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1 Univ Lyon, INSA-LYON, Université Claude Bernard Lyon 1, UJM-Saint Etienne,
CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621 LYON, France

patrick.girard@creatis.insa-lyon.fr
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Abstract. Hyperquaternions being defined as a tensor product of quater-
nion algebras (or a subalgebra thereof), they constitute Clifford algebras
endowed with an associative exterior product providing an efficient math-
ematical formalism for differential geometry. The paper presents a hyper-
quaternion formulation of pseudo-euclidean rotations and the Poincaré
groups in n dimensions (via dual hyperquaternions). A canonical decom-
position of these groups is developed as an extension of an euclidean
formalism and illustrated by a 5D example. Potential applications in-
clude in particular, moving reference frames and machine learning.
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1 Introduction

Clifford algebras allow an excellent representation of pseudo-euclidean rotations
which are important symmetry groups of physics [1–4]. A decomposition of these
groups into orthogonal, commuting planar rotations is called a canonical decom-
position. Various canonical decompositions have been developed which deal with
either specific rotations or dimensions and are often expressed in terms of matri-
ces [5, 6]. In a recent paper, we have introduced a hyperquaternion formulation of
Clifford algebras and applied them to the unitary and unitary symplectic groups
[7]. Here, we consider pseudo-euclidean rotations and the Poincaré groups in
n dimensions (via dual hyperquaternions). A canonical decomposition of these
groups is developed within that framework as an extension of an euclidean for-
malism introduced by Moore [8, 9]. After a short presentation of hyperquater-
nions and multivectors, we derive the pseudo-euclidean rotations and the canon-
ical decomposition. Then we go on to the Poincaré groups and a 5D example.
Potential applications are moving reference frames and machine learning [10]
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Table 1. Biquaternion Multivector Structure

1 i = e3e2 j = e1e3 k = e2e1
I = e1e2e3 Ii = e1 Ij = e2 Ik = e3

2 Background: Quaternions, Hyperquaternions and
Multivectors

In this section, we briefly introduce quaternions, hyperquaternions and multivec-
tors [7, 11–15]. The quaternion algebra H which contains R and C as particular
cases is constituted by quaternions

a = a1 + a2i+ a3j + a4k (ai ∈ R) (1)

where i, j, k multiply according to

i2 = j2 = k2 = ijk = −1, ij = −ji = k, etc.. (2)

The product of two quaternions a, b is given by

ab = (a1b1 − a2b2 − a3b3 − a4b4) + (a1b2 + a2b1 + a3b4 − a4b3) i (3)

+ (a1b3 + a3b1 + a4b2 − a2b4) j + (a1b4 + a4b1 + a2b3 − a3b2) k. (4)

The conjugate of a quaternion is ac = a1 − a2i− a3j − a4k with

aac = a21 + a22 + a23 + a24, (ab)c = bcac (5)

The hyperquaternion algebra (over R) is defined as the tensor product of quater-
nion algebras (or a subalgebra thereof). Examples of hyperquaternion algebras
are the quaternions H, tetraquaternions H⊗H and so on H⊗H⊗...⊗H; subalge-
bras are the complex numbers C, biquaternions H⊗ C, Dirac algebra H⊗H⊗ C,
etc..

Calling (i, j, k) the first quaternionic system, (I, J,K) the second one and
(l,m, n) the third one, all systems commuting with each other, one has

i⊗ i⊗ i = iIl, i⊗ j ⊗ k = iJn, etc. (6)

which uniquely defines the multiplication.
Hyperquaternions having n generators ei such that eiej + ejei = 0 (i 6= j),

e2i = ±1 constitute Clifford algebras Cn. The choice of the generators entails a
multivector structure as shown, in the case of biquaternions, in Table 1. The 2n

elements of the algebra are composed of scalars, vectors ei, bivectors eiej , trivec-
tors eiejek etc. yielding respectively the multivector spaces V0, V1, V2, V3, ...Vn.
C+ is the subalgebra constituted by products of an even number of ei, C

− is the
rest of the algebra. The multivector structure allows to define basic operations
like conjugation, duality and the interior and exterior products.
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Considering a general element A of the algebra, the conjugate Ac is obtained
by replacing the ei by their opposite −ei and reversing the order of the elements

(Ac)c = A, (AB)c = (Bc) (Ac) . (7)

The dual of A is A∗ = idA where id = e1 ∧ e2... ∧ en (to be defined below) and
the commutator of two hyperquaternions is

[A,B] =
1

2
(AB −BA) . (8)

The interior and exterior products of two vectors a, b are obtained as follows.
From the identity

2ab = λλ−1 [(ab+ ba) + (ab− ba)] (9)

where λ = ±1 is a given coefficient (allowing to eventually change the sign of
the metric), one defines

