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End-to-End Deep Neural Network Design
for Short-term Path Planning

Minh Quan Dao1, Davide Lanza1 and Vincent Frémont1

Abstract— Early attempts on imitating human driving be-
havior with deep learning have been implemented in an
reactive navigation scheme which is to directly map the sensory
measurement to control signal. Although this approach has suc-
cessfully delivered the first half of the driving task - predicting
steering angles, learning vehicle speed in an end-to-end setting
requires significantly large and complex networks as well as
the accompanying dataset. Motivated by the rich literature in
trajectory planning which timestamps a geometrical path under
some dynamic constraints to provide the corresponding velocity
profile, we propose an end-to-end architecture for generating a
non-parametric path given an image of the environment in front
of a vehicle. The level of accuracy of the resulting path is 70%.
The first and foremost benefit of our approach is the ability of
incorporating deep learning into the navigation pipeline. This
is desirable because the neural network can ease the hardness
of developing the see-think-act scheme, while the trajectory
planning at the end adds a level of safety to the final output
by ensuring it obeys static and dynamic constraint.

I. INTRODUCTION

Motion planning methods for autonomous vehicles are
classically developed to sequentially perform path planning,
obstacles avoidance, and trajectory optimization [1], [2],
[3]. Path planning module, which can be implemented by
RRT [4], A* [5], Lattices and motion primitives [6], or
function optimization [7], takes into account the geometry
characteristic of the environment to produce a collision-
free (with regard to static obstacle) non-parametric path. On
the other hand, the trajectory optimization module, which
subsumes the obstacles avoidance, aims to optimize both
way points and the corresponding velocity profile so that
they respect vehicle’s kinematics and dynamic obstacles [8],
[7].

Deep learning can help simplify the path planning and
trajectory optimization pipeline above with just a deep neural
network which learns human driving behavior in a supervised
manner. The first successful example traces back to ALVINN
[9], where a shallow network was used to calculate the
steering angle directly from images. This work is revised
in the deep learning era in [10], the authors went beyond a
mere pattern recognition, learning the entire steering angle
prediction pipeline for autonomous cars by building a map-
ping from images obtained by a forward camera to steering
angle with a deep CNN. Taking the similar approach but
with different input, [11] used visual information obtained by
an event-based camera to train their steering model. A more
global approach to motion planning using deep learning is to
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learn a spatial traversability maps [12], [13]. In these works,
rather than just predict a single steering angle, the model is
designed to learn a cost function with can be later used for
path planning. The common shortage of these works is their
inability of addressing vehicle speed.

To solve this problem by the end-to-end learning, [14]
uses recurrent layers together with CNN network to learn a
complete driving policy (steering angle and vehicle speed).
Though this work has showed its capability and robustness, it
comes with the cost of an extremely large dataset and fairly
complex network as well as the training process. Taking
a different approach, [15] proposed an integrated solution
where a CNN is trained on monocular image data (as in [10])
to output a path, this path is then used as the initial guess
for a Particle Swarm Optimization algorithm [16] which in
turn transforms the path to a complete trajectory.

Another method to infer vehicle speed is to calculate it
proportional to the collision probability [17]. The network
designed in this work is made of three consecutive ResNet
blocks following by two parallel fully-connected layers,
which respectively output the steering angle and a collision
probability. The steering prediction is learned through a re-
gression problem, while the collision prediction is addressed
as a binary classification problem.

In this paper, we propose and evaluate a deep neural
network architecture inspired by DroNet for short-term path
planning which is to predict a sequence of steering angles
directly from an image obtained by forward camera, hence an
end-to-end model. The main difference between [17] and our
work is the statement of steering angle prediction problem.
In fact, as mentioned in [18], it can be transformed from a
regression problem of continuous values to a classification
problem where the steering angle range is tessellated into
discrete spans with width of 0.01 radians. Such choice of
span width is justified by the jitter of steering angle applied
by a human driver in straight road. Moreover, the calculated
steering sequence is mapped into a non-parameterized path
and, once the path is output, any motion planning algorithm
can be implemented to timestamp the path.

The rest of this paper is organized as follows. Sec.II
adapts the DroNet architecture for learning a single steering
angle through a classification problem. In Sec.III, we further
modify the resulted architecture and the used dataset to
enable the network to learn a geometrical path in an end-
to-end setting. The performance of the path planning model
derived in the Sec.III is evaluated in Sec.IV. Then Sec.V
describes the short-term path generation using the steering
angles sequence and car-like vehicles motion constraints.



