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F-GALOIS SEMI-SIMPLICITY AND LEVEL
RAISING

by

Boyer Pascal

Abstract. — For a maximal ideal m of some anemic Hecke algebra T,
associated to an irreducible Galois F;-representation of dimension d, on
can also define a Galois T -representation py,. The length of py ®z, F;is
equal to the number of prime ideals il € m and we try to translate some
of the properties of {n~1 c m} into those of pm ®z, F;. For example the
level raising (or lowering) property is encoded by the non semi-simplicity

of pm ®7z, F;.
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1. Introduction

Let ' = EF™ be a finite CM extension of Q with £/Q an imaginary
quadratic field and F'* totally real. Consider then a similitude group G/Q
as in §2 and a place v of F' above a prime number p = uu® split in £ and
such that G is split at p with G(Qp) ~ Q) x GLa(Fy) X [,y (BEF)™,
cf. §2. For any finite set S 3 v of places of F, let T® be the anemic
Hecke algebra and, for £ an algebraic representation of G(Q), we denote
by ']I‘gq the quotient of T of ¢-cohomological Satake’s parameters. For
any maximal ideal m of T2, and for a prime ideal m < m, we denote by

Pt Galps — GL4(Q)

the Galois Q,-representation associated to m, cf. [21], where Galpg is
the Galois group of the maximal extension of F' which is unramified
outside S. By Cebotarev’s density theorem and the fact that a semi-
simple representation is determined, up to isomorphism, by characteristic
polynomials, then the semi-simple class p,, of the reduction modulo [/ of
pw depends only of the maximal ideal m of T? containing m.

Main assumptions: we now suppose that | = d and
— Pm 18 absolutely irreducible so that for every m < m, ps has, up to
homothety, only one stable Z;-lattice.
ev(l)—1

— The set S,(m) does not contain any subset of the form {\, g\, , qv A}
where e,(l) is equal to either the order of q, € F) if it is different
from 1 or | otherwise, cf. notation 2.10.

By classical arguments due to Carayol, we can then define a represen-
tation

pm : Galpg —> GLd(Tgm),

interpolating the pgz for all m < m. By Cebotarev such a py, is, up to
isomorphism, uniquely determined and by construction

rm®z, Q =~ @ i
mcm
is semi-simple.

Main result: Under the previous assumptions, if m has the level raising
(or lowering) property then py ®z, Fi is not semi-simple, cf. theorem 5.4
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Remark. In 5.4 we suppose that m is moreover both KHT-free and KHT-
typic. If one believe in Tate conjecture then m should always be KHT-
typic, cf. proposition 5.3. Moreover in [11], we prove that KHT-freeness
is implied by the previous main assumptions.

Remark. In the end of §5, we moreover prove some results on the depth
of pn ®z, F, in the sense of definition 5.5 which roughly speaking says
that if you are able to find m; and my such that their monodromy at v
are really different, then pn ®z, F, is far from being semi-simple.

The strategy rests on the study of the cohomology of KHT Shimura
vatieties. More precisely, for any open compact subgroup I of G(A®), let
denote by Sh;, — Spec O, the Kottwitz-Harris-Taylor Shimura variety
with level I, cf. definition 2.4, where O, is the ring of integers of the local
field F, of F' at v. If one believe that Tate conjecture is true, then py
should appear in the cohomology of Sh;, localized at m, cf. proposition
5.3. If moreover we choose such m so that these localized cohomology

groups are torsion free concentrated in middle degree, then pn ®z F;
also appears in the F;-cohomology of Shy,. The idea is then to analyse

the action of the nilpotent monodromy operator Nif Zo acting on the F-
cohomology group in middle degree of Shy,. More precisely for m < m,
we denote by

~

diio = (nl(rﬁ) =ng(m) = = nr(m))

the partition of d = ny(m) + - - -n,.(m) corresponding to the restriction
P Of pa to the decomposition group at v:

P = Spnl(a)(m,l) DD Spn,.(rﬁ) (Pv,r);

where the p,; are supposed to be characters, and

SPy, ) (i) = pv,i(T) S Pv,z’(T) @D pv,i(T)7
where N, induces isomorphisms pvyi(%m) — pm(w)

for 0 < ¢ < n;(m) — 1 and is trivial on p“(%)

As the order of unipotency of the monodromy operator is trivially
< d, for | = d we can define its logarithm in F; and so define the modulo
[ nilpotent monodromy operator Nmm associated to p, at the place v:
recall that as p,, is supposed to be irreducible, each of the pg has, up
to homothety, a unique stable Z;-lattice so that Nmﬂ, is well defined and

does not depend on the choice of m < m.
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1.1. Definition. — (cf. the introduction of [12])
We say that m is KHT-free if the cohomology groups of the Kottwitz-
Harris-Taylor Shimura variety of notation 2.4, localized at m, are free.

From (8], any of the following properties ensure KHT-freeness of m.

(1) There exists a place w; ¢ S of F' above a prime p; splits in £, such
that the multi-set Sy (w;) of roots of the characteristic polynomial
Py (X) of p,(Frob,,), does not contain any sub-multi-set of the
shape {a, ¢, a} where ¢, is the order of the residue field of F' at
wy. This hypothesis is called generic in [13].

(2) When [F(exp(2in/l)) : F| > d, if we suppose the following prop-
erty to be true, cf. [8] 4.17. If 0 : Gr — GL4(Q)) is an ir-
reducible continuous representation such that for all place w ¢ S
above a prime z € Z split in F, then P, ,(0(Frob,)) = 0 (resp.
Pyuv 4 (0(Frob,)) = 0) implies that 6 is equivalent to 5, (resp. Dy ),
where m"Y is the maximal ideal of Tg associated to the dual mut-
liset of Satake parameters, cf. [8] notation 4.4. In [16], the authors
proved that the previous property is verified in each of the following
cases:

e cither p,, is induced from a character of Gx where K/F is a
cyclic galoisian extension;

e orl >dand SLy(k)  p,,(Gr) © F, GL4(k) for some subfield

k‘CFl.

Main observation: Suppose that m is KHT-free and KHT-typic in the
sense of definition 5.1, then the order of nilpotency of Nﬁf:o s equal to
that of N, acting on pn ®z, F; and is given, cf. corollary 4.3, by the
formula max{n;(m),m < m}.

The idea is then to produce m; and my in m such that ny(m;) > ny(My),
so that the order of nilpotency of Ny, , is < ni(my). If Pn®7z, Ty were semi-

simple, and so isomorphic to copies of p,,, then the order of nilpotency
—coh ~ . : . .
of N ;O " would be < ny(Miy), which contradicts the main observation.

1.2. Definition. — A mazimal ideal m is said with indefinite maximal
nilpotency at v if there exists my and My in m such that ny(My) > ny(My).

