
HAL Id: hal-02269192
https://hal.science/hal-02269192v1

Submitted on 30 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Defeating Opaque Predicates Statically through
Machine Learning and Binary Analysis

Ramtine Tofighi-Shirazi, Irina Mariuca Asavoae, Philippe Elbaz-Vincent,
Thanh-Ha Le

To cite this version:
Ramtine Tofighi-Shirazi, Irina Mariuca Asavoae, Philippe Elbaz-Vincent, Thanh-Ha Le. Defeating
Opaque Predicates Statically through Machine Learning and Binary Analysis. 3rd International Work-
shop on Software PROtection, Nov 2019, London, United Kingdom. �hal-02269192�

https://hal.science/hal-02269192v1
https://hal.archives-ouvertes.fr

Defeating Opaque Predicates Statically through Machine
Learning and Binary Analysis

Ramtine Tofighi-Shirazi
Univ. Grenoble Alpes, CNRS, Institut Fourier

Trusted Labs, Thales Group
Meudon, France

ramtine.tofighishirazi@thalesgroup.com

Irina Măriuca Asăvoae
Trusted Labs, Thales Group

Meudon, France
irina-mariuca.asavoae@thalesgroup.com

Philippe Elbaz-Vincent
Univ. Grenoble Alpes, CNRS, Institut Fourier

F-38000 Grenoble, France
philippe.elbaz-vincent@univ-grenoble-alpes.fr

Thanh-Ha Le
Work done when author was at Trusted Labs

Meudon, France
lethanhha.work@gmail.com

ABSTRACT
We present a new approach that bridges binary analysis techniques
with machine learning classification for the purpose of providing
a static and generic evaluation technique for opaque predicates,
regardless of their constructions. We use this technique as a static
automated deobfuscation tool to remove the opaque predicates intro-
duced by obfuscation mechanisms. According to our experimental
results, our models have up to 98% accuracy at detecting and deob-
fuscating state-of-the-art opaque predicates patterns. By contrast,
the leading edge deobfuscation methods based on symbolic execu-
tion show less accuracy mostly due to the SMT solvers constraints
and the lack of scalability of dynamic symbolic analyses. Our ap-
proach underlines the efficiency of hybrid symbolic analysis and
machine learning techniques for a static and generic deobfuscation
methodology.

KEYWORDS
Obfuscation, deobfuscation, machine learning, symbolic execution,
opaque predicate

1 INTRODUCTION
Automatic program analysis is widely used in research and in-
dustries for various software evaluation purposes. In this context,
software reverse engineering, which consists in the understanding
of the internal behavior of a program, relies on various program
analyses techniques such as static or dynamic symbolic execution.
To prevent the application of software reverse engineering tech-
niques, code obfuscation [11, 41] is a broadly employed protection
methodology which transforms a program into an equivalent one
that is more difficult to understand and analyze. Among these obfus-
cation mechanisms, opaque predicates represent one of the major
and fundamental obfuscation transformations used by obfuscators
to mitigate the risk of reverse engineering. Opaque predicates rep-
resent constant branching conditions that are obfuscated for the
purpose of hiding the fact that they are constant. Thus, an opaque
predicate value is known a-priori by the defender, but shall be hard
to deduce for an attacker. We choose this obfuscation transforma-
tion for its variety of types and constructions and their common use
as foundation for other obfuscation transformations as means of
improving the transformations robustness and resiliency. Opaque

predicates [12] are widely used as technique for various security
applications, e.g. metamorphic malware mutation [9], Android ap-
plications [27] or white-box cryptographic implementations. As a
consequence, several works focus on the deobfuscation of opaque
predicates (e.g. [5, 7, 8, 16, 29, 32, 42]) in order to evaluate the
quality of the obfuscated code rendered by this transformation.
However, these techniques are often based on dynamic analysis
and are therefore limited or not scalable.

Problem setting: Existing state-of-the-art opaque predicates
deobfuscation techniques and tools suffer from the following limi-
tations:

(1) Specificity: Techniques that evaluate opaque predicates are
often focused on specific constructions, hence lacking of
generality towards all existing patterns of such obfuscation
transformation.

(2) Code coverage: Most recent deobfuscation techniques are
based on dynamic symbolic execution which require the
generation of instruction traces. The ability to cover all paths
of the program is an issue that prevents, in some cases, the
complete code deobfuscation.

(3) Scalability: Dynamic symbolic execution techniques may
also lack of scalability on some types of code such as mal-
wares that use specific triggers (e.g. an input from a Com-
mand and Control server) to execute the non-benign part of
the code. Thus, dynamic analysis may not scale and cover
the non-triggered part of the code.

(4) Satisfiability modulo theories solvers: SMT solvers used in
path-reachability analyses suffer from several limitations
depending on the constructions of the opaques predicates.
Some constructions that are based on aliases ormixed boolean
and arithmetic expressions usually cause SMT solvers to fail
at predicting the feasibility of a path.

Our work has the goal to re-introduce static analysis for obfuscated
software evaluation and deobfuscation. To this end, we propose
a new approach that bridges static symbolic execution and ma-
chine learning models to provide a generic evaluation of opaque
predicates.

We present several studies and experiments towards the con-
struction of machine learning models that can either detect an
opaque predicate or predict its invariant value without executing
the code. We also extend our design to the deobfuscation of such ob-
fuscation transforms, regardless of their constructions, by creating a
static analysis plug-in within a widely used reverse engineering tool
called IDA [19]. To further evaluate our methodology, we compare
it against available static and dynamic symbolic-based tools for the
deobfuscation of opaque predicates. We conduct further evaluations
against obfuscators such as Tigress [10] and OLLVM [23].

The aftermath of our work shows that combining machine learn-
ing techniques with static symbolic analysis provides a generic,
automatic, and accurate methodology towards the evaluation of
opaque predicates. Our work shows that machine learning enables
a better efficiency and genericity for this application, while allow-
ing us to work without SMT solvers to predict reachable paths.

Contributions:
(1) We present our novel methodology that binds binary analysis

and machine learning techniques to evaluate and deobfuscate
opaque predicates statically. A presentation of several studies
towards an efficient and accurate creation of machine learning
models is also given.

(2) The evaluation of our methodology against state-of-the-art
obfuscators such as Tigress and OLLVM, as well as novel opaque
predicate constructions such as bi-opaque predicates.

(3) The illustration of the efficiency of our methodology, used as a
static analysis deobfuscation tool, on several datasets by com-
paring it to existing state-of-the-art deobfuscation tools based
on symbolic execution and SMT solvers.

Our paper is organized as follows: in Section 2 we recall background
information on opaque predicates types, constructions, and deob-
fuscation methods. Then we introduce some notions of supervised
machine learning. In Section 3, we present our methodology which
combines binary analysis and machine learning to achieve an effi-
cient evaluation and deobfuscation of opaque predicates. Section 4
presents our experiments towards an accurate model construction,
whereas Section 5 illustrates our evaluations on state-of-the-art
publicly available obfuscators. A comparison to existing symbolic-
based deobfuscation techniques against our methodology is also
provided in Section 5.3. We then describe our design limitations
and perspectives in Section 6, along with related work in Section 7,
before concluding in Section 8.

2 TECHNICAL BACKGROUND
In this section we briefly present opaque predicates, obfuscation
and deobfuscation techniques, and introduce several notions related
to supervised machine learning.

2.1 Code obfuscation
Collberg et al. [11] define code obfuscation as follows:
Let P

T
−→ P ′ be a transformation T of a source program P into a

target program P ′. We call P
T
−→ P ′ an obfuscating transformation

if P and P ′ have the same observable behavior. Consequently, the

following conditions must be fulfilled for an obfuscating transfor-
mation : if P fails to terminate, or terminates with an error condition,
then P ′ may or may not terminate; otherwise, P ′ must terminate
and produce the same output as P . Several obfuscation transforma-
tions exist, each of them having their own purpose: obfuscate the
layout, the data, or the control-flow of a program. A classification
of all these obfuscations, as well as known deobfuscation methods
with their different purposes, has been provided by S. Schrittwieser
et al. [39].

