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Abstract

The problem of estimating the baseline signal from multisample noisy
curves is investigated. We consider the functional mixed effects model, and
we suppose that the functional fixed effect belongs to the Besov class. This
framework allows us to model curves that can exhibit strong irregularities,
such as peaks or jumps for instance. The lower bound for theL2 minimax
risk is provided, as well as the upper bound of the minimax rate, that is
derived by constructing a wavelet estimator for the functional fixed effect.
Our work constitutes the first theoretical functional results in multisample
non parametric regression. Our approach is illustrated on realistic simulated
datasets as well as on experimental data.
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1 Introduction

Functional data analysis has gained increased attention inthe past years, in partic-
ular in high-throughput biology with the use of mass spectrometry. In this field,
the signal is a spectrum whose peaks provide information regarding the protein
content of biological samples. A new challenge in functional data analysis is
the availability of multisample data for which functional ANOVA has become
the appropriate framework. More specifically for spectrometry data, it is now
well accepted that the noise corrupting the signal can be divided into a technical
white noise added to an important inter-individual variability (Eckel-Passow et al.,
2009). In this case, the usual non-parametric regression framework (a determin-
istic trend corrupted by a random noise) is no longer appropriate since it does
not account for heteroscedastic noise structure. Functional mixed effects models
(Antoniadis and Sapatinas, 2007) appear to be a powerful framework to handle
these data, as others, and we focus here on the estimation of the baseline signal.

In practice, a trivial averaging procedure is often used to get an estimate of the
baseline signal, but it has both a poor convergence rate and afinite sample perfor-
mance. Amato and Sapatinas (2005) proposed an approach for baseline estima-
tion based on empirical wavelet coefficients of the observeddata. Unfortunately
the convergence of their estimator is not theoretically assessed, and more broadly,
there is a general lack of theoretical results on functionalestimators in functional
mixed models, despite their increasing importance in practice (Morris and Carroll,
2006; Morris et al., 2008).

In this work we propose a minimax estimator of the baseline signal, based
on the empirical wavelet coefficients of the observed data. The functional fixed
effect is assumed to belong to the Besov class, which allows us to model curves
that can exhibit strong irregularities, such as peaks in mass spectrometry data. We
construct the lower bound for theL2 minimax risk. This convergence rate is the
same as in the classical non parametric setting but with an additional approxima-
tion error term. Then, we propose a wavelet estimator that achieves near optimal
rate of convergence (within a logarithmic factor in sample size). Through sim-
ulation studies, we show that our approach outperforms the approach proposed
by Amato and Sapatinas (2005). We also propose a new thresholding procedure
based on the Stein Unbiased Risk Estimate (SURE) (Stein, 1981), combined with
the SCAD thresholding (Antoniadis and Fan, 2001). This leads to improved per-
formance for the baseline signal estimation.

This article is organized as follows. Section 2 presents theheteroscedastic
model and the theoretical properties of our minimax estimator (lower and upper
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bounds). In particular we show how classical rates are modified in the presence
of replicates along with inter-individual variability. Most of all, our work con-
stitutes the first theoretical functional results in heteroscedastic multisample non-
parametric regression. Several thresholding strategies are considered in Section 3,
where we provide a new SURE-based procedure. Section 4 is devoted to the nu-
merical experiments, and the procedure is illustrated on anexperimental dataset.
Technical proofs are provided in the Appendix.

2 Heteroscedastic nonparametric regression model
and theoretical properties

2.1 Functional model

We observeN curvesYi(·), for i = 1, . . . , N, overM equally spaced time points
t = (t1, . . . , tM) in [0, 1]M , withM = 2J for some integerJ . In the general func-
tional setting we consider a functional modeling (as in Antoniadis and Sapatinas
(2007)) for the observed signal of theith individual:

Yi(tj) = µ(tj) + Ei(tj), ∀i = 1, . . . , N, ∀j = 1, . . . ,M, (1)

whereEi(·), for i = 1, . . . , N, are stochastically independent random functions
that are modeled as realizations of zero-mean Gaussian processes with paramet-
rically structured covariances modeled in the wavelet domain (see Section 2.4).
We defineµ to be the main functional fixed effect characterizing a population
average profile. In the following, we will denote byYi = (Yi(t1), . . . , Yi(tM)),
i = 1, . . . , N , the vector of observations on the time grid, and similarly by µ and
Ei, i = 1, . . . , N , respectively the vector of the fixed effect and the noise terms,
observed on the discrete time grid.

This modeling allows us to account for functional mixed effects models by
decomposingEi(t) in a sum of two independent processesEi(tj) = Ui(tj) + ǫij ,
whereǫij are independent and identically distributed Gaussian random variables
with zero-mean and constant variance;Ui(t) is a centered Gaussian process stand-
ing for subject-specific functional deviations. In Amato and Sapatinas (2005), the
authors introduce similar model although the variance of the processUi(t) is con-
stant with respect to positionstj .
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2.2 Minimax approach

In what follows we suppose thatµ belongs to the Besov classF = F(s, p, q, L)
(see Section 2.4 for a proper definition), a set of compactly supported functions
(on [0, 1]) with a bounded Besov space norm (byL). Such a set allows to model
curves that can exhibit strong irregularities, such as peaks or jumps for instance.
The notion of regularity is at the core of the functional setting which makes inho-
mogeneous Besov spaces a privileged tool for irregular function analysis. These
spaces allow the fine definition of the regularitys of a function along with its
derivatives lying inLp([0, 1]) while bringing a correctionq to this regularity. For
a detailed review of Besov spaces and their properties, we refer the reader to the
books of Härdle et al. (1998) or DeVore and Lorentz (1993).

Our goal is to recover the main functional effectµ from noisy observations.
An originality of our approach is to consider multiple, sayN , individuals, which
constitute available replicates to estimate the main fixed effect. To derive our
estimator, we propose to use the so-called minimax approach. In this setup the risk
of an estimator̂µN,M is defined byE

(
‖µ̂N,M − µ‖

)
, with ‖ · ‖ being a functional

norm or a semi-norm. Then the so-calledminimaxestimator, denoted bŷµ∗
N,M , is

the minimizer of the maximal risk on classF over the set of all estimators:

R(µ̂N,M ,F) = sup
µ∈F

E
(
‖µ̂N,M − µ‖

)
.