To see that m is with indefinite maximal nilpotency at v, we can follow
the strategy of Ribet in [25], where he considers an absolutely irreducible
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representation
ﬁ . Gal(@/@) I GLQ(F[),

which is modular of level N, meaning that it arises from a cusp form of
weight 2 and trivial character on I'g(N). Then for a prime p { [N such
that

Tr p(Frob,) = +(p+ 1) mod [,

with p+1 = 0 mod [, he proves that p also arises from a modular form of
level pN which is p-new, i.e. the automorphic representation associated
to this modular form has a local component at p which is isomorphic to
the Steinberg representation of GL2(Q,). Then the associated maximal
ideal m is with indefinite maximal nilpotency at p.

In [28] Sorensen generalizes this level raising congruences in higher
dimension for a connected reductive group G over a totally real field F'*
such that G is compact. One might also look at [1] theorem 1.1 and
theorem 4.1, for the case of automorphic representations of unitary type
of GLQn
A maximal ideal m which is KHT-free an with indefinite maximal nilpo-
tency provided by the anonymous referee whom we thanks to allow us
to reproduce it here. The two following newforms which can be found at
https://www.pnas.org/content/pnas/94,/21/11143.full.pdf

= (@) =a—2¢* — ¢* +2¢" + ¢* +2¢° — 2¢" + - - € S5(T'(11)),

—9(@) =a+¢+2¢° —q" = 2¢° + 2¢° — " + - € Sy(To(77)),
give Galois representations py and p, which are congruent modulo 3. In
Serre’s 1972 Inventiones paper it is shown that the image of this modulo
3 representation is G'Ly(F3) so that p, is irreducible. Note then that
the 3-adic representation p, has non trivial monodromy at 7 and p; is
unramified at 7 with 7 #% —1 mod 3. Consider then a real quadratic
field F'™ in which 7 splits and which is linearly disjoint over Q with the
fixed field of Ker(p,). Let D/F* a quaternion algebra which is non split
t one real place and one place above 11. The base change of g to F'*
gives a cohomological automorphic representation of G Ly(Ap+) whose 3-
adic Galois representation appears in the cohomology of a Shimura curve
attached to D: the 3-adic monodromy at a place dividing 7 is then non
trivial while the modulo 3 monodromy is. Base changing to F' = F*E for
some suitable quadractic imaginary field E, we then obtain an example
of a maximal ideal m which is KHT-free and with indefinite maximal
nilpotency at v.
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Another way to produce m which is KHT-free and with indefinite max-
imal nilpotency at a fixed place v, is to start with an irreducible Galois
representation p : Galps — GL4(Q;) such that

— there exists p’ split in £ such that there exists a place v’ in F' above
p’ such that the set S,/ (p) of modulo I eigenvalues of p(Frob,) does
not contain any subset of the form {«, ¢, a}.

— There exists p # p’ split in £ and a place v above p such that the
partition d (p) = (ny = --- = n,) associated to the monodromy
operator at v verifies the following property. There exists a such
that {a, ¢, -+, ¢ a} is contained in the set S,(p) of modulo [
eigenvalues of p(Frob,).

Then the existence of a lift p’ of p such that d,(p') = (0} = --- = nl,)
verifies n) > ny is insured by the next proposition which relies on a
conjectural Thara’s lemma in higher dimension proposed by Clozel, Harris
and Taylor, for compact unitary groups. In [12] we proved some instances
of this conjecture implied by a non compact version of I[hara’s lemma for
H4(Shy ., F))m. In the last section, we first prove that Thara’s lemma
for compact unitary group implies [hara’s lemma for KHT unitary groups

and the following result.

1.3. Proposition. — Suppose that this higher dimensional version of
Thara’s lemma is true and that ¢, =1 mod l. Then there exists m < m
such that dg, is as mazimal as possible, i.e.

Piiw = Sy, (P0,1) ® - @ Sp,, (o)

such that the eigenvalues of the p,;(Frob,) fori=1,--- r, are pairwise
distincts modulo 1.

2. The monodromy operator acting on the cohomology

Let F' = FTE be a CM field with E/Q quadratic imaginary and F'*
totally real. Let B/F be a central division algebra with dimension d* with
an involution of second kind . For 8 € B*=!, consider the similitude
group G/Q defined for any Q-algebra R by

G(R) :={(A\,g) € R* x (B” ®q )" such that gg* = \},

with B? = B ®p, I' where ¢ = | is the complex conjugation and fz is
the involution z +— 2% := Bx*B~1. Following [21], we assume from now

on that G(R) has signatures (1,d — 1), (0,d),---,(0,d).
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2.1. Definition. — Let Spl be the set of places v of F' such that p, :=
vig # 1 is split in E and B} ~ GLy4(F,).

We now suppose that p = uu® splits in E so that
G(Qy) ~Qy x | [(BI)
wlu
where w describes the places of F' above u and we fix a place v € Spl
dividing p.
2.2. Definition. — For a finite set S of places of Q containing the
places where G is ramified, denote by TS, = st T, abs the abstract un-

abs

ramified Hecke algebra where Ty gps ~ Ty X (T)| V= for T, a split torus,
W, the spherical Weyl group and X**(T,) is the set of Z;-unramified
characters of T,.

FExample. For x = uu® split in £ we have
Tx,abs = Hzl[Tw,i D= 17 T 7d]7
wlu
where T, ; is the characteristic function of
i d—1i

A/
GLd(Ow) diag(ww, e, W, 1, T, 1)GLd(Ow) - GLd(Fw)
We then denote by Z the set of open compact subgroups

U, my) = UP % 25 x | [ Kex(Of, — (O, /Pi)")
i=1

where UP is any small enough open compact subgroup of G(A»*) and
OBvi is the maximal order of B, with maximal ideal P,, and where
v =1, ,v, are the places of ' above u with p = uu®.

2.3. Notation. — For I = UP(mq,---,m,) € Z, we will denote by
IY(n) := UP(n,mg, - ,m,). We also denote by Spl(I) the subset of Spl
of places which does not divide the level I.

2.4. Notation. — As defined in [21], attached to each I € T is a
Shimura variety called of KHT-type and denoted by

Shy, — Spec O,
where O, denote the ring of integers of the completion F, of F' at v.
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Let 0g : E <> @ be a fixed embedding and write ® for the set of
embeddings o : F' — Q, whose restriction to £ equals oy. There exists
then, cf. [21] p.97, an explicit bijection between irreducible algebraic
representations & of G over Q, and (d+1)-uple (ao, (CTU’)UE@) where ag € Z
and for all o € ®, we have a, = (a,1 < --- < as4). We then denote by

‘/ézzl
the associated Z;-local system on Shy .

2.5. Notation. — Let ']I‘? be the image of T3, inside

2d—2 '

@ 11_1)1'1 H}ree(ShI,ﬁvﬂ Vg,Z,)

=0
where the limit concerned the ideals I which are mazximal at each places
outside S, and Shy, 1is the geometric generic fiber of Shy,,.

Remark. Above Hj,., is the free quotient of the cohomology group
H?. From the main result of [8], the torsion classes of any of the
H'(Sh;z,,V,7,) raise in characteristic zero, so one can erase the index
free in the previous notation.

