End-to-End Deep Neural Network Design for Short-term Path Planning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

End-to-End Deep Neural Network Design for Short-term Path Planning

Résumé

Early attempts on imitating human driving behavior with deep learning have been implemented in an reactive navigation scheme which is to directly map the sensory measurement to control signal. Although this approach has successfully delivered the first half of the driving task-predicting steering angles, learning vehicle speed in an end-to-end setting requires significantly large and complex networks as well as the accompanying dataset. Motivated by the rich literature in trajectory planning which timestamps a geometrical path under some dynamic constraints to provide the corresponding velocity profile, we propose an end-to-end architecture for generating a non-parametric path given an image of the environment in front of a vehicle. The level of accuracy of the resulting path is 70%. The first and foremost benefit of our approach is the ability of incorporating deep learning into the navigation pipeline. This is desirable because the neural network can ease the hardness of developing the see-think-act scheme, while the trajectory planning at the end adds a level of safety to the final output by ensuring it obeys static and dynamic constraint.
Fichier principal
Vignette du fichier
paper_Dao_Lanza_Fremont_PPNIV2019_Final_version.pdf (608.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02266802 , version 1 (16-08-2019)

Identifiants

  • HAL Id : hal-02266802 , version 1

Citer

Minh Quan Dao, Davide Lanza, Vincent Frémont. End-to-End Deep Neural Network Design for Short-term Path Planning. 11th IROS Workshop on Planning, Perception, Navigation for Intelligent Vehicle (PPNIV 2019), Nov 2019, Macau, China. ⟨hal-02266802⟩
271 Consultations
205 Téléchargements

Partager

More