Thus the challenge is to propose an optimal minimax estimator µ̂∗
N,M , and to de-

rive its associated riskR∗
N,M(F) = R(µ̂∗

N,M ,F), also referred to as the minimax
risk.

The construction of minimax estimators on the Besov classesis well known
when only one replicate is available (see Härdle et al. (1998)). When errors are
measured with aLr-norm “sharper” than the norm of the functional classp, wavelet-
based thresholding estimators can significantly outperform linear projection esti-
mates. The rate of convergence depends onr, p ands with two zones: the regular
zone with usual rateM−s/(2s+1) and the sparse zone with a slower rate of conver-
gence. However, this rate is not known when replicates are available (N > 1). In
this work we establish this risk forr = 2 (we will denote this norm by‖ · ‖2) and
for the Besov classF with usual constraintsp ≥ 1, q ≥ 1 ands ≥ 1/p. That leads
to consider the regular zone since, in this case, we haves′ = s − 1/p + 1/2 > 0
(see Härdle et al. (1998)). In order to establish the minimax risk, we first give its
lower bound and secondly we propose an estimator that achieves a near optimal
rate of convergence. In this context, the near-optimality means that the minimax
rate is attained within a logarithmic factor in sample sizeM .
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2.3 Lower bound for the minimax risk

One of the main contributions of this paper is to derive the asymptotic lower and
upper bounds forRN,M(F). The following theorem gives the lower bound for this
minimax risk in the inhomogeneous Besov class when dealing with multisample
datasets (i.e. N > 1).

Theorem 2.1 Under the model (1) with finite variances for the processesEi(·),
for i = 1, . . . , N, assume thatµ belongs to a Besov classF(s, p, q, L) with p ≥ 1,
q ≥ 1, s ≥ 1/p andL <∞, then

RN,M(F) ≥ O
[
(MN)

−s
2s+1

]
+O

[
M−s′

]
.

wheres′ = s− 1/p+ 1/2 > 0, if p < 2, s′ = s otherwise.

Let us mention that the term(MN)
−s

2s+1 could be expected since it is the mini-
max rate (whenN = 1) considering a noise of variance Var(Ei(tj))/N . However
the approximation error termM−s′ , present in the case with only one sample
(N = 1), is always negligible compared with the term(MN)

−s
2s+1 . WhenN > 1,

even a largeN does not provide more information on the functionµ outside the
grid (t1, . . . , tM). Hence,M−s′ becomes a limiting term.

2.4 Wavelet estimator of the functional effect

The upper bound of the minimax rate given in Theorem 2.1 is derived by con-
structing a wavelet estimator̂µN,M of µ. Owing to their strong connection with
the class of Besov spaces, wavelets indeed represent a powerful tool to perform
adaptive functional regression (see Donoho et al. (1995)).

As a brief recall and to set notations, wavelets can be used toconstruct or-
thonormal basis of the functional Hilbert spaceL2([0, 1]) by dilating and trans-
lating a compactly supported scaling function denoted byφ and a compactly
supported mother wavelet denoted byψ. We assume thatφ andψ belongs to
Cm([0, 1]). Then, lettingj′ ∈ N be the first level of approximation, the family:

{φj′k, k = 0, . . . , 2k − 1;ψjk, j ≥ j0, k = 0, . . . , 2k − 1},

with φj′k(t) = 2j
′/2φ(2j

′
t − k) andψjk(t) = 2j/2φ(2jt − k) is an orthonormal

basis ofL2([0, 1]). Thus, any functionµ in the spaceL2([0, 1]) can be expressed
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in the wavelet basis as:

µ(t) =
2j

′−1∑

k=0

α∗
j′kφj′k(t) +

∑

j≥j′

2j−1∑

k=0

β∗
jkψjk(t),

whereα∗
j′k = 〈µ, φj′k〉 andβ∗

jk = 〈µ, ψjk〉 are respectively thetheoricalapprox-
imation and wavelet coefficients, and with〈·, ·〉 being the canonical Hilbertian
scalar product associated with the spaceL2([0, 1]). In the following, we setj′ = 0
and omit the index(0, 0) for the unique remaining scaling coefficient denoted by
α∗.

The Besov classF(s, p, q, L) is defined via wavelet coefficients in the follow-
ing way:

F(s, p, q, L) =
{
µ ∈ L2([0, 1]) : ‖µ‖spq ≤ L

}
,

where

‖µ‖spq = |α∗|+
( ∞∑

j=0

(2j(s−1/p+1/2)‖β∗
j·‖p
) 1

q

, ‖β∗
j·‖p =




2j−1∑

k=0

(β∗
jk)

p




1

p

.

Forp, q > 0 and1/p− 1 < s < m, the norm‖ · ‖spq is equivalent to the norm of
the corresponding Besov space (cf. Donoho (1994), Delyon and Juditsky (1997)).

In statistical settings, we are more concerned with discretely sampled curves.
By applying the fast discrete wavelet transform proposed byMallat (1989) to the
functional model (1), we obtain a representation of the model in the coefficient
domain given by:

M− 1

2WYi =M− 1

2Wµ+M− 1

2Ei, ∀i = 1, . . . , N[
ci
di

]
=

[
α
β

]
+

[
εci
εdi

]
with

[
εci
εdi

]
∼ N (0,G). (2)

TheM × 1 vector(ci,dT
i )