Concluding remarks are made in Sec. in VI.

II. LEARNING STEERING ANGLES

Taking a different approach compared to the majority of
researches in end-to-end learning for autonomous driving
which formulates the prediction of steering angles as a
regression problem [9], [10], [17], our model is designed
to be a classifier. The reason of our choice stems from
the fact that for a regression-based network, there is a
continuous range of angles to infer, but only a finite number
of samples with which to train against. By tessellating the
range of steering angles into discrete bins, the requirement
of infinite training samples to fully cover such continuous
range is no longer effective. Moreover, Sec.IV shows that
with sufficiently small bins, our classifier can outperform
the DroNet - a regression-based model.

A. Network Architecture

[17] has showed that their the architecture responds
strongly to ”line-like” features in the forward images which
has a strong relation with the resulted steering angles. Moti-
vate by this work, we design our model out of their ResNet-
made body and put a classifier on top of it. This classifier is
made of 2 dense layers. The first has 800 neurons activated
by ReLU, while the second has 227 neurons (equal to the
number of classes) and is activated by Softmax function. The
conceptual architecture is shown in Fig.1. Each ResNet block
in this figure is comprised of 3 convolutional layers: 2 on
the main path and 1 on the shortcut (see Fig. 2).

The hyperparameters of each ResNet block are shown in
Tab. I.

Stage Layer Number Kernel Stride Padding
of kernels size Stride Padding

1 Conv2D a 32 3 2 same
1 Conv2D b 32 3 1 same
1 Conv2D c 32 1 2 same
2 Conv2D a 64 3 2 same
2 Conv2D b 64 3 1 same
2 Conv2D c 64 1 2 same
3 Conv2D a 128 3 2 same
3 Conv2D b 128 3 1 same
3 Conv2D c 128 1 2 same

TABLE I
MODIFIED RESNET CNN BODY PARAMETERS

The intuition behind our model is that the ResNet-made
body should learn better how to output useful feature maps
which probably contains roads shape and drivable area, while
the classifier on its top should learn how to output the
steering angle given the provided feature map.

B. Data Preparation

The dataset used to train our model is Udacity dataset
challenge 21. This dataset contains several hours of driving
on suburban road in good weather and lightning condition.

1https://github.com/udacity/self-driving-car/
tree/master/datasets/CH2

After processing, the dataset is organized as a time-order list.
An element of this list contains an image captured by front-
facing camera, the associated steering angle, GPS coordinate
of the vehicle at this time step and other information.

To decide the class of any steering angle, a histogram of
all steering angles in the dataset ranging from −2.051 to
1.903 radian is built (see Fig.4). The width of every bin
of this histogram is 1 degree. The class of an angle is the
index of the bin it belongs to. As can be seen in Fig.4, the
distribution of collected steering angles among these classes
is imbalance. To ensure the network does not overlook the
less frequent classes during the training process, class i
is assigned a weight w(i) based on the median frequency
balancing method in [19].

w(i) =
median frequency of the dataset

frequency of this class
(1)

Here, the numerator is the ratio between the number
of samples in class i and the total number of samples
in the dataset. The denominator is the median of the all
frequencies. The resulted weight w(i) is later used to scale
the contribution of every sample in class i to the total loss
function.

C. Model Training

The model’s weights are initialized randomly and the
network is trained by minimizing the cross entropy loss func-
tion using Adam optimizer with default parameters. After
training for 100 epochs with 1200 batch size, our model’s
accuracy on validation set peaks at 66% before dropping
due to over fitting. With this level of accuracy, its qualitative
performance measured by Root Mean Square Error (RMSE)
and Explained Variance score (EVA) are respectively 0.1083
and 0.8338. These values are competitive, compared to recent
development in end-to-end learning model: DroNet [17] and
[11]. The details comparison is carried out in Sec.IV.

III. LEARNING A GEOMETRICAL PATH

As shown in the previous section, a single steering an-
gle can be learned through a classification problem. Nev-
ertheless, knowing the steering angle is just half of the
autonomous driving task. The other control signal to be pro-
vided, is the vehicle’s speed. There are no means of inferring
a vehicle speed given a single steering angle at the same
time instance. However, the rich trajectory planning literature
suggests that a geometrical path can be timestamped to
generate a velocity profile [20] such that it can satisfy some
dynamic constraint. Therefore, in this section, we modify the
resulted architecture from the previous section and the used
dataset to enable the network to learn a geometrical path.