2.2 Opaque predicates
Often combined with bogus code, opaque predicates [12] aim at
encumbering control-flow graphs with redundant infeasible paths.
Compared to other control-flow obfuscation transformations such
as control-flow flattening or call/stack tampering [28], opaque pred-
icates are supposedly more stealthy (i.e. hard for an attacker to
detect) because of the difficulty to differentiate an opaque predicate
from original path conditions in a binary code. In the followings,
we give an overview of some existing types and constructions of
opaque predicates.

2.2.1 Opaque predicate types. We denote by ϕ a predicate, i.e.
a conditional jump, within a binary code. Such predicate can be
evaluated to both true or false (i.e. 0 or 1). We denote by O the
obfuscation function that generates opaque predicates. O takes as
input a predicate ϕ and produces the opaque predicate O(ϕ). For
security purposes, O(ϕ) should be stealthy (indistinguishable from
any other ϕ) and resilient (its value should not be easily known by
an attacker). There are two types of opaque predicates, namely the
invariant and the two-ways. C. Collberg et al. define these predicates
by, respectively, PT , PF , and P?. Our methodology aims at detecting
and deobfuscating opaque predicates of types PT and PF . Next we
explain the introduced notations PT , PF and P?.

Invariant opaque predicates: Let O(ϕ) : X → {0, 1} be an
obfuscated predicate that evaluates to either 0 or 1 and O be the
function that obfuscates the predicate. We denote by X the set of
all possible inputs. If for all x ∈ X , O(ϕ)(x) = 1 (resp. 0), then we
say that the predicate is always true (resp. always false), denoted
PT (resp. PF). These opaque predicates are said invariant, as they
always evaluate to the same value for all possible inputs.

Two-ways opaque predicates: Another type of opaque pred-
icates is referred to as two-way, which can evaluate to both true
or false for all possible inputs. Such a construction requires both
branches to be semantically equivalent in order to preserve the
functionality of the code that will be executed. In other words we
have, if for all x ∈ X , Prx←X [O(ϕ)(x) = 1] = 1

n with n ∈ N+, then
the predicate is either true or false, regardless of the input x .

2.2.2 Opaque predicate constructions. Several proposals exist in
the literature about how to construct a resilient and stealthy opaque
predicate, e.g. [30, 44]. Each of these constructions has the purpose
to thwart specific deobfuscation analyses and will be summarized
in Section 2.3.

Arithmetic-based opaque predicates. Constructed usingmath-
ematical formulas which are hard to solve, they aim at encoding
invariants into arithmetic properties on numbers.

2

Mixed-boolean andarithmetic based opaque predicates. Oth-
erwise known as MBA [45], they are based on a data encoding
technique using linear identities involving boolean and arithmetic
operations. The resulting encoding is made dependent on external
inputs such that it cannot be deobfuscated by compiler optimiza-
tions.

Alias-based opaque predicates. They are one of the first choices
of Collberg et al. [12] for their construction. Aliasing is represented
by a state of a programwhere certain memory location is referenced
to by multiple pointers, and pointer alias analysis is undecidable.

Environment-based opaque predicates. These constructions
use constant elements lifted from the system, or libraries.

Bi-opaque opaque predicates. Bi-opaque constructs aim at em-
ploying the weaknesses of symbolic execution, and are introduced
in recent work [44]. Based on the observation that deobfuscation
techniques using symbolic execution are prone to some challenges
and limitations, bi-opaque predicates intend to either introduce
false negatives or false positives results. Such construction has been
shown effective against state-of-the-art deobfuscation tools based
on dynamic symbolic execution, such as Triton [1] or Angr [40].

2.3 Deobfuscation
Due to their wide utilization and popularity, opaque predicates
are target of several published attacks. Each of these deobfuscation
methodologies has strengths and limitations as summarized in Table
1.

A first deobfuscation technique called probabilistic check consists
in executing n times a program segment to see if a predicate is
invariant. Such technique can be combined with fuzzing on the
inputs. However, it is prone to high false positives and negatives
results while depending on the possibility to execute n times the
code.

Also, due to the overhead introduced by most complex opaque
predicates constructs, it has been showed in the literature that there
are surprisingly relatively few predicates that are used over and over
again. This leads to a possible patternmatching attack (i.e. dictionary
attack) [16], where one takes obfuscated predicates from a program
being attacked and pattern-matches the source code against known
examples. Nevertheless, it is possible to build variants of opaque
predicates that cannot be matched using dictionary attacks, which
implies a high false negative rate.

Another technique that uses abstract interpretation [32] provides
correctness and efficiency in the deobfuscation of some specific
constructions of opaques predicates. It consists in a static symbolic
attack that can be only efficient against some classes of invariant
arithmetic-based opaque predicates, but does not focus on other
types and structures.

Another recently introduced technique [8] uses program synthe-
sis. Originally designed for the deobfuscation of virtualized code,
this approach has been successful for the simplification of MBA
expressions.

Moreover, current state-of-the-art deobfuscation approaches use
automated proving to compute if a predicate is opaque [5, 29].

Udupa et al. [43] use static path feasibility analysis based on
SMT solvers to determine the reachability of execution paths. Their

methodology inherit the limitations of static analysis, namely path
explosion. This is the reason why recent automated proving tech-
niques are based on dynamic symbolic execution (i.e. DSE) to check
path feasibility or infeasibility [5] and remove opaque predicates.
Yet, automated proving based analysis, either static or dynamic,
suffers from the SMT solvers restrictions. It has been showed that
SMT solvers fail against MBA opaque predicates, alias-based con-
structions, and can even be misguided by more recent constructions
such as bi-opaque predicates.

Overall, DSE is currently considered the most effective methodol-
ogy against opaque predicates, but the evaluation of such technique
has been shown effective mainly against arithmetic or environment
based opaque predicates. This demonstrates the importance of a
generic and scalable methodology that can evaluate both stealth
and resilience of opaque predicates for all existing constructions.

2.4 Supervised Machine Learning
The decision of labeling a predicate as opaque, and even more as
invariant PT or PF opaque predicate, can be considered as classifi-
cations problems. Our target is to find algorithms that work from
external supplied instances (e.g. binaries, instructions traces, etc.)
in order to produce general hypotheses. From these hypotheses,
we want to make predictions about future instances. Supervised
machine learning provides a dedicated methodology that achieves
this goal. The aim of a supervised machine learning is to build a
classification model which will be used to assign labels to testing
or unknown instances. In other words, let X be our inputs (i.e.
instances) and Y the outputs (i.e. predicted labels). A supervised
machine learning algorithm will be used to learn the mapping func-
tion f such that Y = f (X). The goal is to approximate f such that
for any new instance X we can predict its label Y . In our case the
inputs are represented by n-dimensional vectors of numerical fea-
tures that represent these features, i.e. features vectors, for which
the extraction is described in the following paragraph.

2.4.1 Feature extraction. In the machine learning terminology,
the inputs of a model are usually derived from what is called raw
data, i.e. the data samples we want to classify or predict. These data
samples cannot be directly given to a classification model and need
to be processed beforehand. This processing step is called feature
extraction and consists in combining the raw data variables into
numerical features. It allows to effectively reduce the amount of data
that must be processed, while accurately describing the original
dataset of raw data. In our case, since raw data are text documents
(e.g. disassembly code, symbolic execution state, etc.), one practical
use of feature extraction consists in extracting the words (i.e. the
features) from the raw data and classify them by frequency of
use (i.e. weights). Different approaches exist for understanding
what a word is and to compute its weight. In this paper we use
the bag of words approach which identifies terms with words. As
for the weights, we studied term frequency (i.e. how frequently a
word occurs in a document) with and without inverse document
frequency [22] used in Section 4 in order to select the best possible
extraction technique.

3

Constructions Probabilistic check Pattern matching Abstract interpretation Automated proving Program synthesis

Arithmetic-based ✓[43]
High FN/FP

✗

High FN ✓[32] ✓[5, 29] ✗

MBA-based ✗

High FN/FP ✓[16] ✗
✗

(limitations of SMT solver) ✓[7, 8]

Alias-based ✗

High FN/FP ✗ ✗
✗

(limitations of symbolic execution) ✗

Environment-based ✗

High FN/FP ✗ ✗ ✓[5, 29] ✗

Bi-opaque ✗

High FN/FP ✗ ✗
✗

High FN/FP ✗

Table 1: Illustrations of opaque predicates deobfuscation strengths and targets.

