Quantum optimal transport is cheaper - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2020

Quantum optimal transport is cheaper

Résumé

We compare bipartite (Euclidean) matching problems in classical and quantum mechanics. The quantum case is treated in terms of a quantum version of the Wasserstein distance introduced in [F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343 (2016), 165-205]. We show that the optimal quantum cost can be cheaper than the classical one. We treat in detail the case of two particles: the equal mass case leads to equal quantum and classical costs. Moreover, we show examples with different masses for which the quantum cost is strictly cheaper than the classical cost.
Fichier principal
Vignette du fichier
quantbipartiteFGTP2revised.pdf (438 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02214344 , version 1 (31-07-2019)
hal-02214344 , version 2 (08-08-2019)
hal-02214344 , version 3 (04-05-2020)

Identifiants

Citer

Emanuele Caglioti, François Golse, Thierry Paul. Quantum optimal transport is cheaper. Journal of Statistical Physics, 2020, 181 ((1),), pp.149-162. ⟨hal-02214344v3⟩
312 Consultations
385 Téléchargements

Altmetric

Partager

More