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Abstract

The problem of estimating the baseline signal from multigl@moisy
curves is investigated. We consider the functional mixéecef model, and
we suppose that the functional fixed effect belongs to th@Bekass. This
framework allows us to model curves that can exhibit stranegularities,
such as peaks or jumps for instance. The lower bound foLtheinimax
risk is provided, as well as the upper bound of the minimae, rétiat is
derived by constructing a wavelet estimator for the funwidixed effect.
Our work constitutes the first theoretical functional résuh multisample
non parametric regression. Our approach is illustratecalistic simulated
datasets as well as on experimental data.
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1 Introduction

Functional data analysis has gained increased attentibe jpast years, in partic-
ular in high-throughput biology with the use of mass speugty. In this field,
the signal is a spectrum whose peaks provide informatioardigg the protein
content of biological samples. A new challenge in functioata analysis is
the availability of multisample data for which functionaN®VA has become
the appropriate framework. More specifically for spectrosnéata, it is now
well accepted that the noise corrupting the signal can bidetivinto a technical
white noise added to an important inter-individual variigp(Eckel-Passow et al.,
2009). In this case, the usual non-parametric regressandwork (a determin-
istic trend corrupted by a random noise) is no longer appagsince it does
not account for heteroscedastic noise structure. Furdatioixed effects models
(Antoniadis and Sapatinas, 2007) appear to be a powerfuleingrk to handle
these data, as others, and we focus here on the estimatioa béseline signal.

In practice, a trivial averaging procedure is often usecdtioagy estimate of the
baseline signal, but it has both a poor convergence rate intieesample perfor-
mance._Amato and Sapatinas (2005) proposed an approachdelire estima-
tion based on empirical wavelet coefficients of the obsedadd. Unfortunately
the convergence of their estimator is not theoreticallgsssd, and more broadly,
there is a general lack of theoretical results on functi@eséimators in functional
mixed models, despite their increasing importance in pra¢Morris and Carrall,
2006; Morris et all, 2008).

In this work we propose a minimax estimator of the baseligaai, based
on the empirical wavelet coefficients of the observed datse flinctional fixed
effect is assumed to belong to the Besov class, which all@is mmodel curves
that can exhibit strong irregularities, such as peaks irsrapsctrometry data. We
construct the lower bound for this, minimax risk. This convergence rate is the
same as in the classical non parametric setting but with ditiaoal approxima-
tion error term. Then, we propose a wavelet estimator thataes near optimal
rate of convergence (within a logarithmic factor in sampi#e)y Through sim-
ulation studies, we show that our approach outperforms pipeoach proposed
by Amato and Sapatinas (2005). We also propose a new thoesggirocedure
based on the Stein Unbiased Risk Estimate (SURE) (Steirl)168mbined with
the SCAD thresholding (Antoniadis and FFan, 2001). Thissgadmproved per-
formance for the baseline signal estimation.

This article is organized as follows. Section 2 presentshiieroscedastic
model and the theoretical properties of our minimax estim@dower and upper
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bounds). In particular we show how classical rates are nemtifi the presence
of replicates along with inter-individual variability. Mo of all, our work con-
stitutes the first theoretical functional results in heseemlastic multisample non-
parametric regression. Several thresholding strategeesomsidered in Section 3,
where we provide a new SURE-based procedure. Section 4 ¢datkto the nu-
merical experiments, and the procedure is illustrated oexg@erimental dataset.
Technical proofs are provided in the Appendix.

2 Heteroscedastic nonparametric regression model
and theoretical properties

2.1 Functional model

We observeV curvesY;(-), fori = 1,..., N, over M equally spaced time points
t = (t1,...,ta) in [0, 1M, with M = 27 for some integer. In the general func-
tional setting we consider a functional modeling (as in Adis and Sapatinas
(2007)) for the observed signal of thth individual:

K(tj):u(tj)+Ez(tj), Vizl,...,N, \V/jzl,...,M, (1)

whereE;(-), fori = 1,..., N, are stochastically independent random functions
that are modeled as realizations of zero-mean Gaussiapgzes with paramet-
rically structured covariances modeled in the wavelet dorfeee Section 214).
We definey to be the main functional fixed effect characterizing a papah
average profile. In the following, we will denote By; = (Yi(t1), ..., Yi(ta)),
1=1,..., N, the vector of observations on the time grid, and similagiyband
E;,i = 1,..., N, respectively the vector of the fixed effect and the noiseser
observed on the discrete time grid.

This modeling allows us to account for functional mixed effemodels by
decomposingZ;(t) in a sum of two independent procesde$t;) = U;(t;) + €5,
wheree;; are independent and identically distributed Gaussianaandariables
with zero-mean and constant variantig(t) is a centered Gaussian process stand-
ing for subject-specific functional deviations.[In Amata&apatinas (2005), the
authors introduce similar model although the variance efttocesg/;(¢) is con-
stant with respect to positions



2.2 Minimax approach

In what follows we suppose thatbelongs to the Besov class = F(s,p, q, L)
(see Section 214 for a proper definition), a set of compactpperted functions
(on [0, 1]) with a bounded Besov space norm (by Such a set allows to model
curves that can exhibit strong irregularities, such as peakumps for instance.
The notion of regularity is at the core of the functionalisgtiwhich makes inho-
mogeneous Besov spaces a privileged tool for irregulartiom@nalysis. These
spaces allow the fine definition of the regularityof a function along with its
derivatives lying inL?(]0, 1]) while bringing a correction to this regularity. For
a detailed review of Besov spaces and their properties, fee ttee reader to the
books of Hardle et al. (1998) or DeVore and Lorentz (1993).