2.4.2 Classification algorithms. The choice of which specific
learning algorithm to use is a critical step. Many classification algo-
rithms exist [21], each of them having different mapping functions.
Classification is a common application of machine learning. As
such, there are many metrics that can be used to measure and eval-
uate the accuracy as well as the efficiency of our models. In order
to compute these metrics, k-Fold Cross-Validation is a frequent tech-
nique [25]. It consists in reserving a particular set of samples on
which the model does not train. This limited set of samples allows
to estimate how the model is expected to perform on data not used
during the training phase. The parameter k refers to the number
of groups that a given dataset of samples is split into, in order to
calculate the mean of our models accuracy as well as the F1 score
based on the value of k . While the accuracy of the model represents
the ratio of correctly predicted labels to the the total of labels, F1
score takes both false positives and negatives into account. In our
experimentations and evaluations, the accuracies and F1 scores are
calculated using k-fold cross-validation, with k = 20 for a better
generalization of our model to unknown instances.

3 OUR METHODOLOGY
Our methodology design is built in two parts. The first part consists
in creating a machine learning model for the evaluation and deob-
fuscation of opaque predicates. The second part uses the validated
model in order to remove such obfuscation transformation stati-
cally. Figure 1 illustrates our methodology. The first step consists
in generating a set of obfuscated binaries. Our datasets of C code
samples are presented in Section 4.1. In the second step, the binary
is disassembled and we collect and labelize each predicate, e.g. defin-
ing if the predicate is opaque or normal, as described in Section
3.1. . The third step consists in a depth-first search algorithm to
collect each path leading to a predicate. We use a thresholded static
symbolic execution to collect our raw data for the machine learning
model. These data are normalized, processed and used to train and
validate our model in a fourth step, as presented in Section 3.2.
Finally, the fifth and final step shows that our model can be used
and integrated in a static deobfuscation tool to predict and remove
opaque predicates as presented in Section 5.

3.1 Binary analysis
Our methodology relies on static symbolic execution to retrieve the
semantics of the predicate constructions before the machine learn-
ing classification models evaluates them. Thus, a first step in our
design is the generation of raw data. This refers to a representa-
tion of data samples that contain noisy features and need to be
processed in order to extract informative characteristics from the
data samples, before training a model. Since our goal is to evaluate
the opaque predicates, we choose to generate our raw data from
the disassembled binary code control-flow graph.

Moreover, in order to have a scalable methodology, we work
statically in order to prevent the need of executing the code. This
approach also permits a better code coverage compared to existing
dynamic approaches. However, our approach can be extended to
instruction traces in cases where the analyzed code is encrypted or
packed. The raw data used contains the symbolic expressions S of
collected predicates ϕ denoted by Sϕ .

We studied different formats and contents of such raw data as
well as their impact on the efficiency of the trained model (see
Section 4). In the following sections we present the binary analysis
part of our design, namely thresholded static symbolic execution,
which we employ to generate the raw data from predicates.

3.1.1 Thresholded Static Symbolic Execution. Static symbolic
execution is a binary analysis technique that captures the semantics
(i.e. logic) of a program. An interpreter is used to trace the program,
while assuming symbolic values for inputs rather than obtaining
concrete values as a normal execution would. A symbolic state
S is built and consists in a set of symbolic expressions S for each
variables (i.e. registers, memory, flags, etc.). Several techniques exist
for symbolic execution [3].

In our work we use disassembled functions to collect the sym-
bolic expressions of a predicate Sϕ . We start by generating all
possible paths from a function entry point to a predicate ϕ using
a depth-first search algorithm. The latter prevents us from using
SMT solvers to generate all feasible paths since they are prone to
limitations and errors depending on the protections applied. In
order to avoid path explosion, we use a thresholded static symbolic
execution technique that bounds the number of paths generated
for one predicate and the amount of time the analysis has to it-
erate on a loop. Note that our methodology is intra-procedural

4

since publicly available obfuscators, e.g. Tigress, O-LLVM, generate
intra-procedural opaque predicates.

Path generation: We denote by ϕn the n-th predicate within a
disassembled function F in a binary B. When a predicate is identi-
fied, we generate all paths from F entry point to the collected ϕn
using a depth-first search (i.e. DFS) algorithm. DFS expands a path
as much as possible before backtracking to the deepest unexplored
branch. This algorithm is often used when memory usage is at a
premium, however it remains hampered by paths containing loops.
Thus, we use two distinct thresholds, one for loop iterations de-
noted by αloop , and one for the number of paths to be generated
denoted αpaths .

Symbolic state generation: In order to have a symbolic state,
we use all collected paths of a predicate. We denote by P the set of
all collected pathsσ of a predicateϕ. Let S be the symbolic execution
interpreter function such that S(σi) = Sϕσi . In other words, the
symbolic execution interpreter S returns a symbolic state Sϕσi for a
path σi , i ∈ [O, |P |] of a predicate ϕ. The generated symbolic states
for all predicates will be used as raw data and then be processed
for the classification models.

3.2 Machine learning
We experiment different instances for our classification models to
study the impact on their accuracy. Since symbolic execution is
often based on an intermediate representation that captures all
the semantics as well as side effects of the assembly instructions,
several intermediate representations exist and are widely used, e.g.
LLVM-IR or Miasm-IR [14]. We implemented our methodology
using Miasm2 reverse engineering framework, which integrates
translators from Miasm-IR to other languages (e.g. SMT-LIBv2 [6],
Python [37], or C [24]). This gives us the ability to study the impact
of the language used to express the symbolic expressions, within
our raw data, on our classification models.

3.2.1 Raw data. Intermediate representations use concrete val-
ues within their generated expressions. This causes raw data to
depend on addresses that are specific to some binaries and prevents
our models to scale on unknown data. Listing 1 illustrates this issue
with one predicate symbolic expression in the Miasm-IR language.
Moreover, some intermediate representations, e.g.Miasm-IR, use
identifiers in order to express modified registers name or mem-
ory locations. This may further affect the scalability of our trained
models.

For the purpose of having a model that can scale to unknown
data, we use a normalization phase that replaces identifiers and
concrete values by symbols, and non-alphanumerical characters by
alphanumerical words. This is a necessary step for a complete fea-
tures extraction phase that sometimes excludes non-alphanumerical
characters when working on text-based raw data. In Listing 1 lines
10 and 13 we provide examples of the normalization step.
1 # Miasm -IR predicate expression before normalization

2 # Miasm -IR predicate expression of an P^T opaque predicate

3 ExprId('IRDst ', size =64) = ExprInt (0x402b36 , 64)

4
5 # Miasm -IR predicate expression of an P^F opaque predicate

6 ExprId('IRDst ', size =64) = ExprInt (0x402209 , 64)

7
8 # Miasm -IR predicate expression after normalization

9 # Normalized Miasm -IR predicate expression of an P^T opaque

predicate

10 ExprId(id1 , size =64) = ExprInt(v1, 64)

11
12 # Normalized Miasm -IR predicate expression of an P^F opaque

predicate

13 ExprId(id1 , size =64) = ExprInt(v1, 64)

Listing 1: Miasm-IR predicates expressions before and
after normalization

Since our methodology computes a full symbolic state from any
function entry-point to a targeted predicate, there is a need to know
if all information within the collected symbolic state is relevant
for our models. The goal is to have many features for an accurate
classification without adding too much noise.

Another issue to be avoided is having raw data samples that do
not contain enough information to distinguish between samples
that have different labels, as illustrated also in Listing 1. In other
words, we may have two expressions that are identical but have
different labels, e.g. the first being the expression of a PT and the
second an expression of a PF . To avoid this matter we use the
thresholded symbolic execution, which generates expressions for
each path leading to a predicate. Listing 2 illustrates the predicates
expressions from Listing 1 along with others memory and registers
expressions from their symbolic state. Namely, line 10 in Listing
1 corresponds to lines 2-5 in Listing 2, while line 13 in Listing 1
corresponds to lines 8-11 in Listing 2. We can see that now we
have more informations that allows us to distinguish between both
predicates.