A. Network Architecture

Inspired by [15], a path can be encoded as a sequence of
steering angles, each of which is applied to a predefined
traveling distance. Based on this insight, a network can
learn a path by learning a sequence of steering angles. This
leads to the replacement of a single classifier on top of the

https://github.com/udacity/self-driving-car/tree/master/datasets/CH2
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Fig. 1. Modified DroNet architecture [17]

Fig. 2. Components of a ResNet block.

architecture in Sec.II by an array of 5 classifiers having the
same number of neurons and activation function. Putting the
ResNet-made body and the array of classifiers together, the
complete architecture is shown in Fig. 3. Here, a block Head
i is a 2-dense-layer classifier.

B. Dataset Preparation

The new model’s output is interpreted as a sequence of
5 steering angles. Each angle is applied to 2 meters of
traveling distance. As a result, a training sample is prepared
as following:

• X: an image of the environment in front of the vehicle
• y: a list of one-hot vectors. This first vector denotes the

class of the steering angle associates with the frame
represented by X. The i − th vector represents the
steering angle of the frame i × 2 meters away from
X .

Such definition of y suggests that the data set used to train
path planning model needs to explicitly contain the distance
information between two adjacent labels. This distance can
be retrieved from the GPS coordinate of each frame provided
in the original Udacity dataset. Upon completely being
generated, the whole dataset is divided into training set and
validation set with respectively 19000 and 2350 samples.

C. Model Training

Since the ResNet-made body is the same the model which
predicts a single steering angle in Sec.II, the weight of
the ResNet-made body of the path planning model in this
section is trained from the best weight obtained in Sec.II.
Conversely, all classifiers’ weight are initialized randomly.
The loss function is chosen to be the cross-entropy and is
minimized by the Adam optimizer. The choice of hyper-
parameters is the same as in Sec. II.

After training for 50 epochs, each of 5 five classifiers in
our model achieves at least 70% of accuracy.

IV. MODEL PERFORMANCE

A. Quantitative Performance

Using the same approach of [17], [11], the quantitative per-
formance is measured by Root Mean Square Error (RMSE)
and the Explained Variance score (EVA). The performance
over these metrics of 5 classifiers in our path planning model
compared to a constant estimator, which always predicts
0 as steering angle, a random one, the DroNet [17], and
the model taking input from an event-based camera [11] is
shown in Tab. II. All classifiers in our model outperform the
DroNet in both RMSE and EVA, while fall behind event-
based model with a small margin in RMSE. This shows by
tessellating the range of steering angle into sufficiently small
intervals, a classification-based model can deliver a better
result, compared to a regression-based one.

Model RMSE EVA
Constant baseline 0.2129 0
Random baseline 0.3± 0.001 −1.0± 0.022
DroNet 0.1090 0.7370
Event-based Model 0.0716 0.8260
Head 0 0.0869 0.8933
Head 1 0.0920 0.8781
Head 2 0.1052 0.8382
Head 3 0.0820 0.9012
Head 4 0.0851 0.8943

TABLE II
PATH PLANNING MODEL QUANTITATIVE PERFORMANCE

B. Qualitative Performance

The comparison between the histograms of predicted angle
classes and their ground truth on validation set are shown
in Fig.4. This figure indicates a relative match between the
predicted distribution and the true distribution.

In addition, the normalized confusion matrix of the first
classifier is shown in Fig.5. This matrix features a clear, large
magnitude main diagonal. This means the majority of pre-
dicted angle classes is actually the true class. Nevertheless,
there are a few strong cells in the bottom of Fig.5 implying



Fig. 3. Path planning architecture (CNN part)

Fig. 4. Predicted angle classes distribution of each classifier compared to
their ground truth

that the classifier fails to predict the class of extreme right
angles.

C. Layer Activation Visualization

In an attempt to understand how our model produces
its prediction, the outputs of each ResNet block in the
path planning model are displayed in Fig.6. This figure
shows that the first block recognizes lane mark and vehicles,
while the second block segments the drivable area. The last
block learns a down-sampled mapping. Together, these three
ResNet blocks learn useful feature maps which contains
roads shape and drivable area, while the classifiers on the
top learn to calculate the steering angle given those feature
maps.

V. INTERPRETING A STEERING SEQUENCE AS A
PATH

Since the motion of car-like vehicles is constrained to be
circular around its Instantaneous Center of Rotation (ICR)

Fig. 5. Normalized confusion matrix of the first classifier.

