Hyperquaternions: An Efficient Mathematical Formalism for Geometry - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Hyperquaternions: An Efficient Mathematical Formalism for Geometry

Résumé

Hyperquaternions being defined as a tensor product of quaternion algebras (or a subalgebra thereof), they constitute Clifford algebras endowed with an associative exterior product providing an efficient mathematical formalism for differential geometry. The paper presents a hyperquaternion formulation of pseudo-euclidean rotations and the Poincaré groups in n dimensions (via dual hyperquaternions). A canonical decomposition of these groups is developed as an extension of an euclidean formalism and illustrated by a 5D example. Potential applications include in particular, moving reference frames and machine learning.
Fichier principal
Vignette du fichier
Girard_Hyperquaternions_GSI_2019.pdf (327.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02276429 , version 1 (04-01-2021)

Identifiants

Citer

Patrick Girard, Patrick Clarysse, Romaric Pujol, Robert Goutte, Philippe Delachartre. Hyperquaternions: An Efficient Mathematical Formalism for Geometry. Geometric Science of Information. 4th International Conference (GSI 2019), Frank Nielsen; Frédéric Barbaresco, Aug 2019, Toulouse, France. pp.116-125, ⟨10.1007/978-3-030-26980-7_13⟩. ⟨hal-02276429⟩
166 Consultations
253 Téléchargements

Altmetric

Partager

More