1 # Normalized Miasm -IR predicate expression of an P^T opaque

predicate

2 ExprId(id1 , size =64) = ExprInt(v1, 64)

3 ExprId(id2 , size =1) = ExprInt(v2, 1)

4 ...

5 ExprId(id9 , size =1) = ExprInt(v5, 1)

6
7 # Normalized Miasm -IR predicate expression of an P^F opaque

predicate

8 ExprId(id1 , size =64) = ExprInt(v1, 64)

9 ExprId(id2 , size =1) = ExprCond(ExprMem(ExprId(v3, size =64), size

=8), ExprInt(v4, 1), ExprInt(v3, 1))

10 ...

11 ExprId(id9 , size =1) = ExprInt(v3, 1)

Listing 2: Miasm-IR predicate expressions after our
normalization phase

We study the use of several expressions in our raw data to dis-
tinguish between sample that have different labels. To this end, we
divide our instances into three sets:

• Set 1: with samples containing only the expression of the
predicate in a static single assignment form (i.e. SSA) as
illustrated in Listing 1.
• Set 2: with samples containing only the expressions of the
predicate and its corresponding flags in a SSA form.
• Set 3: with samples containing the full symbolic state of a
path, from an entry-point to a targeted predicate, i.e. all mem-
ory, flags, and registers modified in a SSA form as illustrated
in Listing 2.

5

Figure 1: Evaluation steps of opaque predicates.

In Section 4.2, each set is studied in order to find the best possible
raw data content. We start by calculating for each set the similarity
percentages based on 5000 samples of predicates, either normal or
opaque predicates generated by the Tigress obfuscator on a dataset
of C code samples (see Section 4.1). In other words, we search for
raw data with different labels (e.g. PF and PT) but with the same
content. As we can see in Table 2, only the Set 3 has a low rate of
similarities between opaque or legit raw data content (3.5%) and
between PT and PF raw data (6%). This indicates that Set 3 is more

Raw data Detection similarities Deobfuscation similarities
Set 1 24.94% 31.92%
Set 2 17.38% 26.62%
Set 3 3.5% 6%

Table 2: Percentage of our raw data content similarities for
each sets.

suited for our raw data representation.

3.2.2 Decision tree based models. Decision trees [36] predict
the output by learning simple decision rules deduced from the
training dataset. The internal nodes of a decision tree contain binary
conditions based on input features vectors, whereas the leaves
are associated with the class labels we want to predict. Decision
trees are built recursively. The root node contains all the training
instances and each internal node splits its training instances into
two subsets according to a condition based on the input. Leaf nodes
however represent a classification or decision on these training
instances. Different approaches exist for the splitting conditions of
internal nodes [18]. However, one downside of decision tree models
is over-fitting [15] which may cause the creation of over-complex
trees that do not generalize the data well. In our case, the decision
tree model is capable of identifying and deobfuscating an opaque
predicate O(ϕ). We choose to create two distinct models: a first one
that evaluates the stealth of an opaque predicate and a second one
to evaluate its resiliency, as presented in the following paragraphs.

Model for stealth (detection). The construction of a classifier
consists in the definition of a mapping function Cf : D → [0, 1]
that, given a document d (i.e. an input), returns a class label, which
is represented by a number (here 0 or 1) that defines the category
of d . Applied to the evaluation of opaque predicates stealthiness,
the function can be seen as Cf : D → [NORMAL, OPAQUE].
In other words, given the term-frequency vector of a symbolic
execution state D, from a function entry point to a predicate, our
model mapping function Cf will return two values: NORMAL or
OPAQUE. If a model is capable of detecting a predicate as opaque,
we can assume that the transformation is not stealthy.

Model for resiliency (deobfuscation). In order to evaluate the
resiliency of an opaque predicate, we construct a model with a
different function as presented for the evaluation of stealthiness.
Indeed, our goal is to predict if an opaque predicate is of type PT
or PF , thus, the function Cf : D → [0, 1] in that context can be
expressed as Cf : D → [TRUE, FALSE].

The choice of the best suited classification algorithm is often made
on accuracy but in our work we choose our model based on its
transparency to easily interpret our results. Since many learning
algorithms exist, the next section will present our experiments to
select the best classification model for both detection and deobfus-
cation of opaque predicates.

4 EXPERIMENTS
In this section we present our study of efficient and accurate cre-
ation of classification models. We start by introducing the datasets
variety used in our work.

4.1 Datasets
Our experiments are made on several C code samples. We use the
scikit-learn API [31] for the implementation of the models. The
datasets contain various types of code, each of them having differ-
ent functionalities in order to have a model that does not fit to a
specific type of program, as listed below:

6

• GNU core utilities (i.e. core-utils) binaries [33] for normal
predicate samples;
• Cryptographic binaries for obfuscated and non-obfuscated
predicates [13];
• Samples from [4] containing basic algorithms (e.g. factorial,
sorting, etc.), non-cryptographic hash functions, small pro-
grams generated by Tigress;
• Samples involving the uses of structures and aliases [2, 20].

Our choice is motivated by their low ratio of dependencies and their
straightforward compilation. This makes their obfuscation possible
using tools such as Tigress and OLLVM without errors during
compilation. A list of all different combinations of obfuscation
transformations and options related to Tigress is given in Appendix
A and Listing 18.

Dataset size determination: One important point is to deter-
mine the amount of samples required since this can significantly
impact the cost of our studies and evaluations, as well as the relia-
bility of our results. If too much samples are collected, we face a
longer evaluation time but if there are not enough samples is our
dataset, our results may be irrelevant. Several propositions based
on statistical tests allow to determine the size of our datasets de-
pending on the area of research [17]. Based on these works, we
create our datasets with between 5000 and 15.000 samples in order
to have a high probability of detection and of confidence level. Each
of our datasets are balanced, i.e. with an equal number of samples
of each classes. Next, we present our studies using these datasets.

4.2 Preliminary studies
The goal of our experiments is to investigate and answer the fol-
lowing questions:

• Study 1:Which raw data language is the more efficient (in
terms of time and space) and also the more accurate?
• Study 2:Which raw data content best expresses the normal
and opaque predicates?
• Study 3 and 4:Which classification model is more accurate
and which feature extraction algorithm is best suited?

The following paragraphs present our experiments for each ques-
tion. For this section and for our evaluations (see Section 5) we
used a laptop running Windows 7 with 16 GB of RAM and a Intel
Core i7-6820HQ vPro processor.

Study 1: Raw data language selection. Our goal is to select
the most appropriate language for the symbolic execution engine.
We use Miasm-IR, which we compare with the translators it imple-
ments in SMT-LIBv2 language, C, and Python. After normalizing
these languages, as presented in Section 3.2.1, we use our dataset
of normal predicates from core-utils binaries along with structured-
based opaque predicates from Tigress to study several points:

(1) Which set of samples is more efficient in terms of disk space?
(2) Which set of samples is more efficient in terms of computa-

tion time?

(3) Which language is more accurate for our models when rep-
resenting our raw data?

Table 3 illustrates our experiments using 20-fold cross-validation
on decision-tree based models. For each language, we used a dataset
of 10000 balanced samples.

Raw data language Miasm2 SMT-LIBv2 C Python
Detection accuracy (%) 94% 90% 87% 87%

Deobfuscation accuracy (%) 88% 80% 78% 78%
Execution time for detection (s) 15s 114s 21s 20s

Execution time for deobfuscation (s) 12s 50s 15s 13s
Size of dataset (GB) 1.91GB 37.4GB 2.11GB 1.98GB

Table 3: Study of the raw data language accuracy and effi-
ciency

Weobserve thatMiasm2 intermediate representation gives higher
accuracy rates for both the detection and deobfuscation model.
Moreover, it is more efficient in terms of disk space used (as op-
posed to the SMT-LIBv2 dataset), which leads to a faster time of
execution. This is mainly due to the fact that Miasm2 intermediate
language has a small set of terms expressing the semantics of the
code as compared to other languages in our study. According to
these results, we choose Miasm2 for all of our raw data samples for
the remaining of the paper.