Our goal is to recover the main functional effecfrom noisy observations.
An originality of our approach is to consider multiple, s&y individuals, which
constitute available replicates to estimate the main fiXéece To derive our
estimator, we propose to use the so-called minimax apprdathis setup the risk
of an estimatofiy,y, is defined byE (||Ziy, — pl|), with || - || being a functional
norm or a semi-norm. Then the so-callthimaxestimator, denoted by}, ,,, is
the minimizer of the maximal risk on clagSover the set of all estimators:

R(fine, F) = sup E(||inar — p]).
HEF

Thus the challenge is to propose an optimal minimax estimétq,, and to de-
rive its associated risR’y ,,(F) = R(iiy s, F), also referred to as the minimax
risk.

The construction of minimax estimators on the Besov classe®Il known
when only one replicate is available (see Hardle et al. )99When errors are
measured with &,.-norm “sharper” than the norm of the functional claswavelet-
based thresholding estimators can significantly outperfiarear projection esti-
mates. The rate of convergence depends,@rands with two zones: the regular
zone with usual ratéd/ —/(>s+1) and the sparse zone with a slower rate of conver-
gence. However, this rate is not known when replicates a#adle (V > 1). In
this work we establish this risk for= 2 (we will denote this norm by - ||,) and
for the Besov clasg with usual constraints > 1, ¢ > 1 ands > 1/p. That leads
to consider the regular zone since, in this case, we Kaves — 1/p+1/2 > 0
(see Hardle et al. (1998)). In order to establish the miminek, we first give its
lower bound and secondly we propose an estimator that aahewear optimal
rate of convergence. In this context, the near-optimaligans that the minimax
rate is attained within a logarithmic factor in sample siZe
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2.3 Lower bound for the minimax risk

One of the main contributions of this paper is to derive thergstotic lower and
upper bounds foR x ,(F). The following theorem gives the lower bound for this
minimax risk in the inhomogeneous Besov class when dealitfgmwultisample
datasetsi(e. N > 1).

Theorem 2.1 Under the model (1) with finite variances for the processgs),
fori =1,..., N, assume that belongs to a Besov clags(s, p, g, L) withp > 1,
¢g>1,s>1/pandL < oo, then

RauilF) > 0 [(aN)=] + 0 [m-].
wheres' = s —1/p+1/2>0,if p <2, s' = s otherwise.

Let us mention that the ter(nMN)ﬁ could be expected since it is the mini-
max rate (whenV = 1) considering a noise of variance Vai(¢;))/N. However
the approximation error term/—*', present in the case with only one sample
(N = 1), is always negligible compared with the te(MN)ﬁ. WhenN > 1,
even a largeV does not provide more information on the functjeroutside the
grid (ty, ..., ty). Hence,M~* becomes a limiting term.

2.4 Wavelet estimator of the functional effect

The upper bound of the minimax rate given in Theotem 2.1 is/éérby con-
structing a wavelet estimatty 5, of 4. Owing to their strong connection with
the class of Besov spaces, wavelets indeed represent afpbteet to perform
adaptive functional regression (see Donoho et al. (1995)).

As a brief recall and to set notations, wavelets can be usedristruct or-
thonormal basis of the functional Hilbert spat&([0, 1]) by dilating and trans-
lating a compactly supported scaling function denotedpbgnd a compactly
supported mother wavelet denoted by We assume thap and > belongs to
C™([0,1]). Then, lettingj’ € N be the first level of approximation, the family:

{j, b =0,...,2" — 1395, 5 > jo, k=0,...,2" — 1},

with ¢ (t) = 20726(27't — k) and;,.(t) = 27/2¢(27t — k) is an orthonormal
basis of L2([0, 1]). Thus, any function: in the spacd.?([0, 1]) can be expressed



in the wavelet basis as:

2’ 1 27 -1
p(t) = aindin() + )Y Brbu(t),
k=0 5> k=0

whereas, = (u, ¢;1) and By, = (u, ;) are respectively theneorical approx-
imation and wavelet coefficients, and with -) being the canonical Hilbertian
scalar product associated with the spa¢g0, 1]). In the following, we sef’ = 0
and omit the index0, 0) for the unique remaining scaling coefficient denoted by
ar.
The Besov clas (s, p, ¢, L) is defined via wavelet coefficients in the follow-
ing way:

‘F(S7p7q7 L) = {:u S Lz([(]? 1]) : ||MHSP(1 S L} )
where

1

1
00 a7 271 p
||u!\qu:\a*|+(Z@“S‘””“/”IIB;‘.Hp> B = DB

§=0 k=0

Forp, ¢ > 0andl/p — 1 < s < m, the norm|| - ||,, is equivalent to the norm of
the corresponding Besov space (cf. Donoho (1994), Delydnladitsky(1997)).

