Defeating Opaque Predicates Statically through Machine Learning and Binary Analysis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Defeating Opaque Predicates Statically through Machine Learning and Binary Analysis

Ramtine Tofighi-Shirazi
  • Fonction : Auteur
  • PersonId : 1041018
Irina Mariuca Asavoae
  • Fonction : Auteur
  • PersonId : 1054537
Philippe Elbaz-Vincent
Thanh-Ha Le
  • Fonction : Auteur

Résumé

We present a new approach that bridges binary analysis techniques with machine learning classification for the purpose of providing a static and generic evaluation technique for opaque predicates, regardless of their constructions. We use this technique as a static automated deobfuscation tool to remove the opaque predicates introduced by obfuscation mechanisms. According to our experimental results, our models have up to 98% accuracy at detecting and deob-fuscating state-of-the-art opaque predicates patterns. By contrast, the leading edge deobfuscation methods based on symbolic execution show less accuracy mostly due to the SMT solvers constraints and the lack of scalability of dynamic symbolic analyses. Our approach underlines the efficiency of hybrid symbolic analysis and machine learning techniques for a static and generic deobfuscation methodology.
Fichier principal
Vignette du fichier
R.Tofighi-Shirazi et al. - Breaking Opaque Predicates Statically through Machine Learning and Binary Analysis - HAL version.pdf (905.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02269192 , version 1 (30-08-2019)

Identifiants

  • HAL Id : hal-02269192 , version 1

Citer

Ramtine Tofighi-Shirazi, Irina Mariuca Asavoae, Philippe Elbaz-Vincent, Thanh-Ha Le. Defeating Opaque Predicates Statically through Machine Learning and Binary Analysis. 3rd International Workshop on Software PROtection, Nov 2019, London, United Kingdom. ⟨hal-02269192⟩
243 Consultations
432 Téléchargements

Partager

More