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QUANTUM OPTIMAL TRANSPORT IS CHEAPER

EMANUELE CAGLIOTI, FRANÇOIS GOLSE, AND THIERRY PAUL

Abstract. We compare bipartite (Euclidean) matching problems in classical and quantum
mechanics. The quantum case is defined after a quantum version of the Wasserstein
distance introduced in [7]. We show that the optimal quantum cost can be cheaper than
the classical one. We treat in detail the case of two particles: the case of equal mass
provides equal quantum and classical costs, while we exhibit examples of different masses
for which the quantum cost is actually strictly cheaper.
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1. Introduction

The paradigm of modern optimal transport theory uses extensively the 2-Wasserstein
distance between two probability measures µ, ν on Rn, defined as

(1) W2(µ, ν)
2 ∶= inf

Π coupling of µ and ν
∫ ∣x − y∣2Π(dx, dy).

We have called coupling (or transport plan) of the two probabilities µ and ν any
probability measure Π(dx, dy) on Rn×Rn whose marginals on the first and the second
factors are µ and ν resp., i.e.

(2)
∫
Rn×Rn

a(x)Π(dx, dy) = ∫
Rn
a(x)µ(dx),

∫
Rn×Rn

b(y)Π(dx, dy) = ∫
Rn
b(y)ν(dy)

for all test (i.e. continuous and bounded) functions a and b.

Restricting the definition of W2 to couplings of the form

(3) Π = δ(y − T (x))µ(dx)

where T is a transformation of Rn such that ν is the image T#µ of µ by T , one sees
that:

(4) M(µ, ν)2 ∶= inf
T#µ=ν∫Rn

(x − T (x))2µ(dx) ≥W2(µ, ν)
2.

1
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The converse inequality is due to Knott, Smith and Brenier: under certain restrictions
on the regularity of µ and ν, any optimal coupling for the minimization problem defined
by (1) is of the form (3) for some transport map T , so that the inequality in (4) is
an equality (see e.g. [3] Section 1 for some details and Theorem 2.12 in [14] for an
extensive study).

Associated to W2 is the bipartite matching problem which can be described as follows.
Let us consider M material points on the real line {xi}i=1,...,M with xi < xi+1, and with
masses {mi}i=1,...,M , and on the other hand N points {yi}i=1,...,N with yj < yj+1, and with
masses {ni}i=1,...,N . We normalize the total mass as follows:

M

∑
i=1

mi =
N

∑
j=1

nj = 1.

The bipartite problem consists in finding a coupling matrix (pi,j)∣i=1,...,N,j=1,...M satisfy-
ing

N

∑
j=1

pi,j =mi,
M

∑
i=1

pi,j = nj , pi,j ≥ 0 for each i, j

which minimizes the quantity ∑
i,j
pi,j ∣xi − yj ∣2 .

That is to say, we define the optimal transport cost as

Cc ∶= inf
pi,j≥0

N

∑
j=1

pi,j=mi,
M

∑
i=1
pi,j=nj

∑
i,j

pi,j ∣xi − yj ∣
2.

It is natural to associate to the sets {xi}i=1,...,M and {mi}i=1,...,M , and to the sets
{yi}i=1,...,N and {ni}i=1,...,N the following discrete probability measures

µ ∶=
M

∑
i=1

miδxi, ν ∶=
N

∑
j=1

njδyj .

It is easy to see that any optimal coupling of µ, ν for W2 takes the form

Π = ∑
i,j

pi,jδxi ⊗ δyj , i.e. Π(x, y) = ∑
i,j

pi,jδ(x − xi)δ(y − yj),

so that

Cc =W2(µ, ν)
2.

A general review of the bipartite problem is out of the scope of the present paper,
and the reader is referred to the seminal work [11], the thesis [13] which contains an
extensive bibliography, and [2] for a lucid presentation of the mathematical theory
pertaining to this problem. Let us describe the simplest case M = N = 2.

In the case of equal masses, that is m1 = m2 = n1 = n2 =
1
2 , the optimal coupling is

shown to be diagonal, in the sense that the mass 1
2 is transported from the point x1 to
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Figure 1. Equal masses
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Figure 2. Different masses

the point y1, and likewise for x2 and y2. Thus

Πop =
1

2
δx1 ⊗ δy1 +

1

2
δx2 ⊗ δy2,

or equivalently

Πop(x, y) =
1

2
δ(x − x1)δ(y − y1) +

1

2
δ(x − x2)δ(y − y2),

and therefore

Cc =
1

2
(x1 − y1)

2 +
1

2
(x2 − y2)

2 .