To each maximal ideal m of T¢[1/I], or equivalently a minimal prime
of T? , which we now supposed to be non-Eisenstein, is associated an
irreducible automorphic representation Il which is £-cohomological, i.e.
there exists an integer ¢ such that

H'((Lie GR)) @x C,U, 1L, ®") # (0),
where U is a maximal open compact subgroup modulo the center of G(R).

2.6. Notation. — Let denote by Scusp,(m), the supercuspidal support
of its local component at v, denoted Ilg.,,. NoteV) that the modulo 1
reduction of Scusp, (m) is independent of the choice of m < m: we denote
it Scusp,,(m).

Recall that the geometric special fiber Shy 5, of Shy,, is equipped with
the Newton stratification

>d >d—1 =1 _
Sh7s, © Shis < --- < Shi; = Shys,,

(1t follows, through the Langlands correspondence, from Cebotarev’s theorem and
the fact that a semi-simple representation is determined, up to isomorphism, by its
characteristic polynomials.
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where for 1 < h < d, Shigﬂ (resp. Shi;‘v) is the closed (resp. the open)
Newton stratum of height h and of pure dimension d — h, defined as the
sub-scheme where the connected component of the universal Barsotti-
Tate group is of rank greater or equal to h (resp. equal to h).

Moreover for 1 < h < d, the Newton stratum Sh;’;“ is geometrically
induced under the action of the parabolic subgroup P 4_p(F}), defined
as the stabilizer of the first h vectors of the canonical basis of F¢. Con-
cretely, cf. [2] §10.4, this means that there exists a closed sub-scheme
Sh;g}ﬂ stabilized by the Hecke action of P, 41 (F,) and such that

@Shlz”}zn)&v = (1(&11 Sh]:vl‘zn)jv,ﬁ) X Ph,a—n(Fy) GLd(FU>

n n

2.7. Notation. — For a representation m, of GL4(F,) with coefficients
either Q, or F;, and n € %Z, we set my{n} = m, ® V" where v(g) :=

Gv valdet@) - Recall that the normalized induction of two representations

Tp1 and T, o of respectively G Ly, (F,) and GLy,,(F,) is

GLn1 +ng (Fv)

. n n
™ X my o= indp "1 7%1{?2} ®7TU72{—?1}7

and we define inductively

Ty X oo X g = (M X+ X Te_1) X Tg =T X (Mg X -+ X ).

Recall that a representation m, of GL4(F),) is called cuspidal (resp.
supercuspidal) if it is not a subspace (resp. a subquotient) of a proper
parabolic induced representation. When the field of coefficients is of
characteristic zero then these two notions coincides, but this is no more
true over IF;. For example the modulo [ reduction of an irreducible Q-
representation is still cuspidal but not necessary supercuspidal, its su-
percuspidal support being a Zelevinsky segment.

2.8. Definition. — (sec [30] 89 and [4] §1.4) Let g be a divisor of

d = sg and m, an irreducible cuspidal Q;-representation of GL4(F,).
The induced representation

1-— 3 — -1
i 28}><7r1,{ S}x--~><7rv{s

} (2.8)

holds a unique irreducible quotient (resp. subspace) denoted Sts(m,) (resp.
Speh(m,)); it is a generalized Steinberg (resp. Speh) representation.



10 BOYER PASCAL

Remark. For x, a character, Speh,(x,) is the character x, o det of
GL(F,).

Let 7, be an irreducible cuspidal Q-representation of GL,(F,) and fix
t > 1 such that tg < d. Thanks to Igusa varieties, Harris and Taylor

=t
constructed a local system on Sh_ gg —
sSvsdtg

€1y

Ly, (mo[tlp)m; = (:Dl Ls,(0o,i)15;

where

— m[t]p is the representation of D, which is the image of the con-

tragredient of St;(m,) by the Jacquet-Langlands correspondence,
— D, 44 is the central division algebra over F, with invariant g,
— with maximal order denoted by D, 4,
— and with (7, [t]D)Ipitq = @™ pu,i with p,; irreductible.

The Hecke action of Py 444(F)) is then given through its quotient
Prgatg(Fy) = GLg(F,) x GLg_1g(F,) = GLa_1y(F,) x Z,

where GLy(F,) X GL4_4y(F,) is the Levi quotient of the parabolic
Py .a—14(F,) and the second map is given by the valuation of the deter-
minant map G'Ly,(F,) — Z. These local systems have stable Z;-lattices
and we will write simply L(m,[t]p)t;; for any Zy-stable lattice that we
do not want to specify. ‘

2.9. Notations. — For Il; any Q;-representation of G Ly(F,), and = :
17— Z, defined by =(1) = ¢'/2, we introduce

tg—d

HT@l:EOTU’ Ht) = E@l (Wv[t]D)E ) Ht R="2
and its induced version

P —tg=d
HT g, (m, 1) i= (£, (molt1p)ry @ ®Z™" ) xp,,, (1) GLalF),

where the unipotent radical of Py 4—14(Fy) acts trivially and the action of

= (B g ) ) € G x Py (B < W,

v

where W, 1s the Weil group at v, is given
tg—d
2, where deg :

— by the action of g& on 1y and deg(o,) € Z on =
W, — Z sends geometric Frobenius to 1,
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— and the action of (g™, g%, val(det g¢) — dego,) € G(A®?) x
tg—d

GLj-1g(Fy) x Z on Lg, (mo[t]p); ®="7 .

We also introduce

HT@z,E(W”’ L) := HT@z,E(W’U’ IT,)[d — tg],
and the perverse sheaf
Pg,(t, )1, = j%?!*HT@“E(WU, Ste(m,)) ® L(m,),
and their induced version, HTg (m,,I1;) and Pg (t,7,), where
=tg __ ;tg . ;=tg . =tg >tg B
] =170) : SthU — ShI,Ev — ShI,Sv

and 1L is the local Langlands correspondence composed by contragredient.
We will also denote by HTg, ((my, 1) := HTg (7, I1t) ® Ve and simi-
larly for the other notations as for example Pg, ((t,m,) 1= Pg, (¢, m,) ®V¢.

Remarks:

— We will simply denote by P(t,7,) any Z-lattice of Pg,(t,m,) that
we do not want to precise except that it is stable under the various
actions. We will use a similar convention for the other sheaves
introduced before. When considering F;-coefficients, we will put F,
in place of Q, in the notations.

— Recall that 7 is said inertially equivalent to 7,, and we write m, ~;
7! | if there exists a character ¢ : Z — Q, such that 7/, ~ 7, ® (¢ o
valodet). We denote by e, the order of the inertial class of .

— Note, cf. [3] 2.1.4, that Py, (¢, 7,) depends only on the inertial class
of m, and

Py, (t,m) = ex,Pg,(t, )

where Pg, (¢, 7,) is an irreducible perverse sheaf.

— Over 7Z;, we also have the p+-perverse structure which is dual to
the usual p-structure.

2.10. Notation. — Let denote by

(1) l, ifq, =1 mod
“\ = the order of q, modulo I, otherwise
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Remark. For a cha@cter@) Xv and when ¢ < e,({), up to homothety there
is only one stable Z;-stable lattice of L(m,[t]p). From the description of
the modulo [ reduction of St;(x,) in [5], the same is then true for P(t, x,).