T containsempirical scaling and wavelet coefficients
associated with the signal, while(α,βT )T stand for empirical coefficients related
to the fixed effectµ and(εci , ε

d T
i )T for the coefficients coming from the error term

Ei. Following Antoniadis and Sapatinas (2007), the modeling of such correlated
noise is performed directly in the wavelet domain by assuming first thatG is a
diagonal matrix thanks to the well known decorrelating property of wavelets (see
Frazier et al. (1991)). Then, to attain a wide range of processes, variances are
assumed to vary with respect to the position and the resolution level such that
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V ar(εci) = σ2
c/
√
M andV ar(εdijk) = σ2

jk/
√
M for all (j, k) in Λ with Λ =

{(j, k)|j = 0, . . . , J − 1; k = 0, . . . , 2j − 1}. Conversely, existing works dealing
with a correlated noise focused on the modeling of individual noise processes
in the time domain by assuming a stationnary noise (Johnstone and Silverman
(1997)) or a locally stationnary noise (von Sachs and MacGibbon (2000)). In the
wavelet domain these assumptions translate into variance terms for the matrixG
that are respectively depending onj (σ2

j ) or depending on bothj andk. Based
on the decorrelating property of wavelets, extra diagonal terms in the matrixG
are then neglected which restricts the class of reached processes in a way that is
not effectively controlled. As a matter of fact, our model allows to consider non
stationary processes whose covariance is diagonalizable by the DWT. However,
we claim that such a modeling enables to catch a wide range of processes, even
non stationary and hence allows a flexible enough modeling.

In the context of inhomogeneous spaces of functions such as Besov classes, it
is known that in some cases, no linear method can achieve the optimal rate (see
e.g Härdle et al. (1998)) whereas nonlinear wavelet thresholding, pioneeringly in-
troduced by Donoho and Johnstone (1994) in the white noise model, achieves this
goal for a wide class of functional classes by taking advantage of the natural spa-
tial adaptivity of wavelets. Starting from model (2) in the coefficient domain,
we extend the usual thresholding procedures to the heteroscedastic framework
by including position-dependent variance parameters in the thresholding expres-
sions. ForN = 1, the wavelet coefficientsd1jk are shrunk as from a certain
level, through a defined shrinkage functionδ, such that̂βjk = δ(d1jk, λjk), where
λjk = λσ̂jk, andλ is a regularization parameter to be fixed. The shrunk coeffi-
cients are inversely transformed to yield the solution in the time domain, namely

M
1

2WT [α̂, β̂
T
]T , whereWT is the transpose of the orthogonal matrixW.

WhenN > 1, Amato and Sapatinas (2005) propose three strategies to esti-
mateµ in model (1) in the homoscedastic case.

1. The most natural one, widely used in practice, is the direct pointwise aver-
aging of observationsY1, . . . ,YN . However this simple procedure leads to
poor convergence rate as pointed by Amato and Sapatinas (2005), reflected
by the completely pointwise procedure and poor finite sampleperformance.
This approach is referred as a simple pointwiseaverageapproach by the
authors.

2. The second approach consists in averaging the nonparametric regression
curves of theN signals and is referred as ashrink then averageapproach.
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This procedure improves the convergence rate due to the presence of a
smoothing step.

3. The former strategy can be further improved by first averaging the observa-
tionsY1, . . . ,YN and then apply shrinkage to the average signal using then
the whole sample. That is the third approach proposed in Amato and Sapatinas
(2005) and referred as aaverage then shrinkapproach. Let us note that it
has not been demonstrated that such an estimator achieves the optimal con-
vergence rate.

In this work we consider this third approach in the heteroscedastic case and
show that the associated estimator is near-minimax. Precisely, we consider

µ̂N,M =M
1

2W

[
α̂

β̂

]
, (3)

with,

α̂ = c•, (4)

β̂ =

{
d•,jk, for j < j0,
δ(d•jk, λjk), for j = j0, . . . , J − 1,

where• denotes the average over theN samples. The choice of the parameterj0
will be detailed in the proof of Theorem 2.2. The values of position-dependent
thresholdsλjk are then given by:

λjk = σ̂jk

√
2 logM√
M

, (5)

whereσ̂2
jk are

√
N -consistent estimates of variances. The following result gives

an upper bound for the quadratic risk depending on the signalsizeM and the
number of samplesN .

2.5 Upper bound of the minimax risk for wavelet-based thresh-
olding estimators

Theorem 2.2 Under the model (1), assume thatµ belongs to a Besov classF(s, p, q, L)
withp ≥ 1, q ≥ 1, s ≥ 1/p,L <∞, and that the variancesσ2

c and(σ2
jk)(j,k)∈Λ are
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bounded by a constant denoted byσ2
max. For any shrinkage function that satisfies,

for anyβ andξ,

|δ(β + ξ, λ)− β| < C(min
(
|β|, λ) + |ξ|1|ξ|>λ/2

)
, (6)

then the estimator̂µN,M defined by (3,4,5) with thresholds2λjk, satisfies

E
(
‖µ̂N,M−µ‖2

)
≤





max

{
O
[(

logM

MN

) s
2s+1

]
+

[
O
(
logM

M

)s′
]}

, if
2

2s+ 1
< p < 2

max

{
O
[(

1

MN

) s
2s+1

]
+

[
O
(
logM

M

)s′
]}

, if p ≥ 2

wheres′ is defined as in Theorem 2.1.

The next section describes the practical derivation of thresholding procedures
that satisfy the conditions required by Theorem 2.2. Thus wepropose estima-
tors that enjoy a near-optimal convergence rate in a multisample heteroscedastic
setting.