In the case of unequal masses, let us consider the example where m1 =
1−η

2 and

m2 =
1+η

2 for some 0 < η < 1, while n1 = n2 =
1
2 . In this case, one shows that the optimal

transport moves the mass 1
2 from x2 to y2, moves the remaining amount of the mass

at x2, i.e. η
2 , from x2 to y1, and finally moves the mass 1−η

2 from x1 and y1. Therefore,
the optimal coupling in this case is

Πop(x, y) =
1 − η

2
δ(x − x1)δ(y − y1) +

η

2
δ(x − x2)δ(y − y1) +

1

2
δ(x − x2)δ(y − y2),

so that

Cc =
1 − η

2
(x1 − y1)

2 +
η

2
(x2 − y1)

2 +
1

2
(x2 − y2)

2.
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A quantum analogue to the Wasserstein distance has been recently introduced in [7]
according to the following general fact.

When passing from classical to quantum mechanics,
1. functions on phase-space should be replaced by operators on the Hilbert space of
square integrable functions on the underlying configuration space, and
2. integration (over phase space) of classical functions should be replaced by the trace
of the corresponding operators. Moreover,
3. coordinates q of the configuration space should be replaced by the multiplication
operator q̂ by the q variable, while momentum coordinates p should be replaced by the
operator p̂ = −ih̵∇.

These considerations are in full accordance with the definition of quantum density
matrices as self-adjoint positive operators of trace 1 on H ∶= L2(Rd). They are also
consistent with the definition of couplings Q of two density matrices R and S as density
matrices on H⊗H (identified with L2(R2d)) whose marginals (defined consistently again
as partial traces on the two factors of H⊗H) are equal to R and S. In other words

traceH⊗H((A⊗ IH)Q) = traceH(AR), traceH⊗H((IH ⊗B)Q) = traceH(BS)

for all bounded operators A,B on H, by analogy with (2).
Moreover they lead naturally to the following definition of the analogue of the Wasser-

stein distance between two quantum densities R and S. Consistently with (1) expressed
on the phase-space R2d, therefore with n = 2d, we define MK2 ≥ 0 by

MK2(R,S)
2 ∶= inf

Q coupling of R and S
trace (CQ),

with

C ∶= (p̂⊗ I − I ⊗ p̂)2 + (q̂ ⊗ I − I ⊗ q̂)2 − 2dh̵.

In other words, expressed as an operator on L2(Rd, dx) ⊗L2(Rd, dy),

C = (x − y)2 − h̵2(∇x −∇y)
2 − 2dh̵ = −4h̵2∇2

x−y + (x − y)2 − 2dh̵.

The operator 1
2(C + 2dh̵) is a quantum harmonic oscillator in the variable (x − y)/

√
2,

and this implies in particular that C = C∗ ≥ 0.
The quantity MK2 is not a distance as shown in [7] p. 171. Nevertheless, it was

established in [7] the two following links between MK2 and W2
1. First, for any pair of

density matrices R and S, the Husimi functions W̃ [R] and W̃ [S] of R and S satisfy

W2(W̃ [R], W̃ [S])2 ≤MK2(R,S)
2 + 4dh̵.

On the other hand, if R and S are Töplitz operators of symbols µ and ν,

(5) MK2(R,S)
2 ≤W2(µ, ν)

2.

1Note the unessential difference with the definition of the cost C in [7, 8, 9] created by the shift −2dh̵ and accounts for a shift by 2dh̵ in the

two next formulas.
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Let us recall that a Töplitz operator T (or positive quantization, or anti-Wick ordering
quantization) of symbol a probability measure τ is2

T ∶= ∫
R2d

∣q, p⟩⟨q, p∣τ(dq, dp),

where ∣q, p⟩ is a coherent state at point (q, p) i.e.

⟨x∣q, p⟩ ∶= (πh̵)−d/4e−(x−q)
2/2h̵eipx/h̵.

We also recall the definition of the Husimi function of a density matrix R:

W̃ [R](q, p) ∶= (2πh̵)−d⟨q, p∣R∣q, p⟩.

The functional MK2
2 (more precisely MK2

2 + 2dh̵ with the definition chosen in the
present paper) has been systematically used and extended in [7, 8, 9] in order to
study various problems, such as the validity of the mean-field limit uniformly in h̵, the
semiclassical approximation of quantum dynamics, and the problem of metrizing of the
set of quantum densities in the semiclassical regime.

