ≷   π୶ౘ

P(I(v)|Cl = Xb). 
 Xb 

   Each voxel of intensity I(v), is classified as a needle 
member if the posterior probability of Xn is larger than 
that of Xb. Several parameters are required to establish 
this probabilistic model. They vary from GMM  to 
another, even in the same image. Though, each needle 
localization starts with the prediction of the required 
parameters.   
 

Expectation Maximization algorithm (EM) 
   The unknown parameters representing the GMM are 
estimated by an EM algorithm. This iterative process 
computes the maximum likelihood of an observed feature 
for each iteration. The following equations represent the 
main instructions done iteratively to estimate the 
parameters. 
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   Where N is the number of voxels and  θ୩  is the 
parameters vector to be estimated at the kth  iteration. 
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   Starting from an initial set of values for θ, the algorithm 
uses the newly derived parameters as the guess for the 
next iteration. The iteration stops when the parameters 
values stabilize: |θ୩ −  θ୩ାଵ| <  𝜀 . A meaningful 
initialization of θ is necessary for suitable convergence. 
More details can be found in [3]. 
 

Needle tip segmentation 
   The needle visibility depends on its location in the US 
volume. Before applying Bayesian classification, the 
VOI is cropped to keep the 40% of its original length 
which contain the needle extremity. In this way, we 
ensure that the tip and shaft voxel intensities are similar 
(i.e. can be considered as belonging to the same class 
Xn). 
   The needle tip search is then done in a spherical 
neighborhood around the estimated needle tip. In that 
neighborhood, if there is no voxel belonging to Xn, the 
segmentation fails. Else, the segmented tip is computed 
as the weighted centroid of the voxels in Xn. The 
weighting 𝑤 of a voxel p verifies: 

𝑤 ∝  𝑤భ
𝑥௧ − 𝑤మ

(𝑦 − 𝑦) 

   Where  𝑤భ
, 𝑤మ

∈ ℝା
ଶ  are set by the user (resp. 3 and 1 

here); 𝑥௧ is the abscissa of the voxel in the estimated tip 
frame Ft (see Fig. 1);  𝑦 (resp. 𝑦) is the ordinate of the 
voxel (resp. estimated tip) in the image frame F (see Fig. 
1). The needle tip is therefore researched preferentially in 
the direction of the insertion (𝑥௧), and in the opposite 
direction of expected tip reverberation artefacts (−𝑦).  

RESULTS  
   The proposed solution has been implemented in the 
context of automated needle insertions to reach a target. 
A beveled-tip 24 Gauge Nitinol needle was inserted and 
rotated into gelatin phantoms and pork tenderloin with a 
robot. The needle surface was either coated with 
polyurethane foam or etched with a laser. The ultrasound 
volumes were acquired at 1 Hz with a 3D end-fire probe 
4DEC-9/10 used with the Ultrasonix Sonix RP 
ultrasound system. The US volume voxels are cubes with 
0.4 mm edges. Running on an Intel® Core™ I5-8300H 
CPU, an iteration of the algorithm takes between 20 ms 
and 30 ms depending on the VOI size. 
   60 manual needle tip segmentation (0.3 mm 
repeatability) have been done by a non-expert individual 
among 4 different needle insertions (2 in pork tenderloin 
and 2 in gelatin phantoms). The 3D segmentation error Δ 
was computed as the Euclidean distance between manual 
and automatic tip segmentation. Axial segmentation 

errors were computed as the Euclidean distance on each 
axis between manual and automatic tip segmentation. 
Results are reported in Table 1. 
 

Difference  Δx Δy Δz Δ 

Gelatin 
0.5±0.3 
[0.0;1.2] 

0.2±0.2 
[0.0;0.8] 

0.5±0.3 
[0.0;1.2] 

0.8±0.3 
[0.1 ;1.5] 

Pork 
0.3±0.2 
[0.0;0.5] 

0.3±0.2 
[0.0;0.8] 

0.4±0.3 
[0.0;0.6] 

0.5±0.2 
[0.2 ;1.0] 

Table 1 Difference between manual and automatic needle 
segmentation (mm). Format: mean±std [min;max]. 

 

   The mean segmentation error in each direction is 
generally inferior to the spatial resolution of the probe. 
The results are therefore very close to voxel size 
precision and satisfactory for needle tip segmentation. 
Needle segmentation is more precise in pork than in 
gelatin. Indeed, in gelatin, the needle can be seen with a 
better contrast but suffers from greater reverberation 
artefacts than in pork. 
   Momentary needle loss occurred in 2 of the pork 
insertions with no significant impact on automatic 
segmentation error when the needle becomes visible 
again. 

DISCUSSION 
   We have proposed an automated needle localization in 
3D ultrasound volumes. The solution is composed of 
interconnected observer and segmentation algorithms. 
The solution is fully automatic and adapts to the 
conditions of insertions (i.e. different needles or insertion 
media). This interconnection allows for precise tip 
localization despite changing needle visibility in noisy 
3D US volumes. It is also robust to momentary needle 
loss. This makes it suitable for clinically compatible 
needle steering. 
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Fig. 1 Needle segmentation process loop, example in gelatin. 