3 Thresholding strategies

3.1 Shrinkage functions

Among the usual thresholding procedures we first focus on thehard and soft
thresholding procedures of Donoho and Johnstone (1994), that provide estimators
β̂h andβ̂s. We also consider the SCAD (β̂scad) thresholding of Antoniadis and Fan
(2001) that establishes a trade-off between hard and soft thresholding, overcom-
ing their respective non-continuity and bias drawbacks. The main conclusion
of Theorem 2.2 is subject to the fulfilling of constraint (6).The Lemma 2 of
Juditsky and Delyon (1996) ensures that hard and soft thresholding meet this re-
quirement. Moreover, since we have

∀β ∈ R, ∀λ > 0, δs(β, λ) ≤ δscad(β, λ) ≤ δh(β, λ),

the conclusion of this Lemma still holds for the SCAD thresholding.
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3.2 Choice of the threshold

For theoritical purposes, only the universal threshold (5)has been considered so
far. Its easy implementation and its good asymptotic properties makes the uni-
versal threshold very popular in major wavelet packages. Our heteroscedastic
thresholding approach is based on the definition of a threshold depending on the
position(j, k) through the variance parameters (see (5)). Theorem 2.2 thenapplies
in the context where the variances are unknown but for which

√
N -consistent

estimates are available. WhenN = 1, exhibiting
√
N -consistent variance esti-

mates is challenging. Such an issue has been considered in the litterature and ap-
proaches based on a functional modeling of the variances in the time domain have
been developed (seee.g. Gasser et al. (1989), Antoniadis and Lavergne (1995),
Cai and Wang (2008)). In their approaches, variances are then estimated usingν-
order differences (ν ∈ N), coupled with an appropriate smoothing nonparametric
method.

In the mutlisample context (N > 1), variance parameters can be easily esti-
mated by simply considering empirical variances estimators such that:

σ̂2
jk =

1

N − 1

N∑

i=1

(dijk − d•jk)
2, for all (j, k) ∈ Λ. (7)

These variance parameter estimates straightforwardly satisfy the
√
N-consistency

requirement due to their asymptotic normality properties.
However as pointed by Donoho and Johnstone (1994) and Coifman and Donoho

(1995) the universal threshold, originally designed for a ”noise-free” reconstruc-
tion, is substantially larger than the minimax threshold. To handle this practical
drawback, Donoho and Johnstone (1995) proposed a strategy based on the Stein
Unbiased Risk Estimate (SURE, Stein (1981)) whose purpose is to fix level de-
pendent thresholdsλSURE,j that leads to obtain an unbiased estimate of theL2-risk.
Let d̃ be a vector inRℓ distributed as a standardized Gaussian distribution of mean
β and covariance matrix equal to identity. The idea consists in writing the thresh-
olding estimator̂β(·) = δ(·, λ) as the sum:

β̂(d̃) = d̃+ g(d̃),

whereg is a weakly differentiable function fromRℓ to R
ℓ. This leads to:

E

(
‖β̂(d̃)− β‖22

)
= ℓ+ E

(
‖g(d̃)‖22 + 2

ℓ∑

k=1

∂g(d̃)

∂dk

)
.
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The goal is then to select the parameterλ which minimizes the estimate of the
L2-risk, denoted by SURE(λ; d̃) and given by

SURE(λ; d̃) = ℓ+ ‖g(d̃)‖22 + 2

ℓ∑

k=1

∂g(d̃)

∂dk
.

By consideringd̃jk = d•,jk/σ̂jk, whereσ̂2
jk is given as in (7), the SURE threshold

is given by:

λSURE,j = arg min0≤λ≤λU,j
SURE(λ, d̃j) for all j = j0, . . . , J − 1, (8)

whereλU,j is the universal threshold given in (5) andM = 2j. The computa-
tion of the SURE criterion depends on the chosen thresholding function. Fol-
lowing the example of Donoho and Johnstone (1995) for soft thresholding, we
propose an adaptation of the SURE concept to SCAD thresholding. Let us note
that Park (2010) proposed an other derivation of the SURE criterion leading to a
SURE-Block-SCAD estimator in the context of wavelet-basedfunctional regres-
sion. When replicates are available, the SURE criterion to minimize according to
λ is given by:

SURESCAD(λ; d̃j) = 2j +
2j−1∑

k=0

(d̃2jk − 2)1{|d̃jk|≤λ} +
2j−1∑

k=0

λ21{λ<|d̃jk|≤2λ}

+
1

(a− 2)2

2j−1∑

k=0

[
2(a− 2) + d̃2jk + (aλ)2 + 2aλ|d̃2jk|

]
1{2λ<|d̃jk |≤λ}. (9)

The computation details can be found in Appendix 5.3. As recommended by
Fan and Li (2001),a is set to3.7 based on a Bayesian argument.

Moreover, we can point out that extremely sparse settings can lead to insuf-
ficient denoising due to the impact of zero coefficients in SURE criterion. To
avoid this drawback, Donoho and Johnstone (1995) propose a compromising Hy-
brid Scheme (HS) between regular and SURE thresholding defined by:

λHS
j =

{
λU,j if

∑2j−1
k=0 d

2
•,jk ≤ σ̂2

jk2
j/2(2j/2 + j3/2),

λSURE,j otherwise,
(10)

for all j = j0, . . . , J − 1.
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4 Numerical experiments

In this simulation study, we first investigate the benefits ofusing heteroscedastic
thresholding estimators over homoscedastic ones when morethan one sample are
available. Then, we investigate the effect of the choice of the threshold on realistic
simulated datasets.

Simulation settings. We consider the test functionsBlocks,Bumps,Heavisine
andDoppler (Donoho and Johnstone, 1994) that we use to model the principal
mean functionsµ. These functions are processed with the Daubechies’ extremal
phase wavelet basis with respectively 1,2,5 and 7 vanishingmoments, based on
the Shannon entropy as described in Nason (2008), Chap 2. Then we get the
noise-free wavelet coefficients, to which we add heteroscedastic noise, following
model (2): multisamples are simulated in the wavelet domainby corrupting the
wavelet coefficients of the mean function by a normally additive heteroscedastic
noise whose varianceσ2

jk at a given position(j, k) in Λ is given by:

σ2
jk =

{
σ2 for (j, k) ∈ Λ1,

σ2 + 2−jηγ2jk for (j, k) ∈ Λ0.
(11)

The setΛ0 ⊂ Λ contains index associated with the zero coefficients of the mean
function whereasΛ1 contains the ones associated with nonzero coefficients. The
first termσ2 is associated to a white noise added to all coefficients, whereas the
second term is an extra variability that introduces heteroscedasticity at some po-
sitions. Following Antoniadis and Sapatinas (2007), a scale-wise exponential de-
crease is imposed to the extra variability terms by the quantity 2−jη. Parameterη
relates to the fixed effect regularity allowing the extra variability associated toγ2jk
to remain interpretable. In the following we useη = 1.5.