2.11. Notation. — Let denote by

v, = R, @ - (D

the nearby cycles autodual free perverse sheaf on the geometric special
fiber Shr s, of Shy,.

Following the constructions of [6] §2.3, we can then define a 7
filtration Fil*(W¥,) whose graded parts gr'(¥,) are free Z;-perverse
sheaves, cf. [6] §1, of the following shape

1—¢t+26

i HT (i, Stu(m) (—

) = g (Vy)

1—t+4+20 )
2

for some 0 < § < t — 1, where < means a bimorphism®, that is

both a epimorphism and a monomorphism, and where the lattice

HT(m,,Sty(m,)) depends of the construction in the general situation but

we will see that, with our hypothesis, up to isomorphism, there is only

one such stable lattice.

Remarks:

< p+j!:tgHT(7Tv, Stt(ﬂ-v))(

— In [9], we prove that if you always use the adjunction maps
gihi=h* — 1d (resp. Id — j7"j="*) then all the previous graded
parts are isomorphic to p-intermerdiate (resp. p+) extensions. In
our situation this issue disappear thanks to lemma 3.2.

— We can easily arrange the filtration so that it is compatible with
the nilpotent monodromy operator N,, i.e. so that for any r the
image of Fil"(V,) ®z, @, under N, is some Fil®")(0,) ®z, Q, for
some decreasing function ¢.

— When dealing with sheaves, there is no need to introduce the local
system V; 7 because it suffices to add ®z, V; 7, to the formulas.

()For a general supercuspidal representation 7, whose modulo ! reduction o is still
supercuspidal, the same is true if ¢ < m(g) where m(p) is either the order of the
Zelevinsky line of p if it is > 1, otherwise m(p) := .

G)by [6] corollary 1.4.6, the p and p+ intermediate extensions are free
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We now consider a fixed local system V.7 and, following previous
notations, we write Ve, := ¥, ®z V; 7. We then have a spectral sequence

EP? = H"™(Shy s, 87" (Weo)) = HP™(Shig,, Vez,)- (2.12)
As pointed out in [10], if for some m the spectral sequence is concen-
trated in middle degree, i.e. E7 = 0 for p+ ¢ # d — 1, and all the

Efﬁ_l_p are free, then, for [ > d, the action of the monodromy operator
Ngoke on H*'(Shyz,, Ve 7, )m comes from the action of N, on W,.

3. A saturated filtration of the cohomology
The aim of this section is the following proposition.

3.1. Proposition. — Consider a mazximal ideal m of T? such that:
— P 18 trreducible;
—m is KHT-free;
— the set S,(m) of modulo | eigenvalues of p,,(Frob,) does not contain
any subset of the form {\, g A\, - ,qf)”(l)*l)\}, where e,(l) is defined
m 2.10.

Then the EYq, are torsion free and trivial for p +q # d — 1.

Note that, as (2.12) after localization at m, degenerates at FE;
over Q;, then the spectral sequence gives us a saturated filtration of
H*(Shy3,, Vez,)m- As the proof uses Grothendieck-Verdier duality and
we need to understand the difference between the p and p+ intermediate
extensions of Harris-Taylor local systems HT (m,, Sty (m,)).

3.2. Lemma. — With the previous notations, we have an isomorphism

pjlih}jl*HTE<Xva Hh) = p+jlih}jg*HTE<Xva Hh)

Proof. — By definition we have
HTE(XU, )|k —d] = (Zl)‘Shigv,H ® 11,

where the action of the fondamental group goes through the character y,.
As, cf. [23], Sh®" _ is smooth over SpecF,, then P := (Zi),gpzr _ @11y

I,5,,1

1,59,1),
is perverse for the two t-structures with

h<+1,% -h<+1,! >
Zl—+ P e D" and Z1—+ P e Ptp>1,
h h
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Proof. — (of proposition 3.1)

As m is supposed to be KHT-free, then all the £  are free. Moreover,
as Py, is irreducible, then, cf. [4] §3.6, the EV% ®; Q; are all zero if
p+q # d—1. Recall, cf. [9] proposition 3.1.3, that we have the following
splitting

d
v, ~ 6—) @ v,
g=1 geScuspﬁl (9)

where ScuspE (g) is the set of inertial equivalence classes of irreducible
[F;-supercuspidal representations of GL,(F,), with

\DQ ®Zl @l = @ \IJX'U’

Xv=0 mod [

with the property that the irreducible constituents of W, are exactly
the perverse Harris-Taylor sheaf P(h, x,)(:%t2%) for 1 < h < d and
0 < k < h. Note that for every p € Scuspg, (g9), the cohomology groups
of ¥, are torsion free.
Remark. When computing the m-localized cohomology groups, we are
only concerned with ¢ € Scusp, (m) which are characters. Moreover as
ev(l) > d, in ¥, ®z Q, we have only to deal with characters x, so that,
by the previous lemma, the p and p+ intermediate extensions coincide.

3.3. Proposition. — We have the following equivariant resolution

_ h—d i
0 — i HT (xo, Stu(xo{—5—1) x Spehy_y(xo{h/2})) Q=5 ...

— jTUHT (x4, Sta(xo(—1/2)) % xo{h/2}) ® 22 —
G HT (X, St (o)) — Piis " HT (Xo, Str(x0)) — 0. (3.4)
Note that

— as this resolution is equivalent to the computation of the sheaves
cohomology groups of Pj;." HT (x,, Stx(x.)) as explained for example
in [9] proposition B.1.5 of appendice B, then, over Q;, it follows from
the main results of [3].

— Over Z;, as every terms are free perverse sheaves, then all the maps
are necessary strict.

— This resolution, for a a general supercuspidal representation with

supercuspidal modulo [ reduction, is one of the main result of [9]
§2.3.
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Proof. — For the case of a character y, as above, the argument is almost
obvious. Indeed as the strata Sh?v}fgvjl are smooth, then, cf. the proof of
the lemma 3.2, the constant sheaf, up to shift, is perverse and so equals
to the intermediate extension of the constant sheaf, shifted by d — h, on
Shfvhfv, In particular its sheaves cohomology groups are well known so
that the resolution is completely obvious for pjl HTr (X, Sta(Xo)) if

one remember that Speh,(x,) is just the character Xv © det of GL;(F,).
The stated resolution is then simply the induced version of the resolu-
tion of 7j="" HTr(xv, Sta(xy)): recall that a direct sum of intermediate

1'%
extensions is still an intermediate extension. O

By adjunction property, the map

e _6 =
G HT (x, Sth(Xv{7}> x Speh;(x,{h/2})) ® =°/2

6—1

s ST (e St v ) % Spehs_y (n{/2) @ T (35)

is given by

HT(x0, Sth(Xv{%é}) x Spehs(xo{h/2})) ® 29% —

GEIEOR (PO (RO IHT(XmSth(Xv{—})XSPehd L (xo{h/2}))®E =

s—1

)
(3.6)

To compute this last term we use the resolution (3. 4) Pre(nsely denote

by H := HT (xu, Stn(x{152}) x Spehs_; (xo{h/2})) ®E°%, and write the
previous resolution as follows