Study 2: Raw data content selection. It remains to single out
the most suitable content that will express the construction of
normal and invariant opaque predicates. Table 2 in Section 3.2.1
shows that the use of full symbolic state representation prevents
having similarities between samples of different classes (i.e. labels).
Thus, based on the same dataset of core-utils and structured-based

Set-1 Set-2 Set-3
0

50

100

77
87

94

57
68

88

A
cc
ur
ac
y
(%
)

Detection Deobfuscation

Figure 2: Predictions accuracy on the different raw data sets

opaque predicates generated with Tigress, we measure the average
of our models accuracies for both detection and deobfuscation,
evaluated with a 20-fold cross-validation. Figure 2 confirms that
the Set 3, i.e. the full symbolic state, presents a better accuracy for
both detection (at 94%) and deobfuscation (at 88%) when using the
decision tree algorithm on balanced datasets of 10000 samples.

7

Study 3 and 4: Classification algorithmand feature extrac-
tion selection. In order to properly evaluate our methodology, we
need to select the appropriate features extraction techniques com-
bined with an accurate classification algorithm.

We have done experiments with the most common classifications
models [26], namely decision trees, k-nearest neighbors, support
vector machines, neural network, naive Bayes, and random for-
est. The use-case of our experiments is to evaluate the stealth of
structured-based opaque predicates generated with Tigress on our
datasets. The features are expressed using term-frequency (i.e. tf)
vectors as well as td-idf vectors in order to compare both extraction
techniques. Default parameters are applied for each classification
algorithms used in our study.

Classification algorithm Term-frequency vectors TD-IDF vectors
Decision-tree 94% 93%

k-Nearest Neighbors 91% 92%
Support Vector Machine 87% 71%

Linear Support Vector Machine 77% 83%
Multi-layer Perceptron 84% 92%

Multinomial Naive-Bayes 58% 75%

Table 4: Accuracies of different classification models using
tf and td-idf vectors.

Table 4 illustrate our results. We can observe that the decision
tree model stands out from others when term-frequency vectors
are used. It averages 94% of detection accuracy whereas k-Nearest
Neighbors averages 91%. As for the use of td-idf vectors, the de-
cision tree model has a better accuracy at 93%. According to this
experiment, we choose theDecision-tree classification algorithmwith
term-frequency as features extraction technique in our methodology.

5 EVALUATIONS
Our goal in this section is to evaluate opaque predicates stealth
and resiliency using a model based on decision trees. We divide our
evaluation into two parts:

(1) Stealth: can the model differentiate an opaque predicate from
a normal predicate, i.e. is the opaque predicate stealthy?

(2) Resilience: can the model differentiate a PT opaque predicate
from a PF opaque predicate, i.e. is the opaque predicate
resilient?

5.1 Measuring stealth
In this section we focus on the evaluation of stealthiness of opaque
predicates. Namely, wewant to see if ourmodel is able to distinguish
opaque predicates from normal predicates. Based on our datasets,
our goal is to measure the efficiency of our model for the detection
of opaque predicates based on different constructions. Note that
each datasets is balanced and contains 10000 samples.

Tigress: The Tigress obfuscator can generate a variety of com-
plex obfuscation transformations, e.g.MBA-based, structured-based
or environment-based. To this end, we use several datasets of dif-
ferent opaque predicates constructions, balanced with normal pred-
icates, to evaluate our model for detection. Dataset 1 contains arith-
metic, MBA and environment-based opaque predicates whereas

Dataset 2 contains structured-based (i.e. alias-based) opaque predi-
cates. Moreover, we used a third dataset (Dataset 3) that combines
these opaque predicates with other obfuscation transformations
such as arithmetic, literal, and data encodings (i.e. EncA, EncL, and
EncD, respectively) joined with control-flow flattening (Flat) and
code virtualization (Virt). Our results are illustrated in Table 5.

Datasets Types of OP Other transforms Analysis time Accuracy(%) F1 Score(%)

Dataset 1 Arithmetic,
Environment-based None 1.13 s 93 % 93 %

Dataset 2 Arithmetic,
Structure-based None 2.14 s 95 % 95 %

Dataset 3 Arithmetic, MBA,
Structure-based

EncA, EncL, EncD,
Flat, Virt 1 s 99 % 98 %

Table 5: Evaluations of stealth (detection) using Tigress

Regardless of their types and of the implication of other obfus-
cation transformations, our detection model is able to efficiently
predict if a predicate is opaque or normal. Indeed, the detection
of arithmetic and environment-based opaque predicates scores an
accuracy and F1 score of 93%, whereas arithmetic and structured-
based opaque predicates are less stealthy for our model with scores
up to 95%. However, as more obfuscation techniques are combined
with opaque predicates, our predictions accuracy and F1 score rises
to respectively 99% and 98%. This is due to the fact that opaque
predicates patterns, once combined to other combination of trans-
forms, become more specific thus lower their stealthiness. In our
case however, code virtualization (i.e. Virt) is applied before opaque
predicates, as illustrated in Appendix A. The opposite, namely ap-
plying code virtualization after other transformations, is a limitation
to our methodology since the generated opaque predicates will be
virtualized, thus transformed into byte-code.

OLLVM:. In order to evaluate our model against opaque pred-
icates generated by OLLVM, we split our evaluations in two sets.
The first set uses samples obfuscated only with opaque predicates
(i.e. the bogus control-flow transformations bcf). The second set
uses samples obfuscated with opaque predicates combined with
control-flow flattening and instructions substitutions (i.e. fla and
sub, respectively) to see if we can evaluate opaque predicates stealth-
iness when they are combined with others transformations. Table 6

Datasets Types of OP Other transforms Analysis time Accuracy(%) F1 Score(%)
Dataset 1 Arithmetic-based None 2 s 89 % 89 %
Dataset 2 Arithmetic-based fla, sub 1 s 95 % 94 %

Table 6: Evaluations of stealth using OLLVM

illustrates our results. In the second dataset, our model is able to effi-
ciently detect the labels of most predicates. However, when opaque
predicates are not combined with other obfuscation transformation,
we observe a loss of efficiency, from 95% to 89% accuracy. This indi-
cates that OLLVM opaque constructions are stealthier than other
constructs, thus our model cannot properly distinguish them from
normal predicates. At best, it will requires more training samples
for our model in order to have a better accuracy. One reason for
their stealthiness in regard to our model is the fact that OLLVM
arithmetic opaque predicates are bloc-centric, with basic encod-
ings, which may have similar patterns to normal predicates from

8

hash functions or cryptographic codes in our datasets. However,
when they are combined to the other transformations, their pat-
terns become more specific and our model has better prediction
results.

Bi-opaque: Several constructions exist for bi-opaque predicates,
amongwhich float-based (i.e. using floating instructions) or symbolic-
memory based. We use their obfuscator based on the OLLVM frame-
work to evaluate our detection model. As we can see in Table 7,

Datasets Types of OP Other transforms Analysis time Accuracy(%) F1 Score(%)
Dataset 1 Floats None 0.6 s 93 % 93 %
Dataset 2 Symbolic-memory fla, sub 0.9 s 98 % 98 %

Table 7: Evaluations of stealth using Bi-opaque predicates
from [44]

our model is efficient at detecting bi-opaque predicates with 93%
accuracy for float-based constructs. Bi-opaque predicates are con-
structed based on the same patterns as OLLVM opaque predicates
but using floating-point instructions and registers instead. However,
symbolic-memory based constructs rely on more specific patterns,
thus allowing a better detection rate at 98% accuracy and F1 score.

5.2 Measuring resiliency
Once a predicate is detected as being opaque, our goal is to measure
its resiliency. In other words, we want to know if our model is able
to deobfuscate, i.e. predict the output of the opaque predicate. Our
evaluations are based on invariant opaque predicates, PT and PF ,
generated using different constructions.

