$\overline{\mathbb F}_l$-Galois semi-simplicity and level raising
Résumé
For a maximal ideal $\mathfrak m$ of some anemic Hecke algebra $\mathbb{T}^S$,
associated to an irreducible Galois $\overline{\mathbb F}_l$-representation of
dimension $d$, on can also define a Galois $\mathbb{F}_{\mathfrak m}^S$-representation
$\rho_{\mathfrak m}$. The length of $\rho_{\mathfrak m} \otimes_{\overline{\mathbb Z}_l}
\overline{\mathbb F}_l$ is equal to the number of prime ideals
$\widetilde{\mathfrak m} \subset \mathfrak m$ and we try to translate
some of the properties of $\bigl \{ \widetilde{\mathfrak m} \subset \mathfrak m \bigr \}$
into those of $\rho_{\mathfrak m} \otimes_{\overline{\mathbb Z}_l} \overline{\math bb F}_l$.
For example the level raising (or lowering) property is encoded by the non semi-simplicity of
$\rho_{\mathfrak m} \otimes_{\overline{\mathbb Z}_l} \overline{\mathbb F}_l$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|