Minimax wavelet estimation for multisample heteroscedastic nonparametric regression - Archive ouverte HAL
Article Dans Une Revue Journal of Nonparametric Statistics Année : 2018

Minimax wavelet estimation for multisample heteroscedastic nonparametric regression

Résumé

The problem of estimating the baseline signal from multisample noisy curves is investigated. We consider the functional mixed-effects model, and we suppose that the functional fixed effect belongs to the Besov class. This framework allows us to model curves that can exhibit strong irregularities, such as peaks or jumps for instance. The lower bound for the minimax risk is provided, as well as the upper bound of the minimax rate, that is derived by constructing a wavelet estimator for the functional fixed effect. Our work constitutes the first theoretical functional results in multisample nonparametric regression. Our approach is illustrated on realistic simulated datasets as well as on experimental data.
Fichier principal
Vignette du fichier
1511.04556.pdf (1.2 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02270811 , version 1 (28-03-2024)

Identifiants

Citer

Madison Giacofci, Sophie Lambert-Lacroix, Franck Picard. Minimax wavelet estimation for multisample heteroscedastic nonparametric regression. Journal of Nonparametric Statistics, 2018, 30 (1), pp.238-261. ⟨10.1080/10485252.2017.1406091⟩. ⟨hal-02270811⟩
1783 Consultations
17 Téléchargements

Altmetric

Partager

More