Tigress: The patterns between PT and PF are more difficult to
predict since both predicates are opaque and generated using the
same construction. However, the underlying invariant properties
render our models efficient towards their deobfuscation. Table 8

Datasets Types of OP Other transforms Analysis time Accuracy(%) F1 Score(%)

Dataset 1 Arithmetic,
Environment None 0.3 s 90 % 91 %

Dataset 2 Arithmetic,
Structure None 1 s 88 % 87 %

Dataset 3 Arithmetic, MBA,
Structure

EncA, EncL, EncD,
Flat, Virt 3 s 92 % 92 %

Table 8: Evaluations of resiliency (deobfuscation) using Ti-
gress

shows our results. We can observe that our model is able to detect
environment-based invariants with scores of 90% accuracy and 91%
of F1 score on balanced datasets of 5000 samples. For structure-
based invariants, we get slightly lower results, with 88% and 87%
of accuracy and F1 score. This is due to the fact that structured-
based invariants use aliasing, producing patterns which are less
dissimilar than for environment-based opaque predicates. However,
our model has a better accuracy and F1 score (92% for both) when
other transformations are used. Thus, we are able to efficiently
and accurately predict the invariant value of opaque predicates
generated with Tigress, regardless of their constructions, and of
the combination of obfuscation transformations used.

Bi-opaque, OLLVM, and Tigress: Since OLLVM only produces
PT opaque predicates, we choose to combine all available samples
generated from our three evaluated obfuscators. A first dataset is
used to evaluate our deobfuscation models against normal predi-
cates and opaque predicates generated without any other transfor-
mations. A second dataset is used to combined opaque predicates
with others existing transformations from these obfuscators. Note

Datasets Types of OP Other transforms Analysis time Accuracy(%) F1 Score(%)

Dataset 1
Arithmetic, MBA,

Environment, Structure,
Symbolic-memory, Floats

None 1 s 92 % 91 %

Dataset 2
Arithmetic, MBA,

Environment, Structure,
Symbolic-memory, Floats

fla, bcf,
EncA, EncL, EncD,

Flat, Virt
0.5 s 95 % 95 %

Table 9: Evaluations of resiliency using Bi-opaque, OLLVM,
and Tigress

that all datasets are balanced and contain 15000 samples. Our re-
sults in Table 9 show that our methodology is efficient against
all patterns of opaque predicates from available obfuscators. Our
model is able to detect the invariant patterns of all the opaque pred-
icate constructs with 92% accuracy and 91% F1 score. Moreover,
when these opaque predicates are combined with other obfuscation
transformations, the scores rise up to 95%.

5.3 Deobfuscation methodology
Our methodology can be used as an efficient deobfuscation tech-
nique, if it is based on an adequate dataset of training samples.
We developed our methodology as an experimental IDA [19] plug-
in that detects directly on the disassembled binary any opaque
predicates and deobfuscates them, if needed. We will compare our
results with existing opaque predicates deobfuscation tools based
on SMT solvers and symbolic execution, such as DROP [35]. The
latter is an IDA Pro plug-in based on Angr, which uses static sym-
bolic execution for the removal of invariant and contextual opaque
predicates. Meanwhile, for the dynamic symbolic execution, we use
Miasm2 dynamic symbolic execution engine. We employ several
datasets of opaque predicates obfuscated with various construc-
tions and transformations. Moreover, we remove all samples used
in our evaluations datasets from our learning samples used to built
our model.

Our invariant opaque predicates are generated mainly from [4]
and Table 10 shows the results. For each deobfuscation tool we
use several samples obfuscated by different obfuscators (c.f. col-
umn Obfuscator) and obfuscation transformations (c.f.Obfuscation).
Column "OP detection rate" indicates the percentage of removed
opaque predicates, whereas column "#FP, #FN" shows the number
of false positive and false negative results respectively. Finally col-
umn "Errors" indicates if an error occurred during the analysis, e.g.
lack of memory or a timeout.

We observe that, for a static analysis, our experimental plug-
in performs better at removing opaque predicates with complex
constructs such as the one generated by Tigress, or the bi-opaque
constructs. We obtain better results than the experimental plug-in
DROP, as well as a better rate than DSE-based techniques for most
constructions of opaque predicates.

9

Tool Obfuscator Obfuscation OP detection rate % #FP, #FN Errors
OLLVM bcf 100% 1,0 0
OLLVM bcf, sub 100% 0,0 1
Bi-opaque float 100% 4,0 0
Bi-opaque symbolic-memory 75% 1,5 2
Tigress Environment-based 60% 1,8 0
Tigress Structure-based 25% 2,12 1

DROP

Tigress MBA, struct 10% 0,10 8
OLLVM bcf 100% 0,0 0
OLLVM bcf, sub 100% 0,0 0
Bi-opaque float 92% 0,0 0
Bi-opaque symbolic-memory 100% 1,0 0
Tigress Environment-based 88% 2,3 0
Tigress Structure-based 82% 1,4 0

Our methodology

Tigress MBA, struct 85% 2,2 0
OLLVM bcf 100% 0,0 0
OLLVM bcf, sub 100% 0,0 0
Bi-opaque float 100% 0,0 0
Bi-opaque symbolic-memory 85% 0,3 0
Tigress Environment-based 88% 1,2 0
Tigress Structure-based 65% 1,7 0

Miasm DSE

Tigress MBA, struct 52% 2,10 6
Table 10: Comparisons of opaque predicates deobfuscation using machine learning vs. SMT-solver based analyses.

6 LIMITATIONS AND PERSPECTIVES
Our experiments and evaluations underline the efficiency of deci-
sion tree models to detect and deobfuscate opaque predicates. The
most important achievement of our technique is that it allows a
generalization to most invariant opaque predicates constructions.
Next we enumerate the limitations of our method.

The first limitation is due to decision tree models and the switch
between obfuscators. Namely, we can observe that a model that
learns from samples generated using one obfuscator, cannot ef-
ficiently fit to transformations of another obfuscator if they use
different kinds of constructions. This also hinders our ability to
detect new constructions of opaque predicates.

A second limitation comes from the use of static symbolic exe-
cution to generate the symbolic state as a raw data. Such process is
part of the deobfuscation application of our methodology, and, as
any static analysis, may be time consuming. This explains the use
of our thresholded static symbolic execution in order to prevent as
much as possible issues such as path explosion.

Our work proposes a new application of machine learning tech-
niques for the purpose of evaluating obfuscation transformations,
and also for removing them in a static automated manner. Our
experimentations and evaluations, indicate that our design can be
extended to other complex constructions of opaque predicates such
as thread-based and hash-based constructs. Future work include
also a more in-depth study of obfuscation transforms combinations
and options, as well as the generation of deobfuscated program to
report any good or bad behaviors (e.g. crashes).

7 RELATEDWORK
Many binary analysis techniques are often based on pattern match-
ing for either detecting plagiarism, or malicious behaviors. Recent
studies show the efficiency of machine learning and deep learn-
ing techniques for the detection and classification of malwares,
e.g. [34], which also implicates the detection of similar codes within
the malwares samples. More closely related to the obfuscation area,
the work in [38] aims at recovering meta-data information using
machine learning techniques. Their goal is to detect the obfusca-
tion transformation used in several protected binaries generated by
Tigress. Their evaluations show that naive Bayes and decision tree
models can be efficient at detecting obfuscation transformations
using filtered instruction traces. However, their work focuses on
the recovery of informations about the obfuscation techniques used,
but it does not aim at deobfuscating.

Another work, [4], aims at predicting the resiliency of obfus-
cated code against symbolic execution attacks. They use machine
learning to measure the ability of several different symbolic ex-
ecution engines to run against various layers and combinations
of obfuscation techniques. Nevertheless, machine learning is not
primarily used to remove any obfuscation transforms.

To summarize, existing work shows that machine learning tech-
niques are pertinent w.r.t. of the classification or the detection of
features within binary samples. However, to the best of our knowl-
edge, no deobfuscation study and methodology exists regarding
these techniques. For this reason, in this paper, we proposed an effi-
cient way to evaluate both the stealth and the resilience of opaque
predicates through several studies and experiments combining bi-
nary analysis technique and machine learning.

10

8 CONCLUSION
In this paper we applied machine learning techniques to the evalua-
tion of opaque predicates. By introducing the different constructions
of opaque predicates and the limitations from dynamic symbolic
execution techniques and SMT solvers, we underlined the impor-
tance of studying other alternatives for generic evaluations of these
transformations.