In statistical settings, we are more concerned with distyetampled curves.
By applying the fast discrete wavelet transform proposet¥hbitat (1989) to the
functional model[(lL), we obtain a representation of the rhadéhe coefficient
domain given by:

M WY, =M *Wp+ M :E, Vi=1,...,N

Sl ] e [E]evee o

3 K3

The M x 1 vector(c;, dT)T containsempirical scaling and wavelet coefficients
associated with the signal, while;, 3")” stand for empirical coefficients related
to the fixed effect: and(s¢, €¢ 7)7 for the coefficients coming from the error term
E;. FollowinglAntoniadis and Sapatinas (2007), the modelihguzh correlated
noise is performed directly in the wavelet domain by assgnfirst thatG is a
diagonal matrix thanks to the well known decorrelating @by of wavelets (see
Frazier et al.[(1991)). Then, to attain a wide range of preegsvariances are
assumed to vary with respect to the position and the resoluével such that
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Var(e§) = o2/vVM andVar(el,) = o2 /v/M for all (j,k) in A with A =
{(1,k)]j=0,...,J —1;k=0,...,27 — 1}. Conversely, existing works dealing
with a correlated noise focused on the modeling of indivicu@se processes
in the time domain by assuming a stationnary noise (Johasiod Silverman
(1997)) or a locally stationnary noise (von Sachs and Mab@it(2000)). In the
wavelet domain these assumptions translate into varianoestfor the matrixa
that are respectively depending g‘)r(af) or depending on both and%. Based
on the decorrelating property of wavelets, extra diagosahs in the matrixG
are then neglected which restricts the class of reacheckgses in a way that is
not effectively controlled. As a matter of fact, our modebwais to consider non
stationary processes whose covariance is diagonalizgtlleeoDWT. However,
we claim that such a modeling enables to catch a wide rangeocepses, even
non stationary and hence allows a flexible enough modeling.

In the context of inhomogeneous spaces of functions suclessvElasses, it
is known that in some cases, no linear method can achieveptirea rate (see
e.gHardle et al.|(1998)) whereas nonlinear wavelet threshgl|gioneeringly in-
troduced by Donoho and Johnstone (1994) in the white noiskemachieves this
goal for a wide class of functional classes by taking adgentd the natural spa-
tial adaptivity of wavelets. Starting from modél (2) in theetficient domain,
we extend the usual thresholding procedures to the hetrtastic framework
by including position-dependent variance parameterserthihesholding expres-
sions. ForN = 1, the wavelet coefficientd,,, are shrunk as from a certain
level, through a defined shrinkage functi@rsuch tha@k = 0(dyjk, A\ji), Where
Ajr = Aok, and X is a regularization parameter to be fixed. The shrunk coeffi-
cients are inversely transformed to yield the solution mtilme domain, namely

1 T .
M>WT[a,B 17, whereWT is the transpose of the orthogonal mafvx.

When N > 1, Amato and Sapatinas (2005) propose three strategies to esti
matey in model [1) in the homoscedastic case.

1. The most natural one, widely used in practice, is the tpemtwise aver-
aging of observationy, ..., Y 5. However this simple procedure leads to
poor convergence rate as pointed by Amato and Sapatinas)(2@@ected
by the completely pointwise procedure and poor finite sampetéormance.
This approach is referred as a simple pointwaserageapproach by the
authors.

2. The second approach consists in averaging the nonparamegression
curves of theNV signals and is referred assarink then averagapproach.

7



This procedure improves the convergence rate due to themresof a
smoothing step.

3. The former strategy can be further improved by first aveathe observa-
tionsYy, ..., Yy and then apply shrinkage to the average signal using then
the whole sample. That s the third approach proposed in Am@ad Sapatinas
(2005) and referred asaverage then shrinpproach. Let us note that it
has not been demonstrated that such an estimator achievegttimal con-
vergence rate.

In this work we consider this third approach in the heterdaséc case and
show that the associated estimator is near-minimax. FRilgcige consider

~ 1 a
By = M=>W {B] ) (3)

with,

QO = C,, (4)

{ do,jk’a for ] < j07
6(d0jk7)\jk’)7 for J=Jos- -, J =1,

wheree denotes the average over tNesamples. The choice of the paramejger
will be detailed in the proof of Theorem 2.2. The values ofipos-dependent
thresholds\;;, are then given by:

®)
|

. V2log M
)\jk: = UjkW7 (5)

Whereﬁf,‘C arey/N-consistent estimates of variances. The following resuksy
an upper bound for the quadratic risk depending on the sigimal\/ and the
number of sampled/.

2.5 Upper bound of the minimax risk for wavelet-based thresh
olding estimators

Theorem 2.2 Under the model[{1), assume thabelongs to a Besov clagys, p, ¢, L)
withp > 1,¢ > 1,5 > 1/p, L < oo, and that the variances? and(c7,,) ;xyea are



bounded by a constant denotedddy, .. For any shrinkage function that satisfies,
for any s and¢,

16(8 +¢,A) = B < C(min (|8, A) + [€]Ljg>x/2) (6)

then the estimatofiy », defined by[(BJ4]5) with thresholds ;;, satisfies
[ log M\ ¥ log M\ * . 2

E(lfny—pll2) < AN | p
2s+1 Og /\jz i
_ >
max{(? (MN) ]—l—[@( i )]},pr_2

wheres’ is defined as in Theorem 2.1.

The next section describes the practical derivation ofsthwkling procedures
that satisfy the conditions required by Theoreml 2.2. Thugpvepose estima-
tors that enjoy a near-optimal convergence rate in a mutiiéa heteroscedastic
setting.