2a.b = λ−1 (ab+ ba) , 2a ∧ b = λ−1 (ab− ba) (10)

which are respectively a scalar and a bivector. A multivector Ap = a1∧a2∧...∧ap
(2 ≤ p < n) where ap are vectors, is then defined by recurrence

2a.Ap = λ−p [aAp − (−1)
p
Apa] ∈ Vp−1 (11)

2a ∧Ap = λ−p [aA2 + (−1)
p
A2a] ∈ Vp+1 (12)

By definition, we take

Ap.a ≡ (−1)
p−1

a.Ap, Ap ∧ a ≡ (−1)
p
a ∧Ap. (13)

An important property of the exterior product is its associativity.
Interior and exterior products between multivectors are defined by

Ap ∧Bq = a1 ∧ (a2 ∧ ... ∧ ap ∧Bq) (14)

Ap.Bq = (a1 ∧ ... ∧ ap−1) . (ap.Bq) , (p ≤ q) (15)

with Ap.Bq = (−1)
p(q+1)

Bq.Ap [16]. In particular, we have the following useful
formulas where Bi are bivectors and Vp[A] the multivector part Vp of A

B1B2 = B1.B2 +B1 ∧B2 + [B1, B2] (16)

B1 ∧B2 = V4 [B1B2] (17)

B1 ∧B2 ∧B3 = V6 [B1 (B2 ∧B3)] (18)

B1. (B2 ∧B3) = V2 [B1 (B2 ∧B3)] (19)

(B1 ∧B2) . (B3 ∧B4 ∧B5) = V2 [(B1 ∧B2) (B3 ∧B4 ∧B5)] . (20)

Hyperquaternions yield all real, complex and quaternionic square matrices
as well as the transposition, adjunction and transpose quaternion conjugate via
a hyperconjugation defined as Hc⊗Hc⊗...⊗Hc as indicated in Table 2.
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Table 2. Hyperquaternions and matrices

H⊗H ' m(4,R) Hc⊗Hc' [m(4,R)]t

H⊗H⊗ C ' m(4,C) Hc⊗Hc⊗Cc' [m(4,C)]†

H⊗H⊗H ' m(4,H) Hc⊗Hc⊗Hc' [m(4,H)]tc .

(21)

3 Pseudo-Orthogonal Rotations

In this section, we derive a hyperquaternion formulation of pseudo-euclidean
rotations and develop a canonical decomposition. Historically, the formula of n
dimensional euclidean rotations x′ = axa−1 (a ∈ C+

n ) was given by Lipschitz [17]
and Moore developed a canonical decomposition thereof [8, 9]. In this section we
introduce, as an extension of Moore’s method, within the hyperquaternion Clif-
ford algebra framework, a canonical decomposition of pseudo-euclidean rotations
and the Poincaré groups. After a brief review of the basic definitions and the
Cartan theorem, we develop the canonical decomposition.

3.1 Definitions and Theorem

Let Cp,q be a hyperquaternion algebra having n = p + q generators ei and the
quadratic form

x.y = x1y1 + ...+ xpyp − (xp+1yp+1...− xp+qyp+q) (22)

= λ−1 (xy + yx) /2 (23)

where x, y are vectors (x = xiei) . A vector x is timelike if x.x > 0, spacelike if
x.x < 0 and isotropic if x.x = 0.

An orthogonal symmetry with respect to a plane going through the origin
and perpendicular to a unit vector a

(
a2 = ±1

)
is given by [12, 13]

x′ = ±axa (24)

with x′x′ = (±axa) (±axa) = xx.

Definition 1. The pseudo-orthogonal group O(p, q) is the group of linear oper-
ators which leave invariant the form x · y.

Theorem 1. Every rotation of O(p, q) is the product of an even number 2m ≤ n
of symmetries.

Definition 2. The special orthogonal group SO+(p, q) is constituted by rota-
tions which preserve the orientation of the space of positive norm vectors and
the space of negative norm vectors.
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A rotation of SO+(p, q) can thus be expressed as

x′ = axac (aac = 1) (25)

with a = a1a2...a2m,∈ C+, where ai are unit vectors (with an even number of
timelike and spacelike vectors). Developing the product (with λ = 1)

aiaj = ai.aj + ai ∧ aj (26)

one sees that it contains a simple plane B = ai ∧ aj such that B2 = B.B+
B ∧ B is a scalar since B ∧ B = 0. Hence, a rotation involves at most m ≤ n/2
simple planes. A canonical decomposition of rotations is obtained by choosing
these simple planes to be orthogonal.