We proposed a new approach that bridges a thresholded static
symbolic execution with machine learning classification to evaluate
both the stealth and resilience of invariant opaque predicates con-
structions. The use of static symbolic execution allows us to have a
better code coverage and scalability, which combined with a ma-
chine learning model, permits a generic approach by discarding the
use of SMT solvers. Our studies illustrate that our choices conduct
towards the implementation of an efficient and accurate evaluation
framework against state of the art obfuscators. We created two mod-
els for the evaluation of stealth and resiliency of state-of-the-art
opaque predicates constructions, with results up to 99% for detec-
tion and 95% for deobfuscation. Moreover, we extended our work
to a deobfuscation plug-in and compared our results to other tools,
showing the efficiency of machine learning for the deobfuscation of
most invariant opaque predicates constructions. As future work, we
propose to extend machine learning techniques to the evaluation
of other obfuscation transformations as well as a more in-depth
study of deep learning techniques, which we envision to render
promising results.

We believe that our work provides a new framework to evaluate
opaque predicates transformations, as well as a new alternative
towards their static and automated deobfuscation.

ACKNOWLEDGMENTS
This work is supported by the French National Research Agency in
the framework of the Investissements d’Avenir program (ANR-15-
IDEX-02).

A TIGRESS COMMANDS
We used the following combinations of obfuscation transformations
for our datasets. Note that the combinations listed in italic are
considered as clean samples since they do not generate opaque
predicates.
• AddOpaque (16 or 32 times)
• AddOpaque, EncodeLiterals
• EncodeLiterals
• AddOpaque, EncodeArithmetics
• EncodeArithmetics, AddOpaque
• EncodeArithmetics
• AddOpaque, EncodeData
• EncodeData, AddOpaque
• EncodeData
• AddOpaque, EncodeArithmetics, EncodeLiterals, Encode-
Data
• EncodeData, EncodeArithemtics, EncodeLiterals, AddOpaque
• AddOpaque, Flatten
• Flatten, AddOpaque
• Flatten
• Flatten, EncodeData, EncodeArithemtics, EncodeLiterals

• Virtualize, AddOpaque
• Virtualize
• Virtualize, EncodeData, EncodeArithemtics, EncodeLiterals
• Virtualize, Flatten
• Flatten, AddOpaque, EncodeData, EncodeArithemtics, En-
codeLiterals
• Virtualize, AddOpaque, EncodeData, EncodeArithemtics, En-
codeLiterals
• Virtualize, Flatten, AddOpaque, EncodeData, EncodeArithemtics,
EncodeLiterals

A.1 Commands options

1 # AddOpaque options

2 tigress --Transform=InitEntropy --Transform=InitOpaque --

InitOpaqueStructs=list ,array ,env --Functions=main --

Transform=AddOpaque --Functions=${3} --AddOpaqueCount=${

NUM} --AddOpaqueKinds=call ,fake ,true

3
4 # Flatten

5 tigress --Transform=Flatten --FlattenDispatch=switch ,goto --

Functions=${3}

6
7 # Virtualize

8 tigress --Transform=Virtualize --VirtualizeDispatch=switch ,

direct ,ifnest ,linear --Functions=${3}

9
10 # EncodeLiterals

11 tigress --Transform=EncodeLiterals --Functions=${3} --

EncodeLiteralsKinds=integer

12
13 # EncodeArithmetics

14 tigress --Transform=EncodeArithmetic --Functions=${3} --

EncodeLiteralsKinds=integer

15
16 # EncodeData

17 tigress --Transform=EncodeData --LocalVariables=${4} --

EncodeDataCodecs=poly ,xor ,add --Functions=${3}

Listing 3: Tigress commands for sample generation

REFERENCES
[1] 2015. Triton: A Dynamic Symbolic Execution Framework. SSTIC.
[2] The Algorithms. [n. d.]. C. https://github.com/TheAlgorithms/C/. [Online;

accessed 30-01-2019].
[3] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and

Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3 (2018), 50:1–50:39. https://doi.org/10.1145/3182657

[4] Sebastian Banescu, Christian S. Collberg, Vijay Ganesh, Zack Newsham, and
Alexander Pretschner. 2016. Code obfuscation against symbolic execution attacks.
In Proceedings of the 32nd Annual Conference on Computer Security Applications,
ACSAC 2016, USA. 189–200. http://dl.acm.org/citation.cfm?id=2991114

[5] Sébastien Bardin, Robin David, and Jean-Yves Marion. 2017. Backward-Bounded
DSE: Targeting Infeasibility Questions on Obfuscated Codes. In 2017 IEEE Sym-
posium on Security and Privacy, SP 2017, USA. 633–651. https://doi.org/10.1109/
SP.2017.36

[6] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2017. The SMT-LIB Standard:
Version 2.6. Technical Report. Department of Computer Science, The University
of Iowa. Available at www.SMT-LIB.org.

[7] Fabrizio Biondi, Sébastien Josse, Axel Legay, and Thomas Sirvent. 2017. Effec-
tiveness of synthesis in concolic deobfuscation. Computers & Security 70 (2017),
500–515. https://doi.org/10.1016/j.cose.2017.07.006

[8] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017.
Syntia: Synthesizing the Semantics of Obfuscated Code. In 26th USENIX Security
Symposium, USENIX Security 2017, Canada. 643–659. https://www.usenix.org/c
onference/usenixsecurity17/technical-sessions/presentation/blazytko

[9] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. 2006. Detecting Self-
mutating Malware Using Control-Flow GraphMatching. In Detection of Intrusions
and Malware & Vulnerability Assessment, Third International Conference, DIMVA
2006 Proceedings, Germany. 129–143. https://doi.org/10.1007/117907548

11

https://github.com/TheAlgorithms/C/
https://doi.org/10.1145/3182657
http://dl.acm.org/citation.cfm?id=2991114
https://doi.org/10.1109/SP.2017.36
https://doi.org/10.1109/SP.2017.36
https://doi.org/10.1016/j.cose.2017.07.006
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://doi.org/10.1007/11790754_8

[10] Christian Collberg, Sam Martin, Jonathan Myers, Bill Zimmerman, Petr Krajca,
Gabriel Kerneis, Saumya Debray, and Babak Yadegari. [n. d.]. The Tigress C Di-
versifier/Obfuscator. http://tigress.cs.arizona.edu/index.html. [Online; accessed
30-01-2019].

[11] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A Taxonomy of
Obfuscating Transformations.

[12] Christian S. Collberg, Clark D. Thomborson, and Douglas Low. 1998. Manufactur-
ing Cheap, Resilient, and Stealthy Opaque Constructs. In POPL ’98, USA. 184–196.
https://doi.org/10.1145/268946.268962

[13] Brad Conte. [n. d.]. crypto-algorithms. https://github.com/B-Con/crypto-algori
thms. [Online; accessed 30-01-2019].

[14] Fabrice Desclaux. 2012. Miasm : Framework de reverse engineering. https:
//github.com/cea-sec/miasm. [Online; accessed 30-01-2019].

[15] Thomas G. Dietterich. 1995. Overfitting and Undercomputing in Machine Learn-
ing. ACM Comput. Surv. 27, 3 (1995), 326–327. https://doi.org/10.1145/212094.2
12114

[16] Ninon Eyrolles, Louis Goubin, and Marion Videau. 2016. Defeating MBA-based
Obfuscation. In Proceedings of the 2016 ACM Workshop on Software PROtection,
SPRO@CCS 2016, Austria. 27–38. https://doi.org/10.1145/2995306.2995308

[17] Rosa L. Figueroa, Qing Zeng-Treitler, Sasikiran Kandula, and Long H. Ngo. 2012.
Predicting sample size required for classification performance. BMC Med. Inf. &
Decision Making 12 (2012), 8.

[18] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. 2009. The elements of
statistical learning: data mining, inference, and prediction, 2nd Edition. Springer.
http://www.worldcat.org/oclc/300478243

[19] Hex-Rays. [n. d.]. IDA Pro : Interactive DisAssembler. https://www.hex-rays.c
om/products/ida/index.shtml. [Online; accessed 30-01-2019].

[20] Simon Howard. [n. d.]. c-algorithms. https://github.com/fragglet/c-algorithms.
[Online; accessed 30-01-2019].