3 Thresholding strategies

3.1 Shrinkage functions

Among the usual thresholding procedures we first focus orhtlrd and soft
thresholdlng proceduresiof Donoho and Johnstone (19Gt)ptbvide estimators
5 andﬁS We also consider the SCAI;D}f(Cf"‘) thresholding of Antoniadis and Fan
(2001) that establishes a trade-off between hard and gefhblding, overcom-
ing their respective non-continuity and bias drawbacks.e Tain conclusion
of Theorem 2.2 is subject to the fulfilling of constraint (6yhe Lemma 2 of
Juditsky and Delyon (1996) ensures that hard and soft thleisiy meet this re-
quirement. Moreover, since we have

VB e R, YA >0, 65(B,\) <8546, \) < "B, ),

the conclusion of this Lemma still holds for the SCAD thrdslmg.



3.2 Choice of the threshold

For theoritical purposes, only the universal thresholdh@ been considered so
far. Its easy implementation and its good asymptotic progemakes the uni-
versal threshold very popular in major wavelet packagesr l@teroscedastic
thresholding approach is based on the definition of a thidstepending on the
position(j, k) through the variance parameters (seée (5)). Thebreim 2. api@ies
in the context where the variances are unknown but for wkigfi-consistent
estimates are available. Wheén = 1, exhibiting+/N-consistent variance esti-
mates is challenging. Such an issue has been consideresllittehature and ap-
proaches based on a functional modeling of the variancé®itirhe domain have
been developed (seeg. |Gasser et all (1989), Antoniadis and Lavergne (1995),
Cai and Wang (2008)). In their approaches, variances areg$témated using-
order differencesy € N), coupled with an appropriate smoothing nonparametric
method.

In the mutlisample context\ > 1), variance parameters can be easily esti-
mated by simply considering empirical variances estinsasach that:

N

R 1 |
G N1 Z(dijkz — daji)?, forall (j,%k) € A. (7)
i=1

These variance parameter estimates straightforwardsfgéte /N -consistency
requirement due to their asymptotic normality properties.

However as pointed by Donoho and Johnstone (1994) and Coiémad Donoho
(1995) the universal threshold, originally designed fonaise-free” reconstruc-
tion, is substantially larger than the minimax threshold. hndle this practical
drawback, Donoho and Johnstone (1995) proposed a stratsgyl lon the Stein
Unbiased Risk Estimate (SURE, Stein (1981)) whose purpose fix level de-
pendent thresholdgsyre; that leads to obtain an unbiased estimate oftheisk.
Letd be a vector iR’ distributed as a standardized Gaussian distribution ohmea
B and covariance matrix equal to identity. The idea consmstgiting the thresh-
olding estimators(-) = 4(-, \) as the sum:

B(d) = d+g(d),

whereg is a weakly differentiable function froft’ to R¢. This leads to:

£ (I5@) - 5I2) = ¢+ B (ng(&)n% 12y 8g<d>> .

ody,
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The goal is then to select the parametewhich minimizes the estimate of the
L?-risk, denoted by SURR; d) and given by

~ ~ ~ 9g(d)
SURE(X\;d) = (+ |lg(d)|3 +2) “ode
k=1

By considerinq@k = de i/ 0jk, Wherea—]z.k is given as in[(I7), the SURE threshold
is given by:

Asure; = arg mirbSASAU?J_SURE(A,aj) forall j =j0,....,J—1, (8)

where )\, ; is the universal threshold given il (5) add = 2/. The computa-
tion of the SURE criterion depends on the chosen threshglflinction. Fol-
lowing the example of Donoho and Johnstone (1995) for saéstiolding, we
propose an adaptation of the SURE concept to SCAD thresiwgldiet us note
that/Park(2010) proposed an other derivation of the SURErah leading to a
SURE-Block-SCAD estimator in the context of wavelet-baketttional regres-
sion. When replicates are available, the SURE criterionitormze according to
A is given by:

251 271
SURBscap(A;d;) =27 + > (d};, — 27, 0<m + > ML <on
k=0 k=0
1 29 -1 ~ _
o 3 [2(a —2) 2+ (aN)? + 2aA|d§k|} L, icny )
k=0

The computation details can be found in AppendiX 5.3. As meoended by
Fan and Li(2001)q is set t03.7 based on a Bayesian argument.

Moreover, we can point out that extremely sparse settingdezd to insuf-
ficient denoising due to the impact of zero coefficients in &EURiterion. To
avoid this drawback, Donoho and Johnstone (1995) proposmaromising Hy-
brid Scheme (HS) between regular and SURE thresholdingeteki:

s [ Aoy i L A2 < TR 4 ), (10)
J Asure; Otherwise

forall j = jo,...,J — 1.
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4 Numerical experiments

In this simulation study, we first investigate the benefitsigihg heteroscedastic
thresholding estimators over homoscedastic ones whentimameone sample are
available. Then, we investigate the effect of the choicéethreshold on realistic
simulated datasets.

Simulation settings. We consider the test functioBs ock s, Bumps, Heavisine
andDoppler (Donoho and Johnstane, 1994) that we use to model the paincip
mean functiong:. These functions are processed with the Daubechies’ eatrem
phase wavelet basis with respectively 1,2,5 and 7 vanismiognents, based on
the Shannon entropy as described in Nason (2008), Chap 2n Wwaeyet the
noise-free wavelet coefficients, to which we add heteraasstgzinoise, following
model [2): multisamples are simulated in the wavelet dorbgicorrupting the
wavelet coefficients of the mean function by a normally adelibheteroscedastic
noise whose varianczej?k at a given positiorij, k) in A is given by:

o2 for (j,k) e A

T SO @)
0"+ 275 for (j,k) € Ay.