0—>K—>J' h+6%/—’Q_’O

0_)@_).]7h+5 1H—> j7h+6 1/)]_[_)07

with

H' = HT (o, Sth(xv{l%é})x (Speh51()@{—1/2})XXU{%}){h/Q})(@E‘W.
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As the support of K is contained in Shy2™*! then Pi"**'K = K and
GThHOx(PiMO ) s zero.  Moreover pzh*‘s'(f’j_}””s ') is zero by con-
struction of the intermediate extension. We then deduce that

6—1

R G F T 1HT(XmStt(xv'{—})><Speh<s 1 {h/2}))®Z727))

~ HT(XU, Sth<XU{T})

« (Spehs_ (xe{—1/2)) % ol S5 D) (h/2}) @2 (3.7

3.8 — Fact. In particular, up to homothety, the map (3.7), and so those

of (3.6), is unique. Finally as the maps of (3.4) are strict, the given maps
(3.5) are uniquely determined, that is, if we forget the infinitesimal parts,
these maps are independent of the chosen ¢ in (3.4).

For every 1 < h < d, let denote by i(h) the smallest index i such that
H(Shys,, Pz HT (X, Stn(Xo)))m has non trivial torsion: if it does not
exist then we set i(h) = +o00. By duality, as Pj,, = P*j, for Harris-Taylor
local systems associated to characters, note that when i(h) is finite then
i(h) < 0. Suppose by absurdity there exists A with i(h) finite and denote
ho the biggest such h.

3.9. Lemma. — For 1 < h < hy then i(h) = h — hy.
Remark. A similar result is proved in [8] when the level is maximal at v.

Proof. — a) We first prove that for every hy < h < d, the cohomology
groups of j;"HT(x,,I1;) are torsion free. Consider the following strict
filtration in the category of free perverse sheaves

(0) = Fil™ ~(x0, h) 4= Fil™(x, h) > -+
o Fil™" (xo, h) = " HT (x0, TTh)
where the symbol <4— means a strict monomorphism, with graded parts
h—k
).

%) @ stentuth/zt

_ h
gt " (Xus h) =~ D5 HT (x0, 1§

Over Q,, the result is proved in [3} §4.3. From [6] such a filtration can
be constructed over Z; up to the fact that the graduate parts are only
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known to verify

h—k
2

= P HT (x, T

pj!:kHT(va Hh{

@St (e 2)) (") < v, )

h—k h—Fk

5} ®Stin O {h/2})) (=),

and we can conclude thanks to lemma 3.2. The associated spectral se-
quence localized at m, is then concentrated in middle degree and torsion
free which gives the claim.

b) Before watching the cases h < hg, note that the spectral sequence
associated to (3.4) for h = hy + 1, has all its E terms torsion free and
degenerates at its Fy terms. As by hypothesis the aims of this spectral
sequence is free and equals to only one Fs terms, we deduce that all the
maps

— -0 _
HO(Sh 5,0 57 HT (X0, St 1) x Spebs(xa{h/2) @ =°7)

—

m

b 1—-96
H°(Shys,, ji ho 1HT§(X’Uusth(XU{T})

6—1

x Spehs_y (xo{h/2}) ®E2) - (3.10)

are saturated, i.e. their cokernel are free Z;-modules. Then from the
previous fact stressed after (3.7), this property remains true when we
consider the associated spectral sequence for 1 < h' < hy.

c¢) Consider now h = hy and the spectral sequence associated to (3.4)
where

ERT = H""4(Shy 4, ;"™
HTe(xo, St(xo(—a/2)) x Spehy(xo{h/2})) ®E)n  (3.11)

By definition of hy, we know that some of the E%? should have a non
trivial torsion subspace. We saw that

— the contributions from the deeper strata are torsion free and

— H¥(Shys,, 57" HT¢ (X, i) )m are zero for i < 0 and is torsion free
for i = 0, whatever is IIj,.

— Then there should exist a non strict map d}"?. But, we have just
seen that it can not be maps between deeper strata.
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— Finally, using the previous points, the only possibility is that the
cokernel of

— —1 —
HO (S, 57 H T (xSt (x5 1) % ot/ 21) @ 172)

—

H°(Shy,s, , j; " HTe(Xo, Stho (X0))),, (3.12)

m

has a non trivial torsion subspace.

In particular we have i(hg) = 0.
d) Finally using the fact 2.18 and the previous points, for any 1 < h <
ho, in the spectral sequence (3.11)

— by point a), E¥? is torsion free for ¢ = hg — h + 1 and so it is zero
if p+ 2q # 0;

— by affiness of the open strata, cf. [8] theorem 1.8, E5“ is zero for
p + 2q < 0 and torsion free for p + 2q = 0;

— by point b), the maps d5? are saturated for ¢ > hg — h + 2;

— by point c), d;Q(hoth)’hO*hH has a cokernel with a non trivial
torsion subspace.

— Moreover, over Q;, the spectral sequence degenerates at E5 and

EYT=0if (p,q) # (0,0).

We then deduce that H'(Shys,, Pii" HT¢(Xv, In))m is zero for i < h — hg
and for ¢ = h — hg it has a non trivial torsion subspace. O

Consider now the filtration of stratification of ¥, constructed using

the adjunction morphisms j;"j="* as in [6]

Fill(¥,) > FIP(¥,) > - 4 Fil(1,) (3.13)

where Fill'(¥,) is the saturated image of j"j="*¥, — W,. For our
fixed Xy, let denote Fil{, (¥) < Fil{(¥,) such that Fil}, (V) ®z Q, ~
Fil} (¥,,) where U, is the direct factor of ¥ ®z, Q, associated to y,, cf.
[6].
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3.14. Proposition. — We have the following resolution of Filin(\If)

_ d—1
0 — ji " HT (X0, Spehy(x0)) ® Lxo(—5—)) —
d—2

j!:d_lHT(Xm Speh,;_1 (X)) ® L(XU(T)) -

- — ji HHT (X, Xo) ® L(xy) — Fili, () = 0, (3.15)

where we recall that 1L is the local Langlands correspondence composed by
contragredient.

Remarks:

— As explained after proposition 3.3, it amounts to describe the germs
of the Z;-sheaf cohomology of Fil,lm (W,¢). Over @, the resolution
(3.15) is then proved in [3].

— Over Z;, it is proved in full generality in [9] for every irreducible
supercuspidal representation 7, in place of y,. It amounts to prove
that the germs of the sheaf cohomology of Fil!, (¥,¢) are free.

Proof. — We then just need to verify that every map is strict. Consider
then the torsion part of the cokernel of one of these maps. Note that,
thanks to lemma 3.2, such a cokernel must have non trivial invariants
under the action the Iwahori sub-group at v. We then work at Iwahori
level at v. As said above, it amounts to understand the germs of the
7Z;-sheaf cohomology of Filin(\Il) which are described, cf. [17], by the
cohomology of the Lubin-Tate tower. By the comparison theorem of
Faltings-Fargues, cf. [18], one is reduced to compute the cohomology of
the Drinfeld tower in Iwahori level which is already done in [26]: we then
note that there are all free Z;-modules. O

We can then apply the previous arguments a)-d) above, so that
H'(Shy,, Fﬂ!l’Xv(‘l!v,g)m has non trivial torsion for ¢ = 1 — hy and its free
quotient is zero for ¢ # 0.