Dealing with zero and non-zero coefficients. One expects heteroscedastic thresh-
olding estimators to be favored by heteroscedasticity structure expressed on the
zero coefficients of the mean function: true zero coefficients are indeed more
susceptible to be thresholded in this setting since heteroscedastic thresholds are
expected to be larger than the homoscedastic one. Thereforewe put emphasis on
configurations where heteroscedasticity concerns the nullwavelet coefficients of
the mean function.
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The value ofσ2 is controlled by a Signal-to-Noise Ratio (SNR) and takes
values in (1,5) going from a high level (SNR=1) to a low level of noise (SNR=5).
Parametersγ2jk are then drawn from a Gamma distribution with scale 2 and shape
γ2ref/2. The quantityγ2ref associated to the heteroscedasticity intensity is controlled
with respect to the baseline varianceσ2 by a ratio parameterτ defined by

τ =
Mσ2

γ2ref

∑
(j,k)∈Λ0

2−jη
.

Parameters values. We set the signal size toM = 2048 and the sample size to
N = 100. A wider simulation study (not shown for the sake of clarity)reveals that
the main conclusions do not differ with different signal andsample size. For each
fixed effect function, the simulation design explores the following configurations:
SNR∈ (1, 5), τ ∈ (0.1, 1). The variability and heteroscedasticity parametersσ2

andγ2ref are deduced from the value of SNR andτ respectively. Each configuration
is repeated 200 times.

Heteroscedastic versus homoscedatic thresholding.We start by considering
the framework defined by the assumptions of Theorem 2.2,i.e. we consider the
SCAD thresholding function with the universal threshold ina heteroscedastic set-
ting. Since the threshold used in Theorem 2.2 is known to be large (Donoho and Johnstone,
1994), it is set to half of its value in the following. Then heteroscedatic thresh-
olding (denoted He) refers to the procedure that uses empirical estimates of the
variance at each position(j, k) ∈ Λ whereas homoscedastic thresholding (denoted
Ho) useŝσ2

MAD (based on the Median Absolute Deviation (MAD) of the coeffi-
cients at the finest resolution level (Donoho and Johnstone,1994)). Amato and Sapatinas
(2005) introduced the idea of wavelet-based thresholding in the context of noisy
repeated measurements and discussed how to integrate the replicates in the analy-
sis. They use in (5) the usual robust variance estimateσ̂2

MAD instead of position-
dependent estimatorŝσ2

j,k.However, they do not investigate the effect of the choice
of the threshold, and they do not handle the potential heteroscedasticity in their
synthetic data, despite the presence of inter-individual variability. A simulation
study (not shown) revealed that the strategy of taking the mean of the individ-
ual MAD leads to better performance. Therefore we consider this strategy for
the homoscedastic part. We aim at comparing homoscedastic and heteroscedastic
procedures regarding to the mean function reconstruction performance. Perfor-
mance of competed procedures are evaluated with respect to the Mean Integrated
Squared Error (MISE) of the reconstructed mean function.
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4.1 Results.

Average MISEs are presented on Table 1. The results show thatheteroscedatic
estimates greatly outperform homoscedastic ones in terms of functional recon-
struction for all considered configurations. As expected, this is especially true
when the heteroscedasticity intensity is high (i.e for τ = 0.1).

Table 1 here

Another argument supporting the use of heteroscedastic thresholding proce-
dures concerns their adaptative behaviour in an homoscedastic framework: in-
deed, a simulation study in the homoscedastic framework (i.e. with σ2

jk = σ2

for all (j, k) ∈ Λ) reveals similar reconstruction properties of homoscedastic and
heteroscedastic estimates for a SCAD thresholding using the universal threshold.
Corresponding results are displayed in Table 2.

Table 2 here

Comparing heteroscedastic procedures Despite good asymptotic properties,
using the universal threshold may not be optimal in finite dimensional setting as
mentioned by Donoho and Johnstone (1994) in their original paper. Therefore
we now focus on comparing heteroscedastic procedures for different choices of
thresholds on simulated datasets. In order to consider morerealistic cases, we
consider datasets where heteroscedasticity corrupts bothnull and non null coeffi-
cients of the mean function. Hence, starting from the same mean functions, the
heteroscedasticity is as from now defined such that for(j, k) in Λ:

σ2
jk = σ2 + πjk × 2−jηγ2jk. (12)

The quantitiesσ2
jk andγ2jk are defined as previously whereasπjk is assumed to be

a realization of a Bernoulli distribution with parameters 0.3. Note that the pairs
fixed effects-µ/heteroscedasticity structure-π = (πjk)(j,k)∈Λ are kept fixed for all
the synthetic datasets.

For each mean function associated to a given heteroscedastic structureπ, the
simulation design explores the following configurations: SNR varies in(1, 5) and
τ in (0.1, 0.25, 1). Similarly, the signal and sample size are respectively setto
M = 2048 andN = 100 whereas each configuration is repeated 200 times.
Examples of simulated data are represented on Figure 1 for all considered main
patterns.
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Figure 1 here

Then heteroscedastic thresholding procedures are competed for both Soft and
SCAD thresholding functions,δs and δscad, and for both Universal and SURE
threshold,λU andλHS. Performance of the procedures are evaluated with respect
to the Mean Integrated Squared Error (MISE) of the reconstructed mean func-
tions. Simulation results are presented on Figure 2. Examples of reconstruction
associated to median performance are represented in Figure3

Figure 2 and Figure 3 here

As a main conclusion we can observe that using the SURE threshold leads to
improved performance for the reconstruction of the main effect in a heteroscedas-
tic setting. As mentionned by Donoho and Johnstone (1995) inthe homoscedastic
framework, the universal threshold turns out to be too largein practice when deal-
ing with finite dimensional signals.