The setA, C A contains index associated with the zero coefficients of tharm
function whereag\; contains the ones associated with nonzero coefficients. The
first termo? is associated to a white noise added to all coefficients, edsethe
second term is an extra variability that introduces hetmrdasticity at some po-
sitions. Following Antoniadis and Sapatinas (2007), aesgdbe exponential de-
crease is imposed to the extra variability terms by the dtyaiit’7. Parameter
relates to the fixed effect regularity allowing the extraiability associated to@k

to remain interpretable. In the following we uge-= 1.5.

Dealing with zero and non-zero coefficients. One expects heteroscedastic thresh-
olding estimators to be favored by heteroscedasticityctire expressed on the
zero coefficients of the mean function: true zero coeffigeare indeed more
susceptible to be thresholded in this setting since hatedastic thresholds are
expected to be larger than the homoscedastic one. Themgéopait emphasis on
configurations where heteroscedasticity concerns thewaveklet coefficients of

the mean function.
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The value ofs? is controlled by a Signal-to-Noise Ratio (SNR) and takes
values in (1,5) going from a high level (SNR=1) to a low levehoise (SNR=5).
Parameters?k are then drawn from a Gamma distribution with scale 2 andeshap
v2:/2. The quantityy’, associated to the heteroscedasticity intensity is cdattol
with respect to the baseline varianegeby a ratio parameter defined by

Mo?
Vres Z(j,k)er 2=

T =

Parameters values. We set the signal size tt/ = 2048 and the sample size to
N = 100. A wider simulation study (not shown for the sake of clarigyeals that
the main conclusions do not differ with different signal aaanple size. For each
fixed effect function, the simulation design explores tH®ing configurations:
SNRe (1,5), 7 € (0.1,1). The variability and heteroscedasticity parameters
andy?2 are deduced from the value of SNR antespectively. Each configuration
is repeated 200 times.

Heteroscedastic versus homoscedatic thresholdingWe start by considering
the framework defined by the assumptions of Thedremi22we consider the
SCAD thresholding function with the universal thresholéiheteroscedastic set-
ting. Since the threshold used in Theofen 2.2 is known torige IDonoho and Johnstone,
1994), it is set to half of its value in the following. Then @eiscedatic thresh-
olding (denoted He) refers to the procedure that uses erapestimates of the
variance at each positidn, k) € A whereas homoscedastic thresholding (denoted
Ho) usess?, ,, (based on the Median Absolute Deviation (MAD) of the coeffi-
cients at the finest resolution level (Donoho and Johnst#f})).. Amato and Sapatinas
(2005) introduced the idea of wavelet-based thresholdirthe context of noisy
repeated measurements and discussed how to integrat@licates in the analy-
sis. They use in(5) the usual robust variance estirdte, instead of position-
dependent estlmatomﬁk However, they do not investigate the effect of the choice
of the threshold, and they do not handle the potential hetexasticity in their
synthetic data, despite the presence of inter-individaakbility. A simulation
study (not shown) revealed that the strategy of taking thama# the individ-

ual MAD leads to better performance. Therefore we consikdisr dtrategy for
the homoscedastic part. We aim at comparing homoscedasticeieroscedastic
procedures regarding to the mean function reconstructesfopnance. Perfor-
mance of competed procedures are evaluated with respdx dMean Integrated
Squared Error (MISE) of the reconstructed mean function.

13



4.1 Results.

Average MISEs are presented on Table 1. The results shovhétetoscedatic
estimates greatly outperform homoscedastic ones in tefrfinotional recon-
struction for all considered configurations. As expectéds ts especially true
when the heteroscedasticity intensity is high for = = 0.1).

Table 1 here

Another argument supporting the use of heteroscedasgshibtding proce-
dures concerns their adaptative behaviour in an homostedie@snework: in-
deed, a simulation study in the homoscedastic framewoek \With 0%, = o°
for all (4, %) € A) reveals similar reconstruction properties of homoscédaad
heteroscedastic estimates for a SCAD thresholding usimgniversal threshold.
Corresponding results are displayed in Table 2.

Table 2 here

Comparing heteroscedastic procedures Despite good asymptotic properties,
using the universal threshold may not be optimal in finite efisional setting as
mentioned by Donoho and Johnstone (1994) in their origiagep. Therefore
we now focus on comparing heteroscedastic procedures fferatit choices of
thresholds on simulated datasets. In order to consider neaiestic cases, we
consider datasets where heteroscedasticity corruptsioditbnd non null coeffi-
cients of the mean function. Hence, starting from the samannfienctions, the
heteroscedasticity is as from now defined such thagfor) in A:

032» = 0” + mji, X Q_j”ﬂyfk. (12)
The quantitiesrf.k andﬁk, are defined as previously wheregg is assumed to be
a realization of a Bernoulli distribution with parameter8.0Note that the pairs
fixed effectsp/heteroscedasticity structure—= (7;1)(;.ren are kept fixed for all
the synthetic datasets.

For each mean function associated to a given heteroscedssitturer, the
simulation design explores the following configurationstRSvaries in(1, 5) and
7in (0.1,0.25,1). Similarly, the signal and sample size are respectivelytset
M = 2048 and N = 100 whereas each configuration is repeated 200 times.
Examples of simulated data are represented on Figure 1llfooms$idered main
patterns.
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Figure 1 here

Then heteroscedastic thresholding procedures are codifeeteoth Soft and
SCAD thresholding functionsy® and 6 and for both Universal and SURE
threshold \;; and\ 5. Performance of the procedures are evaluated with respect
to the Mean Integrated Squared Error (MISE) of the recontttimean func-
tions. Simulation results are presented on Figuire 2. Exesngil reconstruction
associated to median performance are represented in EHgure

Figure 2 and Figure 3 here

As a main conclusion we can observe that using the SURE thickiads to
improved performance for the reconstruction of the maiaafin a heteroscedas-
tic setting. As mentionned by Donoho and Johnstone (199Beihomoscedastic
framework, the universal threshold turns out to be too largeactice when deal-
ing with finite dimensional signals.