Consider now the other graded parts. We also have a similar resolution

_ d—h
0 — JrHT (Xo, LTha(x0)) ® Lg(Xo(——)) —

2
g d—h-—1
G HT (X, LT a1 (X)) ®L9(Xv(T

- — i "HT (X, Sta(X0)) ® Ly(xo) — Fill (¥) — 0, (3.16)

) —
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where
LT hys(Xo) = Str(xu{—0/2}) x Spehs(x.{h/2}),

is the only irreducible sub-space of this induced representation. By
the same arguments, for h < hy (resp. h > hg) the torsion of
H(Shys,, Fill, (V,¢))m is trivial for any i < h — hg (resp. for all i)
and the free parts are concentrated for ¢ = 0. Using then the spectral
sequence associated to the previous filtration, we can then conclude that
H'7%(Sh;z,, ¥, ¢)m would have non trivial torsion which is false as m is
supposed to be KHT-free.

O

4. Local behavior of monodromy over F,

Let o be a F;-character. In [6] §2.3, we explained how to construct a
filtration Fill*(U,) of ¥, called exhaustive, whose graded parts grr”(,)
are free Z;-perverse sheaves of the following shape

1—-h+2

)

for some 0 < § <t — 1 and Yy, a Q;-character whose modulo ! reduction
is inertially equivalent to . In order to compute the cohomology groups
localized at m of Shy,, by hypothesis on m, we are only concerned with
the cases where 1 < h < e,(l). For a character y, with modulo [ reduction
inertially equivalent to g, and for 2 < h < d, consider r,, +(h) such that
grr™e+ M (W,) is isomorphic to P(h, x,)(+52). Then N/~ induces a
map

g’ (V,) ®, Q ~ pj!thT@l<Xv> St (xw))(

h—1
FﬂlTxU,+(h)<\IjQ) N Fi]ﬁxu,—(h)(q,g)

| |

Fill"xv+®) (@Q)W_”;h)grrrxu,f(h) (v,),

so that N(x., h) ®z, Q, is an isomorphism. In this section we want to
prove that this property remains true modulo [.

4.1. Proposition. — Suppose e,(l) > t, then the morphism on
Fill'+® (w,)/ Fill'-M =10, induced by the monodromy operator N,, is
strict.



F;-GALOIS SEMI-SIMPLICITY AND LEVEL RAISING 21

Proof. — Recall first that the filtration Fill*(¥,) is constructed so that
it is compatible with the action of N, in the sense that, over Q;, the
image of Fill"(¥,) is some Fill®™)(¥,). We then have to prove that for
every r_(h) < r < ri(h), we have a p-epimorphism N, : Fill"(¥,) —
F ju‘f’(’”)(\p o) which is clearly equivalent to prove that for every 1 < b’ < h,
then N, induces a isomorphism

=1 1—h'+26
i HT (X0, Sti (M))(T) —
—h 1—h +2(0-1
i BT (xSt ) (2O )

for every 1 < 6 < h/, where each of these two perverse sheaf is given by
the graded parts grr"(¥,) and grré™ ().

Recall that under the hypothesis that e,(q) > h = I/, then the reduc-
tion modulo I of x, [/ ] p® Ly (xw) @St (Xy) is irreducible so that there ex-
ists, up to homothety, an unique stable lattice of HT'(x,, Sts(x,)) which
means that to prove (4.2) is a isomorphism, it suffices to prove its reduc-
tion modulo [/ is non zero. To do so, it suffices to work in the Iwahori
level and use the arguments of [10] §3.1 where the monodromy action is,
thanks to Rapoport-Zink cf. [22] 3.6.13, described explicitly and is of
maximal nilpotency. [l

4.3. Corollary. — Under the hypothesis of the proposition 3.1 on m,
the order of nilpotency of the monodromy operator N:fzo 18 equal to the

mazimal of the order of nilpotency of Nz, where m described the set of
prime ideals contained in m.

Proof. — For any character p, the previous filtration of ¥, induces a
filtration of H°(Shys,, ¥, ® V, 7 )m which is strict thanks to proposition
3.1. Moreover the action of Ng°M is given by its action on ¥,. In par-
ticular its order of nilpotency is less that the maximal number r so that
(N @A, @I\ < S,(m) where A = o(Frob,) up to multiplication by
q" with k € %Z. Moreover as r is supposed to be strictly less than e, (1),
then the previous proposition tells us that the image of (le{fﬁ")r_l inside
H°(Shys,, ¥, ® Vez )m is_strict, i.e. the cokernel is free.

Then after taking ®z F;, we then obtain a filtration of H°(Shys,, ¥, ®

—coh .
V§,E>m such that the (Nf:vo)r_l is non zero.
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The result then follows from the decomposition of H°(Shyz,, Ve 7z, )m
as direct sum of the H%(Shys,, ¥, ® V, 7 )m where ¢ describe the set of
inertial equivalence classes of [F;-characters of F*. ]

5. Proof of the main result

5.1. Definition. — (cf. [27] §5) We say that m is KHT-typic if, as a
Tsw|Galrs]-module,

H* Y (Shyg, Vez, Jm = 0 ®rg oy
for some TZ -module o on which Galps acts trivially and
Pm - GalF,g —> GLd(TS:m)

is the stable lattice of @ & introduced in the introduction.

fcm P
As explained in [21], the @;-cohomology of Shr; can be written as
del(ShLﬁ, V&@l)m ~ (—B () @V (n®),

71’6./457] (m)
where

— Ag¢ 1(m) is the set of equivalence classes of automorphic representa-
tions of G(A) with non trivial /-invariants and such that its modulo
[ Satake’s parameters outside S are prescribed by m,

— and V(7®) is a representation of Galpg.

As p,, is supposed to be absolutely irreducible, then as explained in
chapter VI of [21], if V(7*) is non zero, then 7 is a weak transfer of
a ¢-cohomological automorphic representation (IL, 1)) of GLy(Ap) x Aj
with ITV ~ II¢ where ¢ is the complex conjugation. Attached to such a
IT is a global Galois representation pr; : Galps —> GLg(Q;) which is
irreducible.

5.2. Theorem. — (cf. [20] theorem 2.20)

If priy is strongly irreducible, meaning it remains irreducible when it is
restricted to any finite index subgroup, then V(7n®°) is a semi-simple rep-
resentation of Galpg.

Remark. The Tate conjecture predicts that V(7%) is always semi-simple.