Given the importance of optimal transport in the field of statistics in the problem
of comparing probability measures, there have been various attempts at defining ana-
logues of the Wasserstein, or Monge-Kantorovich distances in the quantum setting.
For instance, the reference [16] proposed to consider the original Monge distance (also
called the Kantorovich-Rubinstein distance, or the Wasserstein distance of exponent
1) between the Husimi transforms of the density operator. However, propagating this
distance with the usual quantum dynamics may not be easy, because the dynamics
of the Husimi transform of a density operator by the von Neumann equation is quite
involved [1]. A big advantage of the quantity MK2 introduced in [7] is that it is di-
rectly defined in terms of density operators, and therefore easily propagated by the
usual quantum dynamics, including N -body quantum dynamics, for which it has been
defined originally. Besides the quantity MK2 appeared in [7], other quantum analogues
of the Wasserstein distance of exponent 2 have been proposed by several other authors.
For instance a quantum analogue of the Benamou-Brenier formula (see Theorem 8.1 in
chapter 8 of [14]) for the classical Wasserstein distance of exponent 2 is studied in detail
in [4, 5], and this idea has been used to obtain a quantum equivalent of the so-called
HWI inequality [12]. More recently, other propositions for generalizing Wasserstein
distances to the quantum setting have emerged, such as [10] (which seems essentially
focussed on pure states) or [6], which is very close to our definition of MK2, except
that the set of couplings used in the minimization is different.

The quantum bipartite problem can be therefore stated as follows, in close analogy
with the classical picture introduced earlier.

2Here also, we use a different normalization than the one in [7, 8, 9], since we deal exclusively with density matrices. With the present

normalization, one has traceT = ∫R2d τ(dq, dp).
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One considers two density matrices built in terms of the positions and masses already
used for the classical bipartite problem, in the following way

R =
M

∑
i=1

mi∣xi,0⟩⟨xi,0∣, S =
N

∑
j=1

nj ∣yj,0⟩⟨yj,0∣.

Indeed, it is natural to associate coherent states to material points, as they saturate
the Heisenberg uncertainty inequalities. Moreover, one sees that R and S are precisely
the Töplitz operators of symbols µ and ν respectively.

The quantum bipartite problem consists then in finding an optimal coupling of R
and S for MK2(R,S) and the optimal quantum cost defined as

Cq ∶=MK2(R,S).

Since R and S are Töplitz operators, we know from (5) that

Cq ≤ Cc.

The question we address in this paper is whether there exist pairs of density matrices
for which

Cq < Cc.

In other words, we address the question of whether quantum optimal transportation
can be cheaper than its classical analogue.

We shall study the two cases introduced at the beginning of this section and described
in Figures 1 and 2. For the sake of simplicity, we shall take x1 = −x2 = −a, y1 = −y2 = −b,
with a < b in the equal mass case, and a = b in the unequal mass case.

In the equal mass case, studied in Section 2, both classical and quantum transport
are achieved without splitting mass for each particle: the two costs are shown to be
equal (see (13)), and an optimal quantum coupling is the Töplitz quantization to the
optimal classical coupling.

In Section 3 we study the case of different masses and construct a family of examples
for which the optimal quantum cost is strictly cheaper than the classical one (see (21)).

In addition, we show in Section 4 that an optimal quantum coupling is not always
the Töplitz quantization of a classical coupling. This can be rephrased by saying that
an optimal quantum transport can be different from the natural quantization of any
underlying classical transport. In fact, in the unequal mass case treated in this paper,
no quantum optimal transport corresponds to a classical transport, optimal or not:
they all involve strictly quantum effects.

2. The equal mass case

For a, b > 0 we will transport a superposition of two density matrices which are
pure states associated to two coherent states of null momenta localized at +a and −a
towards a similar density matrix associated to the points (±b,0) in phase space. In
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other words, we consider the coherent states denoted ∣c⟩ for simplicity (instead of ∣c,0⟩,
i.e. ⟨x∣c⟩ ∶= (πh̵)−1/4e−(x−c)2/2h̵) and consider the two density matrices

R ∶=
1

2
(∣a⟩⟨a∣ + ∣ − a⟩⟨−a∣), S ∶=

1

2
(∣b⟩⟨b∣ + ∣ − b⟩⟨−b∣).

Define

λ ∶= ⟨a∣−a⟩ = e−a
2/h̵, µ ∶= ⟨b∣−b⟩ = e−b

2/h̵,

and consider the two pairs of orthogonal vectors

(6) φ± ∶=
∣a⟩ ± ∣ − a⟩
√

2(1 ± λ)
, ψ± ∶=

∣b⟩ ± ∣ − b⟩
√

2(1 ± µ)
.

Hence

R = α+∣φ+⟩⟨φ+∣ + α−∣φ−⟩⟨φ−∣, S = β+∣ψ+⟩⟨ψ+∣ + β−∣ψ−⟩⟨ψ−∣,

with

α+ ∶=
1

2
(1 + λ), α− =

1

2
(1 − λ), β+ ∶=

1

2
(1 + µ), β− =

1

2
(1 − µ).