Another interesting point concerns the interaction betwide choice of the
threshold and the thresholding function. When using thearsal threshold, the
SCAD thresholding gives indeed at least similar or improrembnstruction per-
formance. This is expected since the SCAD thresholdingsgded to smoothly
correct the bias on high coefficients introduced by the doftgholding. Con-
versely such a difference vanishes when using the SUREicefor which Soft
and SCAD thresholdings exhibit similar performance. Thiglifig can be ex-
plained by the adaptative behaviour of the SURE thresh@tidcbmpensates the
existing bias on high coefficients.

By way of conclusion, the overall simulation study encoesathe use of the
heteroscedatic thresholding in the context of functioegtession with multiple
samples. Heteroscedastic thresholding keeps indeednipticity and the com-
putational efficiency of the usual homoscedastic threshgldhile being able to
handle potential inter-individual variations. Moreowarpractice, using the adap-
tative SURE threshold, paired with the SCAD thresholdingoltenjoys good
theoritical properties leads to improved reconstructibthe mean function.

As a last remark, we shall mention that the wider simulatiadyg abovemen-
tioned with various sample and signal sizes shows that taetWISEs orders of
magnitude are more improved by a higher number of samlésan by a larger
signal sizeM .
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4.2 Analysis of experimental data

As an application to the proposed methodology, we analySl®DI-TOF mass
spectrometry dataset issued from a study on ovarian caRe#idoin et al., 2002).
This dataset was produced by the Ciphergen WCX2 proteinardpis publicly
available through the Clinical Proteomics Programs Dathhﬁ ovarian dataset
8-7-02). The sample set consists of 162 serums profiles fromem affected
by an ovarian cancer and 91 control subjects. Each specattaine the mea-
sure of 15154 intensities characterizing as many mass &nege {n/>) ratios.
Prior to analysis, raw data are background corrected usingpatile regression
procedure, and spectra are aligned using a procedure basedwelets zero
crossings|(Antoniadis et al., 2007). Moreover, we restittc12 intensities for
m/z ratios within the range [5200,5915] centered around thenroantral peak.
Mass spectrometry data represented a meaningful applicér our method
sincel Giacofci et al. (2013) show evidence for the preseridater-individual
variations occuring at specific rangesof = ratios resulting in a sharp heterosec-
dasticity structure.

We separately analysed the control group and the grouptedfdry a cancer
using an heteroscedastic SCAD thresholding procedur,aVBURE threshold.
Mean reconstructed functions superimposed on experiiggi@are represented
in Figure[4.

Figure 4 here

We can observe that individuals from the control and canceugs exhibit
similar mean functional profiles. Such an observation iat#is that a nonparamet-
ric testing procedure would be on purpose to ascertain trsepice of a significant
effect of the group. Although it is out of the scope of the préspaper, in this
context, taking into account the presence of potentiakimividual variations
appears as critical for the application of such testing @doce.
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5 Appendix

5.1 Proof of Theorem 2.1

First let us recall the aim of the proof concerning the lowaurd in the minimax
context. Since

E(Ry v (F)linar — pll2) = eaP ([inar — pll2 > exRv e (F))
for somec; > 0, we have to show that
P(||in — pll2 = ealRy i (F)) > co,

for some constant, > 0. Next we reduce the clask to a subclass,, of finite
numbern of functions inF because theup is greater over a larger class. The
family F,, = {uo, - . ., un—1} IS constructed by small perturbationsaf, so that the
distance between each pairs of functions is small and atdéasderR y ,(F).
Then the problem can be reduced to the one of testing by tlmniolg way

sup P ([[fivm — pll2 = alRvm(F)) = pp =inf  max (= py),
LEFn ¢ j=0,..n—1

with 7, the power function associated &9 where¢ is any test that allows to
distinguishing between the hypotheses, thg-th of them stating that the obser-
vations of model[{ll) are drawn from tlieth element of the sefF,,. To boundp,,
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by ¢, > 0, we need to major the maximum of the Kullback distahog:;, /:;) be-
tween observations of modél (1) associated witland the ones associated with
;. For instance when = 2, we have

1— K(p,p0)

exp(—K (1, po)) 2

4 ’ 2

P2 = max

Without loss of generality, since variances are assumea todoinded, we can
consider model{1) with&;(¢;), « = 1,...,N, 7 = 1,..., M, independent and
identically distributed Gaussian random variables wittbzmean and variance
o%. In this case, we have

M
(1 ) = o Do () = o) (13)
j=1

Let us come back to the proof of the lower bound. This prooftmmdecomposed
in two steps. For the usual term @ [(MN)ﬁ] , we just have to use the usual

proof for the Besov classes by adding the fagtobecause of the multiplicative
term N in (L3). We now give the proof corresponding to the tern@irﬁM‘S'} )
We only need two functions in order to construgt, that isn = 2. Forp > 2, we
put () =0, forall t € [0, 1], and