5.3. Proposition. — We suppose that for all m € A¢ (m), the Galois
representation V (m®) is semi-simple. Then m is KHT-typic.
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Proof. — By proposition 5.4 of [27] it suffices to deal with Q,;-coefficients.
From [21] proposition VII.1.8 and the semi-simplicity hypothesis, then
V(7®) ~ Re(m)®™™ where Re() is of dimension d. We then write

(n°) ®g, Be(m) = (7°) @15 (T¢5)"
V(r*) ~ ((7*))®r™ @ps  (T? ) and finally

l &m,Q; £mQ

H Y (Shyg, Veg)m ~ M @ps_ (T7, 5)%

£m,Q;

and (7°)" ®g

with M ~ @WGA“(m)((W‘D)])@"(”). The result then follows from [21]
theorem VII.1.9 which insures that Re¢(m) ~ pg, if m is the prime ideal
associated to m, O
5.4. Theorem. — Let m be a mazimal ideal of T?Z such that:

— P s absolutely irreducible;
— m is KHT-free and with indefinite maximal nilpotency at v;
— H*'(Sh 3, Veg,)m is Galois semi-simple.

Then pn ®s7, F, is not semi-simple.

Proof. — By hypothesis there exists m; and my such that n;(m;) >
n1(Mz). Then we saw that the order of nilpotency of Nﬁfzo is = nq(my)
while those of N, on gy, is < ni(My). If pn ®z, F; were semi-simple and
so isomorphic to —n(? " then the order of nilpotency of Ny, ®z, F, would
be < ny(my).

Moreover from our hypothesis and the previous proposition, we know
that m is KHT-typic and so the order of nilpotency of N;OZO should be
equal to those of Ny, ®7, F; and so < n;(My), which is incompatible with
the fact it is = ny(my). O

5.5. Definition. — Let define the depth of m as follows.

— We first denote by p(m)° := pn ®z, F;,

— and, inductively for any i > 1, we denote by
e p;(m) the socle of p(m)"~1,
o pm)" = p(m)" ! /7 (m). |
e and p(m); the kernel of p(m)° — p(m)’.

The depth of m is then the smaller r such that p"(m) is zero.
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The set of partitions dj ,, for various m < m, could be used to obtain
informations about the depth of m. Consider for example the following
situation:

- i}(m) = {O./, G, - - 7q371a};

— Nuy is zero;

— there exists m < m such that Il , >~ Stq(x,) for some character x,,.

5.6. Lemma. — With the hypothesis of 5.4 and the three above assump-
tions, then the depth of m is greater than d.

Proof. — By construction each of the p;(m) is a direct sum of copies of
P SO that the nilpotent monodromy operator Ny, acts trivially. We
then deduce that Ny, sends p(m); onto p(m);_;. Our last hypothesis

then implies that N::UI # 0 so that the depth of m should be greater
than d. n

As explained in §6, the existence of m < m such that ITg , ~ Sta(x.),
should be given by the higher dimension of Thara’s lemma. To deal with
more general situations it is convenient to suppose that the order of ¢,
modulo [ is strictly greater than d and S,(m) to be multiplicity free.
Consider then

— « and r maximal such that {a, ¢, -, ¢ 'a} = S,(m). We also
denote by eq, - -, e,_1 the associated eigenvectors of p,,(Frob,).

— Let denote by ig = 0 <1; < --- <11 <17 — 1 the index ¢ such that
e; € Ker Nm,v.

— We moreover assume the existence of m < m such that Il =~
St,(x»)x? where x, is a character of F* such that y,(w,) = «
and where 7 means a irreducible representation we. do not want to
precise.

5.7. Lemma. — With the hypothesis of 5.4 and the three above assump-
tions, then the depth of m is strictly greater than k.

Proof. — The existence of m implies that there exists an eigenvector f,_;
of pm(Frob,) ®z F, for the eigenvalue ¢} o such that N:;Ul( fr) # 0. We
first introduce the following notations:

— 4 such that f, € p(m)?;

—for <j<r—11let f; = NV (fron).
Asin p(m); — p,(m) the image of f;,_is zero then f;, € p(m);_1. As S,(m)
is supposed to be multiplicity free then the image of f;, in p*'(m) ~
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ﬁ?m’"l belongs to the space generated by the e;, _; in each of the copies
of p,,. We can then repeat the previous observation so that the image of
fi,_, 18 zero by p(m);_; — p;_(m) and that finally the depth of m should
be greater than k. O

6. Thara’s lemma and level raising

We now want to explain how, using Thara’s lemma in higher dimension,
to construct m with indefinite maximal monodromy at a fixed place v. In
the Taylor-Wiles method, Thara’s lemma is the key ingredient to extend a
R =T property from the minimal case to a non minimal one. In higher
dimension, Clozel, Harris and Taylor in their first proof of Sato-Tate
theorem [14], proposed a generalization which involves, for example, a
similitude group G over Q verifying the following hypothesis.

— there exists a prime number p’ = u/(u')® decomposed in F, such
that p’ # p and G(A®*") is isomorphic to our previous G(A®*),

— the associated unitary group of G(R) is compact and

- G(Qy) ~ Qy % [ L (B2)* where w' describe the places of F
above u’,

— where there exists a place v'|u’ such that B, ~ B, for all w'|u’
distinct from v' and B, ~ GL4(F,) while B, is a division algebra
with invariant 1/d.

With the previous notations, consider a finite set S of places of F

and a maximal ideal m of the anemic Hecke algebra ']I‘*g such that p,, is
absolutely irreducible.

6.1. Conjecture. — Let U be an open compact subgroup of G(A)
unramified outside S and let © be an irreducible sub-representation of
C*(GQ\G(A)/U",F))m, where U = U,U . Then its local component
T, al v 1S generic.

More precisely the conjecture is supposed to be true for all similitude
groups G/Q such that the associated unitary group of G(R) is compact.
We can also formulate a similar conjecture for a similitude group G as
in §2 to define a KHT Shimura variety. We could then hope that any
irreducible sub-space of

lim H* Y (Shye(n) 5, F1)ms

n
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as a representation of GLg4(F),), is necessary generic. In [12] §2.3, we
prove that if this KHT version of Ihara’s conjecture would be true then
the Clozel-Harris-Taylor usual version would also be true. We now first
want to prove a reciprocal statement for G and G as above.

6.2. Proposition. — Take | > d such that p’ =1 mod [ and consider
a mazximal ideal m which is KHT-free. Then the Ihara’s conjecture for G
implies the Ihara’s conjecture for G.

Proof. — Thanks to [24] theorem 6.23, we have a rigid-analytic uni-
formization of Shyy , as

GQ\(x =)y T B/,

wlu/, w#v’

where (VZd is the Drinfeld rigid-analytic space of GL,. By [19] §4.5.3, this
uniformization allows us to compute the cohomology of Shyj; , through
a spectral sequence

/

EPY = Extly o ) ( H202(Q, F)) (d— 1), A ) = H""(Sh;, ,,F),

where [, is supposed to be the inversible group of the maximal order of
B,.

Asl>dand p’ =1 mod [, we are then in the banal case where the
theory of F;-representations and those over Q; are the same, cf. [29].