Another interesting point concerns the interaction between the choice of the
threshold and the thresholding function. When using the universal threshold, the
SCAD thresholding gives indeed at least similar or improvedreconstruction per-
formance. This is expected since the SCAD thresholding is designed to smoothly
correct the bias on high coefficients introduced by the soft thresholding. Con-
versely such a difference vanishes when using the SURE threshold for which Soft
and SCAD thresholdings exhibit similar performance. This finding can be ex-
plained by the adaptative behaviour of the SURE threshold that compensates the
existing bias on high coefficients.

By way of conclusion, the overall simulation study encourages the use of the
heteroscedatic thresholding in the context of functional regression with multiple
samples. Heteroscedastic thresholding keeps indeed the simplicity and the com-
putational efficiency of the usual homoscedastic thresholding while being able to
handle potential inter-individual variations. Moreover,in practice, using the adap-
tative SURE threshold, paired with the SCAD thresholding which enjoys good
theoritical properties leads to improved reconstruction of the mean function.

As a last remark, we shall mention that the wider simulation study abovemen-
tioned with various sample and signal sizes shows that the overall MISEs orders of
magnitude are more improved by a higher number of samplesN than by a larger
signal sizeM .
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4.2 Analysis of experimental data

As an application to the proposed methodology, we analysed aSELDI-TOF mass
spectrometry dataset issued from a study on ovarian cancer (Petricoin et al., 2002).
This dataset was produced by the Ciphergen WCX2 protein chipand is publicly
available through the Clinical Proteomics Programs Databank (1, ovarian dataset
8-7-02). The sample set consists of 162 serums profiles from women affected
by an ovarian cancer and 91 control subjects. Each spectra contains the mea-
sure of 15154 intensities characterizing as many mass over charge (m/z) ratios.
Prior to analysis, raw data are background corrected using aquantile regression
procedure, and spectra are aligned using a procedure based on wavelets zero
crossings (Antoniadis et al., 2007). Moreover, we restricton 512 intensities for
m/z ratios within the range [5200,5915] centered around the main central peak.
Mass spectrometry data represented a meaningful application for our method
since Giacofci et al. (2013) show evidence for the presence of inter-individual
variations occuring at specific ranges ofm/z ratios resulting in a sharp heterosec-
dasticity structure.

We separately analysed the control group and the group affected by a cancer
using an heteroscedastic SCAD thresholding procedure, with a SURE threshold.
Mean reconstructed functions superimposed on experimental data are represented
in Figure 4.

Figure 4 here

We can observe that individuals from the control and cancer groups exhibit
similar mean functional profiles. Such an observation indicates that a nonparamet-
ric testing procedure would be on purpose to ascertain the presence of a significant
effect of the group. Although it is out of the scope of the present paper, in this
context, taking into account the presence of potential inter-individual variations
appears as critical for the application of such testing procedure.
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5 Appendix

5.1 Proof of Theorem 2.1

First let us recall the aim of the proof concerning the lower bound in the minimax
context. Since

E
(
R−1

N,M(F)‖µ̂N,M − µ‖2
)
≥ c1P (‖µ̂N,M − µ‖2 ≥ c1RN,M(F)) ,

for somec1 > 0, we have to show that

P (‖µ̂N,M − µ‖2 ≥ c1RN,M(F)) > c2,

for some constantc2 > 0. Next we reduce the classF to a subclassFn of finite
numbern of functions inF because thesup is greater over a larger class. The
familyFn = {µ0, . . . , µn−1} is constructed by small perturbation ofµ0, so that the
distance between each pairs of functions is small and at least of orderRN,M(F).
Then the problem can be reduced to the one of testing by the following way

sup
µ∈Fn

P (‖µ̂N,M − µ‖2 ≥ c1RN,M(F)) ≥ pn = inf
φ

max
j=0,...,n−1

πφ(µ = µj),

with πφ the power function associated toφ, whereφ is any test that allows to
distinguishing between then hypotheses, thek-th of them stating that the obser-
vations of model (1) are drawn from thek-th element of the setFn. To boundpn
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by c2 > 0, we need to major the maximum of the Kullback distanceK(µi, µj) be-
tween observations of model (1) associated withµi and the ones associated with
µj. For instance whenn = 2, we have

p2 ≥ max


exp(−K(µ1, µ0))

4
,
1−

√
K(µ1,µ0)

2

2


 .

Without loss of generality, since variances are assumed to be bounded, we can
consider model (1) withEi(tj), i = 1, . . . , N, j = 1, . . . ,M, independent and
identically distributed Gaussian random variables with zero-mean and variance
σ2
E . In this case, we have

K(µ1, µ0) =
N

2σ2
E

M∑

j=1

(µ1(tj)− µ0(tj))
2. (13)

Let us come back to the proof of the lower bound. This proof canbe decomposed

in two steps. For the usual term inO
[
(MN)

−s
2s+1

]
, we just have to use the usual

proof for the Besov classes by adding the factorN because of the multiplicative
termN in (13). We now give the proof corresponding to the term inO

[
M−s′

]
.

We only need two functions in order to constructFn, that isn = 2. Forp ≥ 2, we
putµ0(t) = 0, for all t ∈ [0, 1], and

µ1(t) =M
1

p
−sη

(
Mt− 1

2

)
,

whereη ∈ F(s, p, q, L) with support equal to[−1/2, 1/2] such thatη(−1/2) =
η(1/2) = 0, and‖η‖2 ≥ c > 0. We haveµ0 ∈ F(s, p, q, L) and

‖µ1‖spq ≤M
1

p
−sMs− 1

p ‖η‖spq ≤ L.

So we also haveµ1 ∈ F(s, p, q, L), and

‖µ1 − µ0‖2 =M− 1

2M
1

p
−s‖η‖2 ≥M−s′c,

hence, the familyF2 is inclued in the Besov classF(s, p, q, L) and theL2-distance
between the two functions are at at leastM−s′ . Since

K(µ1, µ0) =
N

2σ2
E

M
2

p
−2sη2

(
Mt1 −

1

2

)
=

N

2σ2
E

M
2

p
−2sη2

(
1

2

)
= 0,
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we have
p2 ≥ 1/2,

and
E
(
‖µ̂N,M − µ‖2

)
≥ c

2
M−s′ ,

for any estimator̂µN,M .
Forp ≥ 2, we use the same method but by choosing

µ1(t) =M−s
M∑

j=1

η

(
Mt− j +

1

2

)
.