In the whole present paper, we will only use couplings of R and S that act from
the four-dimensional linear span of φ± ⊗ ψ± to itself. Therefore, in order to compute
trace (CQ) for such couplings, we need to project the cost operator C on the basis
{φ+⊗ψ+, φ+⊗ψ−, φ−⊗ψ+, φ−⊗ψ−}. This is a tedious but straightforward computation
which results in the following 4 × 4 matrix:

(7) C =

⎛
⎜
⎜
⎜
⎝

A 0 0 γ
0 B δ 0
0 δ C 0
γ 0 0 D

⎞
⎟
⎟
⎟
⎠

.

where

A = a2 1 − λ

1 + λ
+ b2 1 − µ

1 + µ
, B = a2 1 − λ

1 + λ
+ b2 1 + µ

1 − µ
, γ = −

2ab(1 − λµ)
√

(1 − λ2)(1 − µ2)
,

C = a2 1 + λ

1 − λ
+ b2 1 − µ

1 + µ
, D = a2 1 + λ

1 − λ
+ b2 1 + µ

1 − µ
, δ = −

2ab(1 + λµ)
√

(1 − λ2)(1 − µ2)
.

As a warm up in order to find an ansatz for the general case, let us first neglect
the contributions of λ,µ, exponentially small in the Planck constant. In this case
α± = β± = 1

2 , and the cost is equal to

C0 =

⎛
⎜
⎜
⎜
⎝

a2 + b2 0 0 −2ab
0 a2 + b2 −2ab 0
0 −2ab a2 + b2 0

−2ab 0 0 a2 + b2

⎞
⎟
⎟
⎟
⎠

,
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On the other hand, one has

Q0 ∶=
1

4

⎛
⎜
⎜
⎜
⎝

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎞
⎟
⎟
⎟
⎠

≥ 0,

since the spectrum of Q0 is easily shown to be {0, 1
2} by using the elementary formula

(8) det

⎛
⎜
⎜
⎜
⎝

ā 0 0 γ
0 b̄ δ 0
0 δ c̄ 0
γ 0 0 d̄

⎞
⎟
⎟
⎟
⎠

= (ād̄ − γ2)(b̄c̄ − δ2) for all ā, b̄, c̄, d̄, γ, δ.

Moreover, one easily checks that trace2Q0 = R and trace1Q0 = S so that Q0 is a
coupling of R and S.

Another easy computation shows that

trace (CQ0) = (a − b)2 .

Therefore
MK2(R,S)

2 ≤ (a − b)2 =W2(
1
2(δ−a + δa),

1
2(δ−b + δb))

2.

For the “true” case λ,µ /= 0, we make the following ansatz on the coupling Q

Q = Q0 +
1

4

⎛
⎜
⎜
⎜
⎝

p + λ + µ 0 0 u
0 −p + λ − µ v 0
0 v −p − λ + µ 0
u 0 0 p − λ − µ

⎞
⎟
⎟
⎟
⎠

, p, u, v ∈R.

Straightforward computations show that

traceQ = traceQ0 = 1, trace2Q = trace2Q0 = R, trace1Q = trace1Q0 = S.

Using again (8) shows that

Q ≥ 0⇐⇒ −1 +
√

(λ + µ)2 + (1 + u)2 ≤ p ≤ 1 −
√

(λ − µ)2 + (1 + v)2.

Therefore, assuming that p, u, v satisfy this constaint, Q is a coupling of R and S.

Denoting U ∶= 1 + u and V ∶= 1 + v, we compute W ∶= trace(CQ) by using (7):

4W = 2γU + 2δV + p(A − B − C +D) +A + B + C +D

+(λ + µ)(A −D) + (λ − µ)(B − C)

= 2γU + 2δV + p(A − B − C +D) +W ′ = 2γU + 2δV +W ′,
with

W ′ ∶= A + B + C +D + λ(A + B − C −D) + µ(A − B + C −D)

= 4(a2 1 + λ2

1 − λ2
+ b2 1 + µ2

1 − µ2
) − 8a2 λ2

1 − λ2
− 8b2 µ2

1 − µ2

= 4(a2 + b2).
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Since W is linear in U,V , we minimize γU + δV by taking

U =
√

(p + 1)2 − (λ + µ)2 and V =
√

(p − 1)2 − (λ − µ)2,

and, since δ ≤ γ, we conclude that

4W = 2T +W ′,

where

T = − max
−1+λ−µ≤p≤1−(λ−µ)

(−γ
√

(p + 1)2 − (λ + µ)2 − δ
√

(p − 1)2 − (λ − µ)2)

=
−2ab

√
(1 − λ2)(1 − µ2)

max
−1+λ−µ≤p≤1−(λ−µ)

((1 − λµ)
√

(p + 1)2 − (λ + µ)2

+(1 + λµ)
√

(p − 1)2 − (λ − µ)2) .