Recall, cf. [26], that the H'({)y,7;) are torsion free so that
Hi(éd,FZ) >~ Hi(ﬁd,Zﬂ ®Zl Fl'

We then localize the previous spectral sequence at m so that, £V ®z,
Q = (0)if p+q # d— 1: in particular it degenerates at E.
Indeed as a GLy(Fy)-representation, H2-274(Q), Q,) is isomor-
phic to LTy ,(d,q) defined as the unique irreducible sub-space of

Stq+1(]lvx(%i)) x Speh,_, 1 (1,(%)) so that, as m is not pseudo Eisen-
stein, then the only irreducible automorphic representations IT of G(A)
giving a non zero term in the spectral sequence are those for which
I, ~ Stq(x,) with x, a character inertially equivalent to the trivial
one. Then it is well-known, cf. [15] theorem 1.3 for example, that for
0<gq<d—1,theonly £V ® Q; which is non zero, is forp = d—1—gq
with p,q = 0.
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By the previous remark, the same is then true over F; so that we
have a filtration of H4'(Shy; ,, Fi)m with graded parts the Ef;ll_q’q. By

hypothesis each of these Effmlfq’q satisfies the Thara property at the place
v, so that the same is true for Hd_l(ShI,ﬁv,,Fl)m.

]

Consider now a maximal ideal m of the anemic Hecke algebra ']I‘? which
is KHT-free and such that p,, is irreducible. We moreover suppose that
v =1 mod [ with [ > d, and that S,(m) is made of characters. Let then
0 € S,(m) and we denote by s its multiplicity. Here is the automorphic
version of proposition 1.3.

6.3. Proposition. — If Ihara’s lemma is true for G, then there exists
m < m such that 5., >~ Sts(xy) x ¥, where x, = ¢ mod [, and ¥, is a
irreducible representation of GL4_s(F,) whose modulo | reduction has a
supercuspidal support disjoint from™® o.

Proof. — The strategy is to suppose that the conclusion is false and then
prove that Thara’s lemma is then not verified. Let then ¢ < s be maximal
such that there exists m < m with Iz ~ St,(x,) x I, such that y, = ¢
mod [. Then, by proposition 7.2, for all h > t, the H*(Shy 5,, Pe(Xv, 1))m
are zero and the spectral sequence associated to Fill*(¥,) gives

HO(Shys,, Pe(Xo,t))m @z, Fr — H(Shys,, U, e)m @, Fi.

The idea is then to construct an irreducible F;[G Ly(F,)] sub-module of
H°(Shys,, Pe(Xv: ) )m ®7z, F; which is not generic. By proposition 7.2,
I is a Q[GL4(F,)] sub-module of H°(Shys,,Pe(X0v,t))m so that, by
taking a saturated lattice, Iz ®z F, is a F;[GLy(F,)] sub-module of
H°(Shys,, Pe(Xv, t))m ®7z, F;. Using the fact that the strata are induced
and s < d < [ so that St;(x.) ®z IF; is irreducible isomorphic to St;(o),
we are then reduced to prove that St;(g) x (I, ®7z, F;) has an irreducible
sub-space which is not generic, whatever is the stable lattice of I', taken
to compute (I, ®z, Fy).

As m is not pseudo-Eisenstein and S, (m) is made of characters, then I,
is of the following shape Sty (Xy.1) X - - - X Sty, (X,») Where, as we supposed
t < s, at least one of the characters Y, ; is congruent to o modulo [. Take
then an irreducible sub-space 7 of (I', ®z, F). If 7 is not generic we are

() Recall that as g, = 1 mod I, then the F;-Zelevinsky line of ¢ is {o}.
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done, otherwise 7 ~ St,_,(0) x ¥ where the supercuspidal support of ¢
does not contain g. We then conclude by noting that St;(g) x Sts_4(0)
has a non generic subspace. Indeed St;(0) x Sts—+(0) is the modulo [
reduction of St;(x,(52)) x Sts—i(xv(5)) which has an unique irreducible
subspace which is non generic, and we conclude as an irreducible non
generic representation does not have any irreducible generic subquotient.

[]

Remark. In the previous proof, note that St;(¢) x Sts_4(0) is also the
modulo [ reduction of St;(x,(—52)) x Sts—(x»(—%)) which has an unique
irreducible sub-space which is Sts(x.), so that St;(0) x Sts_(0) is the
direct sum of a generic representation with a non generic one.

7. Automorphic congruences

As in [7], we can use the freeness of the cohomology groups of the
Harris-Taylor perverse sheaves, to produce automorphic congruences.
Consider then m verifying the hypothesis of proposition 3.1 so that the
H'(Shys,,75;" HT:(Xv, h))m are free and concentrated in degree i = 0
with

H°(Shys,, Pjn" HTe (X, h))m ®7, Fr ~

HO(Shy s, i HT g, (ri(xo), 7))

= HO(ShI,§v7 pj!:hHTE(X;a h))m ®Z Flv (71)

whatever is x;, such that the modulo [ reduction r;(x;,) of x; is isomorphic
to those of x,. Recall then from [4], the description of the Q;-cohomology
groups of Pj;;" HT¢(x., h) localized at m.

7.2. Proposition. — (cf. [4] §3.6 with® s =1)
For x, an wunitary character of F), then, for 1 < h < d, as a
T3 (G La(F,)]-module, we have

lim H(Shpor, s, "5 Heg,(xo. M) >~ @ m(I)(IT™)" @1,
I, HEA(LEh,x0m)

where

) As Pm 1s supposed to be irreducible, the integer s of [4] §3.6 is necessary equal to
1.
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— A(I, h, xv,m) is the set of irreducible £-cohomological automorphic
representations II of G(A) with non zero invariants under IV with
modulo | Satake’s parameters prescribed by m,

— such that 11, is of the following shape

Hv ~ Sth(Xv) X \I/v

where W, is a representation of G Ly 1 (F,),
— and m(I1) is the multiplicity of I1 in the space of automorphic forms.

Remark. We write the local component IL, of IT € A(I,&, h, x,, m) as
HU &= Stt1 (Xv,l) X X Sttr (XU,’/‘) X \Il;n
where

— the x,, are inertially equivalent characters,

— W}, is an irreducible representation of G Ly_yr  (F,) whose cusp-
idal support, made of character by hypothesis, does not contain a
character inertially equivalent to x, ;.

Then II contributes &k times in the isomorphism of the previous proposi-
tion, where k = #{1 < ¢ < r such that ¢, = h}.

We are now in the same situation as in [7] where we prove that the
conjecture 5.4.3 implies the conjecture 5.2.1 and the translation in terms
of automorphic congruences explained at the end of §5.2 The situation
here is much more simple as s = 1.

7.3. Corollary. — Let 11 be an irreducible automorphic representation

of G(A) which is &-comological of level K and such that

— its modulo | Satake’s parameters are given by m,

— and its local component 11, at v is isomorphic to 1, ~ St (x,) x ¥y,
where x, 1S a characters and ¥, is an irreducible representation of
GLgn(F,).

Consider then any character ., of F,* which is congruent to x, modulo .
Then there exists an irreducible automorphic representation II' of G(A)
which 1s &-cohomological of the same level K and such that

— its modulo | Satake’s parameters are given by m,
— its local component at v is of the following shape

H; ~ Sth(X;) X \If;)
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