So we have
‖µ1‖spq ≤M−sM

1

pMs− 1

p‖η‖spq ≤ L,

‖µ1 − µ0‖2 =M
1

2M− 1

2M−s‖η‖2 ≥M−sc,

and

K(µ1, µ0) =
N

2σ2
E

M−2s
M∑

j=1

M∑

k=1

η

(
Mtj − k +

1

2

)
=

N

2σ2
E

M−2s+1η

(
1

2

)
= 0,

which concludes the proof.

5.2 Proof of Theorem 2.2

This proof is an adaptation of the proof of Theorem 1 of Juditsky and Delyon
(1996). We denote bỹβjk, the estimator̂βjk with σjk instead ofσ̂jk in(5) and
µ̃N,M the associated estimator. We introduce

µj1(t) = αφ00(t) +

j1∑

j=0

2j−1∑

k=0

βjkψjk(t),

wherej1 is such thatM/ logM ≤ 2j1 ≤ 2M/ logM. Let us note that (see propo-
sition 1 of Delyon and Juditsky (1997)), there exists some constantC0 such that
this function belongs toF(s, p, q, C0L). The global quadratic risk can then be
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decomposed such that:

E
(
‖µ̂N,M − µ‖22

)
≤ E

(
‖µ̂N,M − µ̃N,M‖22

)
+ E

(
‖µ̃N,M − µj1‖22

)
+ ‖µ− µj1‖22

≤ E

[
j1∑

j=j0+1

∑

k

|β̂jk − β̃jk|2
]

+ E(|α̂− α|2) + E

[
j0∑

j=0

∑

k

|β̃jk − βjk|2
]

(14)

+ E

[
j1∑

j=j0+1

∑

k

|β̃jk − βjk|2
]
+ ‖µ− µj1‖22

= T1 + T2 + T3 + T4 + T5.

We seek to bound from above each term of the decomposition. Byusing the delta
method based on a Taylor expansion of the thresholding function and sincêσ2

jk

are
√
N -consistent estimates of variances, we get:

T1 ≤
j1∑

j=j0+1

∑

k

C1
2N − 1

(MN)2
σ4
jk

≤ C1σ
4
max

2j1

M2N
≤ C1σ

4
max

(logM)−1

MN
,

with C1 being a positive constant. The model (2) leads to

c• ∼ N
[
α,

σ2
c

NM

]
and d•,jk ∼ N

[
βjk,

σ2
jk

MN

]
.

Approximation coefficients inT2 are left unchanged, hence we have:

T2 = E(|c• − α|2) ≤ σ2
max

MN
.

In the same way, terms inT3 are not thresholded, hence we get:

T3 = E

[
j0∑

j=0

∑

k

|β̃jk − βjk|2
]
=

j0∑

j=0

∑

k

E
(
|d•jk − βjk|2

)
≤ C3 2

j0
σ2

max

NM
,

with C3 being a positive constant. The termT5 is the approximation term that can
be bounded such that (see proposition 1 of Delyon and Juditsky (1997)):

T5 ≤ C52
−2j1s′ ≤

[
logM

M

]2s′
.
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Finally, bounding termT4 needs the use of constraint (6) withλ′ = 2λ, we have

T4 ≤ E

[
j1∑

j=j0+1

∑

k

min

(
|βjk|,

λ′σjk√
MN

)2
]

︸ ︷︷ ︸
T4.1

+ E

[
j1∑

j=j0+1

∑

k

|εd•jk|21|εd•jk|>
λ′σjk
2
√

MN

]

︸ ︷︷ ︸
T4.2

,

whereεd•jk = d•jk−βjk. For the termT4.1, sinceµj1 ∈ F(s, p, q, C0L), we obtain:

T4.1 ≤
j1∑

j=j0+1

∑

k

(
2λ

σmax√
MN

)2−p

|βjk|p

≤ C4.1

(
2 logM

M

)1− p
2
(
σ2

max

N

)1− p
2

j1∑

j=j0+1

∑

k

|βjk|p

︸ ︷︷ ︸
=O(2−s′pj0 )

≤ C4.1

(
logM

M

)1− p
2
(
σ2

max

N

)1− p
2

2−s′pj0.

ForT4.2, we have with Cauchy-Schwartz and exponential inequalities:

T4.2 ≤
j1∑

j=j0+1

∑

k

9E
(
|εd•jk|4

) 1

2 E

[(
1|εd•jk|>λσjk/

√
MN

)2] 1

2

C4.2 ≤
j1∑

j=j0+1

σ2
max

MN
exp



−
(
λσjk/

√
MN

)2

2σ2
jk/MN




1

2

≤ C4.2
σ2

max

N
M−22j1 ≤ C4.2

σ2
max

MN
(logM)−1.

In order to fix the parameterj0, the termsT3 andT4.1 need to be balance
according toM , which leads to:

2j0 = O
[
(logM)

1−p/2

1+s′p (MN)
p/2

1+s′p

]
.
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By replacing2j0 in termsT3 andT4.1, the inequality (14) becomes:

E
(
‖µ̂N,M − µ‖22

)
≤ C1

(logM)−1

MN
+
σ2

max

MN
+ C3 σ

2
max

[
logM

MN

] 2s
2s+1

(logM)
−2s′

2s+1

+ C4.1 σ
2−p
max

[
logM

MN

] 2s
2s+1

(logM)
−2s′

2s+1

+ C4.2 σ
2
max

M− 1

8

N logM
+ C5

[
logM

M

]2s′

The convergence of the overall expression is limited by the terms inO
[(

logM
M

)2s′]

and in

O
[(

logM

MN

) 2s
2s+1

(logM)
−2s′

2s+1

]
.