(see Fig. 7), a sequence of steering angles can be interpreted
as a geometrical path (i.e. sequence of way points) by
applying each angle in the sequence to a predefined traveling
distance of s meters.

In Fig.7, L is the distance between the front and rear axle.
δi(i = 0 . . . N) is a steering angle (N + 1 is the length of
steering angles sequence). At each time instance, the pose
of the vehicle is represented by the pose of the local frame
attached to the center of its rear axle - Oixiyizi(i = 0 . . . N).
xi goes from the rear axle to the front axle, and is perpendic-
ular to these axles. zi is orthogonal to the plane of motion,
and pointing outward. yi is defined such that Oixiyizi is
right-handed. The target is to calculate the position of the
center of the front axle relative to the local body frame at
the presence - O0x0y0z0. Assuming that the vehicle’s motion
is planar, the transformation from frame Oixiyizi to frame
Oi+1xi+1yi+1zi+1 is described by:

iTi+1 =

[
Rotz,φi

iti+1

01×2 1

]
(2)

Here, iti+1 is the coordinate of Oi+1 in frame i, and



Fig. 6. Output of each ResNet block with respect to different input images. From left to right, the images are respectively the input image, output of the
first, second, and third block.

Fig. 7. Car-like vehicle’s motion diagram with two different value of
steering angles. Each of these angles is applied to an arc distance of s
meters.

Rotz,φi is the matrix represents the rotation around the z-
axis by an angle φi. The radius of the circular motion around
ICRi is calculated as

Ri =
L

tan δi
(3)

Eq.3 implies that when the steering angle is close to zero
(i.e. the steering wheel is kept at the neutral position), the
radius of motion approach infinity, hence a straight motion.
Given Ri, the coordinate of Oi+1 in frame i is

iti+1 = 2Ri sin

(
φi
2

)cos(φi

2

)
sin
(
φi

2

) (4)

φi is the angle between xi and xi+1. As shown in Fig.7,
this angle can be calculated by:

φi =
s

Ri
=
s tan δi
L

(5)

With Eq. 5 and Eq. 4. The transformation from frame i to
frame i+1 in Eq. 2 is now fully defined. The local position
of the center of the front axle in homogeneous form is:

iLi =
[
L, 0, 1

]T
(6)

This position is transformed into the local frame at the
present time by the following equation

0Li =
0Ti

iLi =

i∏
j=1

j−1Tj
iLi (7)

To test the quality of the predicted path and its ground
truth, the trained path planning model is used to infer
path from forward images taken from Udacity dataset. The
inference process is implemented on a laptop equipped
with an NVIDIA GeForce MX130, an Intel Core i7-8650U
(1.90GHz), and 16GB of RAM. The inference time for 1
sample (i.e. 1 image) is 1 millisecond. Examples of path
generated by both true and predicted sequence of steering are
shown in Fig.8, while the extended video of path planning
model’s output compared to ground truth can be found in
this link: https://youtu.be/X2fi2xVr2jE. Fig.8 as
well as the video shows a good match between the predicted
path and its ground truth, which in turn proves the quality
of the prediction of our model.

VI. CONCLUSIONS

In this paper, we explored an end-to-end learning approach
to path planning for autonomous vehicles. In details, a
neural network made of three ResNet blocks and an array of

https://youtu.be/X2fi2xVr2jE


Fig. 8. Display of the predicted path. Left: Images captured by front-facing
camera. Right: Path in cartesian coordinates

classifiers is trained to output a sequence of steering angles
which is later interpreted into a geometrical path.

The advantage of this approach is that it pays the way
for the integration of deep neural network into the mo-
tion planning framework. Specifically, the geometrical path
learned by the network is then timestamped using trajectory
optimization technique to finally produce a parameterized
path (a path with a velocity profile). Beside providing two
crucial control signals of the driving task (steering angle and
velocity), this integrated approach enhances the reliability
of the predicted trajectory while ensures it is natural and
consistent with vehicles’ kinematic.

For the future work, the accuracy of the array of classifiers
needs to be improved. Furthermore, the network general-
ization should be evaluated on other autonomous vehicles
datasets with different camera parameters. Since a sequence
of steering angles implies a time order, it might be helpful if
the network can learn a temporal relation among the steering
angles. This can be done by exploring the application of
recurrent layers such as LSTM cells to enable the model
learning such time relation.

The code used in this paper is hosted on GitHub in Minh-
Quan Dao’s ECN-E2E repository: https://github.
com/quan-dao/ECN-E2E.
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