1 1
pute) =337 (212 - ).

wheren € F(s,p, q, L) with support equal to—1/2,1/2] such that)(—1/2) =
n(1/2) =0, and||n|lz > ¢ > 0. We haveu, € F(s,p,q, L) and

1 o1
||,U1||qu < Me» oM™ ||77||qu < L.
So we also have; € F(s,p,q, L), and
_1 1_g _g
s = olla = M3 MF=plly > M,

hence, the familyF; is inclued in the Besov clask(s, p, ¢, L) and theL,-distance
between the two functions are at at le&st*’. Since

N 2_925 9 1 N 2_95 9 1
K = —MP Mt _— = = —Mp - ==
(Ml? MO) 20_% n ( 1 2) 20_%} n 2 )
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we have
pe > 1/2,
and

E([[ar — pllz) = 5M 7,

for any estimatofi, .
Forp > 2, we use the same method but by choosing

M
_SZ o1
Ml(t):M j:17](Mt—j+§) .

So we have ) )
||,U1||qu < M_SMEMS_EHHHSM <L,

g1 — polla = M2 M™2 M=%, > M,
and

M M

N -2 1 N o asn 1
K(M,MO)ZEM ZZT/(Mtj—k"’ﬁ):EM +n<§):0,

j=1 k=1

which concludes the proof.

5.2 Proof of Theorem 2.2

This proof is an adaptation of the proof of Theorem 1 _of Jkgitmnd Delyon
(1996). We denote by, the estimator;; with o;; instead ofg;;, in(@) and
fn, v the associated estimator. We introduce

i, (1) = agoo(t) + Z Z_: Birbir(t),

j=0 k=0

wherej, is such thatV//log M < 27t < 2M/log M. Let us note that (see propo-
sition 1 of/Delyon and Juditsky (1997)), there exists somestantC,, such that
this function belongs toF (s, p, ¢, CoL). The global quadratic risk can then be
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decomposed such that:
E (I7inar = pll3) < E (v — Bnoll3) +E ([17var = w3, 113) + i = w5115

E[z S 1B - Bl

i=jo+1 k

+E(la - af? ZZW]k Bijx| ] (14)
j=0 k
+E lz Z|§jk—ﬁjk|2 + [l — g |I3
j=jo+1 k

:T1+T2+T3—|—T4+T5.
We seek to bound from above each term of the decompositionsBy the delta
method based on a Taylor expansion of the thresholding ifumeind since?fk
arey/N-consistent estimates of variances, we get:

2 (log M)~!
MN
with C being a positive constant. The modéel (2) leads to
2

2
Ce NN |:Oz, ]\(;]CW:| and d'yjk NN [5jk‘7 %} .

Approximation coefficients ifl, are left unchanged, hence we have:

2

0,
T, = E(le. — aff) < 722

In the same way, terms if are not thresholded, hence we get:

=E ZZ|§JI¢_5M‘2] ZZE |d.3k Bi| ) < (O 230 max

7=0 k 7=0 k&

with C5 being a positive constant. The teffhis the approximation term that can
be bounded such that (see proposition 1 of Delyon and Jydit€87)):

log M 2!
" )

Ty < C527%1% < [
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Finally, bounding ternT; needs the use of constraint (6) with= 2\, we have

)\O‘k 2
. < E min (|ﬁj l, J ) ]

-~

+]E [Z Z ‘gojk|2 le d]k|> Aajk )

T41

=jo+1 k 2VMN

J/

T42

Whereg,jk deji — Bji. For the ternil’ 4, sinceu;, € F(s,p, ¢, CoL), we obtain:

2—p
g,
ros 3 3 (o) i

J=jot+1 k
2log M -3 O‘max -5 »
< Cy1 i Z Z |Bji
Jj=jo+1 k
_o(2-+'vio)

log M\ "% /o2 -5
< max 2=8Pjo_
<o (RE) (%)

For T, ., we have with Cauchy-Schwartz and exponential inequsalitie

1

1
1 212
s < 35 S (5B [ty i) |

j=jo+1 k
2
Ci2 < f: O exp _()\Ujk/ MN)
25 )
2= MN 203 /MN

2

< COys ]”;‘XM o <y, M]\;(logM)—1

In order to fix the parametej,, the termsiz and 7, ; need to be balance
according talM/, which leads to:

210 = O [(log M) (MN) ﬁﬁ%] .
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By replacing2’ in terms7; and7} ;, the inequality[(14) becomes:

(log M)~' o2 {logM

—2s’

} (log M)z+1

-~ _ 2 < max 2
E(HMN’M ,UHQ) —Cl MN _I_A]\4]\/'_|_C13 Umax MN

log M
MN
1

M3 log M 1%
+ Cyo Uﬁ]axm‘l'csl fW }

—2s'

} (log M )=+t

max

+ 04.1 O'2_p |:

The convergence of the overall expression is limited byéhms in® [(IOgM)zs,]

M
and in .
log M 2s+1 2
<?\§N) (logM)%‘zH] :

The latter leads to a limitation in

2s 7]
log M\ 2s+1 . 2
f 2
(MN) " osy1oPS

1 o\=]

O

O

O

Hence, we get:

R log M T log M 2
a2 <
E (v — plz) < maX{O [( MN) ] " [O< M ) ]}

that concludes the proof.