3.2 Canonical Decomposition

A rotation of SO+(p, q) can be decomposed as

a = e
Φ1
2 B1e

Φ2
2 B2 ...e

Φm
2 Bm (aac = 1) (27)

where Bi are m simple orthogonal commuting planes such that B2
i = ±1 together

for i 6= j
Bi.Bj = 0, BiBj = BjBi, BiBj = Bi ∧Bj ; (28)

Φi are the angles of rotation within the planes Bi. According to whether B2
i = −1

or B2
i = 1, one has respectively

e
Φi
2 Bi = cos

Φi
2

+ sin
Φi
2
Bi, e

Φi
2 Bi = cosh

Φi
2

+ sinh
Φi
2
Bi. (29)

The rotation can be developed as

a = S (1 + b1B1) (1 + b2B2) ... (1 + bmBm) (30)

with bi = tan Φi
2 (or tanh Φi

2 ). Since aac = 1 one has

S2
(
1 + b21

) (
1− b22

) (
1− b23

)
= 1 (31)

S =
1√

(1± b21) ... (1± b2m)
(32)

which shows that S is determined by the bi. Writing

B = b1B1 + b2B2 + b3B3 (33)

one can express a as

a = S

(
1 +B +

B ∧B
2!S2

+ ...
B ∧B ∧B ∧ ... (m terms)

m!Sm

)
(34)
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which shows that the bivector B determines completely the rotation.
If the scalar is nil, for example if (Φ1 = ±π, B2

1 = −1), then a is proportional
to B1

a = B1e
Φ2
2 B2e

Φ3
2 B3 ; (35)

one then computes B−11 a and comes back to the general expression to evaluate
the remaining bi and Bi.

To determine the bi and Bi, one makes a change of variable Xi = biBi, xi =
X2
i = ±b2i and considers the linear system of equations in Xi [9]

P1 = B =

m∑
i=1

Xi (36)

P2 = (B ∧B) .B = 2

m∑
i,j=1

Xixj (i 6= j) (37)

P3 = (B ∧B ∧B) . (B ∧B) = 3!2!

m∑
i,j,k=1

Xixj xk (i 6= j, j < k) (38)

...... (39)

Pm = (B ∧B ∧ ...m factors) . (B ∧B... (m− 1) factors) (40)

= m! (m− 1)!

m∑
i=1

x1x2...xi−1xi+1...xmXi. (41)

The determinant ∆ is the product

∆ =
{
m! [(m− 1)!]

2
[(m− 2)!]

2
...1
} m∏
i,j=1

(xi − xj) (i 6= j, i < j) . (42)

If ∆ 6= 0, one obtains the bivectors Xi as a function of Pm and xi. To determine
the xi, one writes the equations

S1 = P1.P1 =

m∑
i=1

xi (43)

S2 = P2.P1 = 2!

m∑
i,j=1

xixj (i 6= j) (44)

S3 = P3.P1 = (3!)
2

m∑
i,j,k=1

xixjxk (i 6= j, j < k) (45)

...... (46)

Sm = Pm.P1 = (m!)
2

(x1x2...xm) . (47)

The solutions yield xi = ±b2i , thus one obtains bi and Bi

bi =
√
|xi|, Bi =

Xi

bi
. (48)
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If ∆ = 0, the equations (36-41) are not independent, the B bivector can never-
theless be decomposed in m mutually orthogonal simple planes but this decom-
position is not unique.

4 Poincaré group in n dimensions (via dual
hyperquaternions)

Much of physics being covariant with respect to the 4D Poincaré group, we
provide here a hyperquaternion representation of the nD Poincaré groups in
terms of dual hyperquaternions. Thereby one comes back to a (n+ 1)D rotation
which one can be decomposed canonically. The procedure is illustrated by a 5D
case (for example a color image with 2 spatial and 3 color dimensions) which
might be of interest in machine learning [10]).

4.1 General formalism

The Poincaré group of the pseudo-euclidean space associated with the Clifford
algebra Cp,q (n = p+ q) is constituted by the isometries of the metric

ds2 =
(
dx21 + ...+ dx2p

)
−
(
dx2p+1 + ...+ dx2p+q

)
. (49)

It includes the rotations SO+ (p, q), translations and reflections (time or space-
like). The reflections having already been dealt with above, we shall focus on
the rotations and translations.