[21] Mike James. 1985. Classification Algorithms. Wiley-Interscience, USA.
[22] Karen Spärck Jones. 2004. A statistical interpretation of term specificity and

its application in retrieval. Journal of Documentation 60, 5 (2004), 493–502.
https://doi.org/10.1108/00220410410560573

[23] Pascal Junod, Julien Rinaldini, JohanWehrli, and Julie Michielin. 2015. Obfuscator-
LLVM – Software Protection for the Masses. In Proceedings of the IEEE/ACM 1st
International Workshop on Software Protection, SPRO’15, Firenze, Italy, May 19th,
2015, Brecht Wyseur (Ed.). IEEE, 3–9. https://doi.org/10.1109/SPRO.2015.10

[24] Brian W. Kernighan. 1988. The C Programming Language (2nd ed.). Prentice Hall
Professional Technical Reference.

[25] Ron Kohavi. 1995. A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, IJCAI 95, Canada. 1137–1145. http:
//ijcai.org/Proceedings/95-2/Papers/016.pdf

[26] Sotiris B. Kotsiantis. 2007. Supervised Machine Learning: A Review of Clas-
sification Techniques. Informatica (Slovenia) 31, 3 (2007), 249–268. http:
//www.informatica.si/index.php/informatica/article/view/148

[27] Aleksandrina Kovacheva. 2013. Efficient Code Obfuscation for Android. In
Advances in Information Technology - 6th International Conference, IAIT 2013,
Thailand. 104–119. https://doi.org/10.1007/978-3-319-03783-710

[28] Arun Lakhotia, Eric Uday Kumar, and Michael Venable. 2005. A Method for
Detecting Obfuscated Calls in Malicious Binaries. IEEE Trans. Software Eng. 31,
11 (2005), 955–968. https://doi.org/10.1109/TSE.2005.120

[29] Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu. 2015. LOOP: Logic-
Oriented Opaque Predicate Detection in Obfuscated Binary Code. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
USA, October 12-6, 2015. 757–768. https://doi.org/10.1145/2810103.2813617

[30] Ginger Myles and Christian S. Collberg. 2006. Software watermarking via opaque
predicates: Implementation, analysis, and attacks. Electronic Commerce Research
6, 2 (2006), 155–171. https://doi.org/10.1007/s10660-006-6955-z

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[32] Mila Dalla Preda, Matias Madou, Koen De Bosschere, and Roberto Giacobazzi.
2006. Opaque Predicates Detection by Abstract Interpretation. In Algebraic
Methodology and Software Technology, 11th International Conference, AMAST 2006,
Estonia. 81–95. https://doi.org/10.1007/117841809

[33] GNU Project. 2002. GNU Core Utilities. https://www.gnu.org/software/coreutils/.
[Online; accessed 30-01-2019].

[34] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. 2011. Auto-
matic analysis of malware behavior using machine learning. Journal of Computer
Security 19, 4 (2011), 639–668.

[35] Thomas Rinsma. 2017. Seeing through obfuscation: interactive detection and
removal of opaque predicates. https://github.com/Riscure/DROP-IDA-plugin.
[Online; accessed 30-01-2019].

[36] Lior Rokach and Oded Maimon. 2014. Data Mining With Decision Trees: Theory
and Applications (2nd ed.). World Scientific Publishing Co., Inc., USA.

[37] Guido Rossum. 1995. Python Reference Manual. Technical Report. Amsterdam,
The Netherlands, The Netherlands.

[38] Aleieldin Salem and Sebastian Banescu. 2016. Metadata recovery from obfuscated
programs using machine learning. In Proceedings of the 6th Workshop on Software
Security, Protection, and Reverse Engineering, SSPREW 2016, USA, 2016. 1:1–1:11.
https://doi.org/10.1145/3015135.3015136

[39] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-
dovnik, and Edgar R. Weippl. 2016. Protecting Software through Obfuscation:
Can It Keep Pace with Progress in Code Analysis? ACM Comput. Surv. 49, 1
(2016), 4:1–4:37. https://doi.org/10.1145/2886012

[40] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In IEEE Symposium on Security and Privacy.

[41] Bjorn De Sutter, Cataldo Basile, Mariano Ceccato, Paolo Falcarin, Michael Zunke,
Brecht Wyseur, and Jérôme d’Annoville. 2016. The ASPIRE Framework for
Software Protection. In Proceedings of the 2016 ACM Workshop on Software PRO-
tection, SPRO@CCS 2016, Vienna, Austria, October 24-28, 2016, Brecht Wyseur and
Bjorn De Sutter (Eds.). ACM, 91–92. https://doi.org/10.1145/2995306.2995316

[42] Ramtine Tofighi-Shirazi, Maria Christofi, Philippe Elbaz-Vincent, and Thanh Ha
Le. 2018. DoSE: Deobfuscation based on Semantic Equivalence. In Proceedings
of the 8th Software Security, Protection, and Reverse Engineering Workshop, USA.
1:1–1:12. https://doi.org/10.1145/3289239.3289243

[43] Sharath K. Udupa, Saumya K. Debray, and Matias Madou. 2005. Deobfuscation:
Reverse Engineering Obfuscated Code. In 12th Working Conference on Reverse
Engineering, WCRE 2005, USA. 45–54. https://doi.org/10.1109/WCRE.2005.13

[44] Hui Xu, Yangfan Zhou, Yu Kang, Fengzhi Tu, and Michael R. Lyu. 2018. Manu-
facturing Resilient Bi-Opaque Predicates Against Symbolic Execution. In 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2018, Luxembourg. 666–677. https://doi.org/10.1109/DSN.2018.00073

[45] Yongxin Zhou, Alec Main, Yuan Xiang Gu, and Harold Johnson. 2007. Information
Hiding in Software with Mixed Boolean-Arithmetic Transforms. In Information
Security Applications, 8th International Workshop, WISA 2007, Korea. 61–75. https:
//doi.org/10.1007/978-3-540-77535-55

12

http://tigress.cs.arizona.edu/index.html
https://doi.org/10.1145/268946.268962
https://github.com/B-Con/crypto-algorithms
https://github.com/B-Con/crypto-algorithms
https://github.com/cea-sec/miasm
https://github.com/cea-sec/miasm
https://doi.org/10.1145/212094.212114
https://doi.org/10.1145/212094.212114
https://doi.org/10.1145/2995306.2995308
http://www.worldcat.org/oclc/300478243
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://github.com/fragglet/c-algorithms
https://doi.org/10.1108/00220410410560573
https://doi.org/10.1109/SPRO.2015.10
http://ijcai.org/Proceedings/95-2/Papers/016.pdf
http://ijcai.org/Proceedings/95-2/Papers/016.pdf
http://www.informatica.si/index.php/informatica/article/view/148
http://www.informatica.si/index.php/informatica/article/view/148
https://doi.org/10.1007/978-3-319-03783-7_10
https://doi.org/10.1109/TSE.2005.120
https://doi.org/10.1145/2810103.2813617
https://doi.org/10.1007/s10660-006-6955-z
https://doi.org/10.1007/11784180_9
https://www.gnu.org/software/coreutils/
https://github.com/Riscure/DROP-IDA-plugin
https://doi.org/10.1145/3015135.3015136
https://doi.org/10.1145/2886012
https://doi.org/10.1145/2995306.2995316
https://doi.org/10.1145/3289239.3289243
https://doi.org/10.1109/WCRE.2005.13
https://doi.org/10.1109/DSN.2018.00073
https://doi.org/10.1007/978-3-540-77535-5_5
https://doi.org/10.1007/978-3-540-77535-5_5

	Abstract
	1 Introduction
	2 Technical Background
	2.1 Code obfuscation
	2.2 Opaque predicates
	2.3 Deobfuscation
	2.4 Supervised Machine Learning

	3 Our Methodology
	3.1 Binary analysis
	3.2 Machine learning

	4 Experiments
	4.1 Datasets
	4.2 Preliminary studies

	5 Evaluations
	5.1 Measuring stealth
	5.2 Measuring resiliency
	5.3 Deobfuscation methodology

	6 Limitations and perspectives
	7 Related work
	8 Conclusion
	Acknowledgments
	A Tigress commands
	A.1 Commands options

	References