5.3 Derivation of the SURE criterion for SCAD thresholding
For recall, the SCAD thresholding function is given by:

sign(de ) (|dje| — A)4 s [dji| < 2A,
5scad(djk7 )\’a) _ ((l—l)djk;_ag\slgn(djk) Si 2\ < |djk| < a), (15)
d; Si |djk| > a.

and we are looking for a functiog: R¥ — R? such that:
0°4d;, A, a) = d; + g(d;), (16)
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to define the SURE-SCAD criterion:

27 -1

, Og(d;
SUREcad A\ d;) = 27 + [lg(d)) 5 +2 ) ld,e)
k=0

ody,

(17)

with g(d;) = (gj,(djo), - - -, 92i-1(dj2_1)). By definingg as the weakly differ-
entiable function:

9(djk) = —djrLga, <ny — ASIONdjk) Lia<|d i <2n}
d; aAisign(d,y)
+ (a i 2 + a4 — 2J 1{2>\<|djk\ﬁa>\}>

with g(d;) = (g(djo),---,9(d;2i-1)), the relation[(Ib) is satisfied. We can then
compute:

271

||g(dj)||§ = Z g(djk)2

k=0
with g(djx)? = d31qa,,1<xy + A*SION(djk) Liacia <20}

1
+ < [d5 + (aN)? + 20X |djk| ] 1iaacia,y<an)

(a—2)
20 -1 21
ag(djk) i 1 1 1
Z od.. Z - {‘djk|f)‘}+ﬁ {2A<(djr|<ar} |
k=0 ik k=0

which leads finally to the criteriom(9) in Sectibh 3.
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Figure 1: Examples of realistic simulated data. For eachhfigactionsBlocks,
Bumps, Heavisine andDoppler, 5 random realizations are represented. The
parameters SNR andare respectively set to 5 and 0.25.
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Figure 2: Resulting MISEs averaged over 200 repetitionsdoonstructed fixed
effects. Two SNR values in rows (SNR = (1,5) for a high/lows&)iand three
heteroscedasticity intensities on the horizontal axisaehegraph{ = 0.1,0.25,1
from a high level to a low level) are considered. Soft and SGA@sholding func-
tions differ by plotting colors (respectively in orange dide) whereas threshold
choices Universal and SURE differ by the line types (respelstin dashed and
solid line). Vertical bars are associated to the standavéatiens of the resulting
MISEs.
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Figure 3: Examples of reconstructed mean functional effesthg an het-
eroscedastic SCAD thresholding with the SURE thresholdrfodelsBlocks,
Bumps, Heavisine andDoppler. The true mean functions is displayed in
plain gray line. The parameteris equal to 0.25 whereas SNR take the values 1
(for a high noise, displayed in dotted blue lines) and 5 (flavanoise, displayed

in dashed magenta lines). In all configurations, the chosalization correspond
to the one giving rise to the median MISE.
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Figure 4: Mean reconstructed functions (bold line) suppdsed on observed
data (in light gray) for the control group and the cancer grou
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SNR=1 SNR=5
7=0.1 T=1 7=0.1 T=1
Ho He Ho He Ho He Ho He
Blocks 5.093 | 0.168 | 0.424 | 0.166 | 0.186 | 0.001 | 0.011 | 0.001
(1.629) | (0.018)| (0.130)| (0.017)| (0.054)| (2e-4) | (0.006)| (2e-4)
Bumps 5.028 | 0.724 | 0.944 | 0.720 | 0.220 | 0.040 | 0.0573| 0.040
(0.745) | (0.025)| (0.048)| (0.027)| (0.029) | (0.001)| (0.002)| (0.001)
Heavisine| 5.293 | 1.193 | 1.773 | 1.192 | 0.530 | 0.079 | 0.129 | 0.079
(x1072) | (0.303)| (0.103)| (0.120) | (0.104)| (0.016)| (0.006)| (0.008)| (0.006)
Doppler 26.79 | 5.607 | 7.819 | 5629 | 1.387 | 0.187 | 0.304 | 0.188
(x10~%) | (4.058)| (2.607)| (0.320) | (0.238)| (0.136)| (0.117)| (0.015)| (0.010)

Table 1: Average MISE (and associated standard deviatmm®00 repetitions
for the fixed effectsBlocks, Bumps, Heavisine andDopller in a het-
eroscedastic framework. The heteroscedastic structutefiised as in equation
11 with SNR andr varying respectively in (1,5) and (0.1,1). The sample size i
settoN = 100 and the signal size td/ = 1024. Final estimates are based on a
SCAD thresholding using the universal threshaid
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SNR=1 SNR=5
Homoscedasti¢ Heteroscedastic Homoscedastic Heteroscedasti¢

Blocks 0.189 0.168 1.44e-3 1.43e-3

(0.016) (0.017) (2.5e-4) (2.5e-4)
Bumps 0.736 0.726 0.045 0.040

(0.024) (0.024) (1.25e-3) (1.25e-3)
Heavisine 1.203 1.204 0.079 0.078
(x1072) (0.097) (0.104) (0.006) (0.006)
Doppler 5.658 5.622 0.201 0.188
(x10™%) (0.246) (0.274) (0.011) (0.011)

Table 2: Average MISE (and associated standard deviatwmna)0 repetitions for

the fixed effect®1ocks, Bumps, Heavisine andDoppler in a homoscedas-

tic framework (Witho—]?k = o2 for all (j, k) € A). The noise level is controlled by
the SNR ratio varying in (1,5). The sample size is sete= 100 and the signal
size toM = 1024. Final estimates are based on a SCAD thresholding using the
universal threshold;.
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