The latter leads to a limitation in

O
[(

logM

MN

) 2s
2s+1

]
if

2

2s+ 1
< p < 2

O
[(

1

MN

) 2s
2s+1

]
if p ≥ 2

Hence, we get:

E
(
‖µ̂N,M − µ‖22

)
≤ max

{
O
[(

logM

MN

) 2s
2s+1

]
+

[
O
(
logM

M

)2s′
]}

,

that concludes the proof.

5.3 Derivation of the SURE criterion for SCAD thresholding

For recall, the SCAD thresholding function is given by:

δscad(djk, λ, a) =





sign(djk)(|djk| − λ)+ si |djk| ≤ 2λ,
(a−1)djk−aλsign(djk)

a−2
si 2λ < |djk| ≤ aλ,

djk si |djk| > aλ.

(15)

and we are looking for a functiong : R2j → R
2j such that:

δscad(dj , λ, a) = dj + g(dj), (16)
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to define the SURE-SCAD criterion:

SUREscad(λ;dj) = 2j + ‖g(dj)‖22 + 2
2j−1∑

k=0

∂g(djk)

∂djk
, (17)

with g(dj) =
(
gj0(dj0), . . . , g2j−1(dj,2j−1)

)
. By definingg as the weakly differ-

entiable function:

g(djk) = −djk1{|djk |≤λ} − λsign(djk)1{λ<|djk |≤2λ}

+

(
djk
a− 2

+
aλsign(djk)

a− 2

)
1{2λ<|djk |≤aλ},

with g(dj) =
(
g(dj0), . . . , g(dj,2j−1)

)
, the relation (16) is satisfied. We can then

compute:

‖g(dj)‖22 =
2j−1∑

k=0

g(djk)
2

with g(djk)
2 = d2jk1{|djk |≤λ} + λ2sign(djk)1{λ<|djk |≤2λ}

+
1

(a− 2)2
[
d2jk + (aλ)2 + 2aλ|djk|

]
1{2λ<|djk |≤aλ}

2j−1∑

k=0

∂g(djk)

∂djk
=

2j−1∑

k=0

[
−1{|djk |≤λ} +

1

a− 2
1{2λ<|djk |≤aλ}

]
,

which leads finally to the criterion (9) in Section 3.
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Figure 1: Examples of realistic simulated data. For each mean functionsBlocks,
Bumps, Heavisine andDoppler, 5 random realizations are represented. The
parameters SNR andτ are respectively set to 5 and 0.25.
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Figure 2: Resulting MISEs averaged over 200 repetitions forreconstructed fixed
effects. Two SNR values in rows (SNR = (1,5) for a high/low noise) and three
heteroscedasticity intensities on the horizontal axis of each graph (τ = 0.1,0.25,1
from a high level to a low level) are considered. Soft and SCADthresholding func-
tions differ by plotting colors (respectively in orange andblue) whereas threshold
choices Universal and SURE differ by the line types (respectively in dashed and
solid line). Vertical bars are associated to the standard deviations of the resulting
MISEs.
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Figure 3: Examples of reconstructed mean functional effectusing an het-
eroscedastic SCAD thresholding with the SURE threshold formodelsBlocks,
Bumps, Heavisine andDoppler. The true mean functions is displayed in
plain gray line. The parameterτ is equal to 0.25 whereas SNR take the values 1
(for a high noise, displayed in dotted blue lines) and 5 (for alow noise, displayed
in dashed magenta lines). In all configurations, the chosen realization correspond
to the one giving rise to the median MISE.
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Figure 4: Mean reconstructed functions (bold line) superimposed on observed
data (in light gray) for the control group and the cancer group.
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SNR= 1 SNR= 5

τ = 0.1 τ = 1 τ = 0.1 τ = 1

Ho He Ho He Ho He Ho He
Blocks 5.093 0.168 0.424 0.166 0.186 0.001 0.011 0.001

(1.629) (0.018) (0.130) (0.017) (0.054) (2e-4) (0.006) (2e-4)
Bumps 5.028 0.724 0.944 0.720 0.220 0.040 0.0573 0.040

(0.745) (0.025) (0.048) (0.027) (0.029) (0.001) (0.002) (0.001)
Heavisine 5.293 1.193 1.773 1.192 0.530 0.079 0.129 0.079
(×10

−2) (0.303) (0.103) (0.120) (0.104) (0.016) (0.006) (0.008) (0.006)
Doppler 26.79 5.607 7.819 5.629 1.387 0.187 0.304 0.188
(×10

−4) (4.058) (2.607) (0.320) (0.238) (0.136) (0.117) (0.015) (0.010)

Table 1: Average MISE (and associated standard deviations)on 200 repetitions
for the fixed effectsBlocks, Bumps, Heavisine and Dopller in a het-
eroscedastic framework. The heteroscedastic structure isdefined as in equation
11 with SNR andτ varying respectively in (1,5) and (0.1,1). The sample size is
set toN = 100 and the signal size toM = 1024. Final estimates are based on a
SCAD thresholding using the universal thresholdλU .
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SNR= 1 SNR= 5

Homoscedastic Heteroscedastic Homoscedastic Heteroscedastic
Blocks 0.189 0.168 1.44e-3 1.43e-3

(0.016) (0.017) (2.5e-4) (2.5e-4)
Bumps 0.736 0.726 0.045 0.040

(0.024) (0.024) (1.25e-3) (1.25e-3)
Heavisine 1.203 1.204 0.079 0.078
(×10

−2) (0.097) (0.104) (0.006) (0.006)
Doppler 5.658 5.622 0.201 0.188
(×10

−4) (0.246) (0.274) (0.011) (0.011)

Table 2: Average MISE (and associated standard deviations)on 200 repetitions for
the fixed effectsBlocks,Bumps,Heavisine andDoppler in a homoscedas-
tic framework (withσ2

jk = σ2 for all (j, k) ∈ Λ). The noise level is controlled by
the SNR ratio varying in (1,5). The sample size is set toN = 100 and the signal
size toM = 1024. Final estimates are based on a SCAD thresholding using the
universal thresholdλU .
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