Consider a hyperquaternion algebra H⊗H...⊗H (or a subalgebra thereof)
with n+ 1 generators e1, e2, ...en, en+1 and let X be a dual vector such that

X = en+1 + εx (50)

where x belongs to the vector space V1 with x =
∑n
i=1 eixi (xi ∈ R) and ε2 = 0

(ε commuting with ei) . An nD hyperbolic rotation in V1 leaves the last variable
unchanged. Hence,

X ′ = aXac = en+1 + εx′ (51)

with x′ = axac, x
′x′c = xxc, aac = 1. A translation in V1 can be expressed as

X ′ = bXbc (52)

with

b = eεen+1
t
2 = 1 + εen+1

t

2
, (t =

n∑
i=1

eiti , ti ∈ R) (53)

and bbc = 1. Developing Eq. (52), one obtains, assuming e2n+1 = −1

X ′ =

(
1 + εen+1

t

2

)
(en+1 + εx)

(
1− εen+1

t

2

)
(54)

= en+1 + εx− εen+1en+1
t

2
− εen+1en+1

t

2
(55)

= en+1 + ε (x+ t) (56)
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which is a translation on the variables 1...n (if e2n+1 = 1, one simply takes

b = eε
t
2 en+1). A combination of an nD rotation and translation gives with f = ab

(or ba)
X ′ = fXfc

(
ffc = 1, f ∈ C+

)
(57)

which can be viewed as a a particular (n+ 1)D rotation. One thus obtains a
hyperquaternion representation of the Poincaré groups, distinct from the matrix
one. A canonical decomposition leads to simple dual planes as will be illustrated
in the following example.

4.2 Example: 5D Poincaré group

As application consider a 5D-space (for example a 2D color image) imbedded in
the 6D hyperquaternion algebra H⊗H⊗H having six generators (see Appendix)

e1 = kI, e2 = kJ, e3 = kKl, e4 = kKm, e5 = kKn, e6 = j (58)

with the generic vector X = e6 + εx (x =
∑5
i=1 eixi). The transformation

X ′ = fXfc with

f = e
Φ2
2 Jleεi(2I+Kn)e

Φ1
2 I(m+n) (59)

=
(

2 +
√

3Jl
)

[1 + εi (2I +Kn)]

[√
3 +
√

2I

(
m√

2
+

n√
2

)]
(60)

and tanhΦ1

2 =
√

2
3 (= b1) , tanhΦ2

2 =
√
3
2 (= b2) is a 5D-Poincaré transform.

Applying the canonical decomposition presented above, one obtains

f = e
Φ2
2 B2eX3e

Φ1
2 B1 (61)

with the same values of Φ1, Φ2 as above and the following simple commuting
orthogonal dual planes B1, B2, X3

B1 =
1√
2
I (m+ n) + ε

1√
2

[√
3

2
K (m+ n)− iJ

]
(62)

B2 = Jl + 2εi

(
2√
3
I −Kl

)
(63)

X3 =
ε

2
iK (−m+ n) . (64)

with (B1)
2

= (B2)
2

= 1, (X3)
2

= 0.

5 Conclusion

The paper has given a hyperquaternion representation of pseudo-euclidean ro-
tations and the Poincaré groups in n dimensions, distinct from the matrix one.
A canonical decomposition of these groups was introduced, as an extension of
an euclidean formalism, within a hyperquaternion Clifford algebra framework
and illustrated by a 5D example. Potential geometric applications include in
particular, moving reference frames and machine learning.
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A Multivector structure of H ⊗ H ⊗ H


1 l = e4e5 m = e5e3 n = e3e4
I = e2e3e4e5 I l = e3e2 I m = e4e2 I n = e5e2
J = e3e1e4e5 J l = e1e3 J m = e1e4 J n = e1e5
K = e2e1 Kl = e2e1e4e5 Km = e1e2e3e5 Kn = e2e1e3e4



+i


1 = e1e2e3e4e5e6 l = e2e1e3e6 m = e2e1e4e6 n = e2e1e5e6
I = e6e1 I l = e4e1e5e6 I m = e5e1e3e6 I n = e3e1e4e6
J = e6e2 J l = e4e2e5e6 J m = e5e2e3e6 J n = e3e2e4e6
K = e3e4e5e6 Kl = e6e3 Km = e6e4 Kn = e6e5



+j


1 = e6 l = e4e5e6 m = e6e5e3 n = e3e4e6
I = e2e3e4e5e6 I l = e3e2e6 I m = e6e4e2 I n = e6e5e2
J = e4e3e5e6e1 J l = e1e3e6 J m = e1e4e6 J n = e1e5e6
K = e2e1e6 Kl = e2e1e4e5e6 Km = e1e2e3e5e6 Kn = e2e1e3e4e6



+k


1 = e2e1e3e4e5 l = e1e2e3 m = e1e2e4 n = e1e2e5
I = e1 I l = e1e4e5 I m = e3e1e5 I n = e1e3e4
J = e2 J l = e2e4e5 J m = e3e2e5 J n = e2e3e4
K = e4e3e5 Kl = e3 Km = e4 Kn = e5


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ulières le calcul des quantités imaginaires et des quaternions. C.R. Acad. Sci. Paris,
vol. 91, pp. 619-621, 660-664 (1880)