One can check that the max is attained for p = λµ→ 0 as h̵→ 0, and that

T = −
4ab

√
(1 − λ2)(1 − µ2)

√
1 + λ2µ2 − λ2 − µ2 = −4ab.

Eventually, we arrive at the same result as in the semiclassical regime λ = µ = 0, viz.

(9) MK2(R,S)
2 ≤ (a − b)2.

Since R and S are Töplitz operator, the inequality (9) was already known by using (5).
Nevertheless we gave this explicit computation as we believe the result to be valid for
more general density matrices.

In order to get a lower bound for MK2(R,S), we shall use a dual version of the
definition of MK2, proved in [3], that is a quantum version of the Kantorovitch duality
theorem for W2 (see [14, 15]):

MK2(R,S)
2 = sup

A=A∗, B=B∗ bounded operators on H
such that A⊗I+I⊗B≤C

trace(RA + SB).

We make the following diagonal ansatz on A and B:

A = (
α1 0
0 α2

) B = (
β1 0
0 β2

) ,

so that

A⊗ I =

⎛
⎜
⎜
⎜
⎝

α1 0 0 0
0 α1 0 0
0 0 α2 0
0 0 0 α2

⎞
⎟
⎟
⎟
⎠

and I ⊗B =

⎛
⎜
⎜
⎜
⎝

β1 0 0 0
0 β2 0 0
0 0 β1 0
0 0 0 β2

⎞
⎟
⎟
⎟
⎠

.
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Hence

A⊗ I + I ⊗B −C ∶=

⎛
⎜
⎜
⎜
⎝

ā 0 0 −γ
0 b̄ −δ 0
0 −δ c̄ 0
−γ 0 0 d̄

⎞
⎟
⎟
⎟
⎠

,

and, according to (7),

ā = α1 + β1 −A, b̄ = α1 + β2 − B, c̄ = α2 + β1 − C, d̄ = α2 + β2 −D.

Notice that

ā + d̄ = b̄ + c̄.

Using (8) to compute the characteristic polynomial of A⊗ I + I ⊗B −C, we find that

(10) A⊗ I + I ⊗B ≤ C ⇐⇒ ā + d̄ ≤ −
√

(ā − d̄)2 + 4γ2 and b̄ + c̄ ≤ −
√

(b̄ − c̄)2 + 4δ2.

Moreover,

trace(AR +BS) =
1

2
(α1 + α2 + β1 + β2) +

λ

2
(α1 − α2) +

µ

2
(β1 − β2)

=
1

4
(ā + b̄ + c̄ + d̄) +

1

4
(ā + b̄ − c̄ − d̄)λ(11)

+
1

4
(ā − b̄ + c̄ − d̄)µ + a2 + b2.

Let us denote

x ∶= ā + d̄ = b̄ + c̄,

so that

(12) trace(AR +BS) =
1

2
x +

1

4
(λ + µ)(ā − d̄) +

1

4
(λ − µ)(b̄ − c̄) + a2 + b2.

The constraints (10) are expressed as

x = ā + d̄ ≤ −

√

(ā − d̄)2 + 4γ2 ,

x = b̄ + c̄ ≤ −

√

(b̄ − c̄)2 + 4δ2 .

Without loss of generality we assume that λ ≥ µ, that is to say a < b. Since the right
hand side of (12) is linear in x, in (ā − d̄), and in (b̄ − c̄), one has to saturate the
constraints to maximize trace(AR +BS). In other words, we must take

ā − d̄ =
√
x2 − 4γ2, and b̄ − c̄ =

√
x2 − 4δ2.

Since δ ≤ γ ≤ 0, this amounts to computing

max
x≤2δ

f(x), with f(x) ∶=
x

2
+

1

4
(λ + µ)

√
x2 − 4γ2 +

1

4
(λ − µ)

√
x2 − 4δ2 .

We check that f ′(x) is an increasing function of x2, so that the maximum of f(x) for
x ≤ 2δ is attained at

f ′(x) = 0 ⇐⇒ x = −
4ab(1 − λ2µ2)

(1 − λ2)(1 − µ2)
, which implies f(x) = −2ab.
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We conclude from (12) that

MK2(R,S)
2 ≥ trace (AR +BS) ≥ a2 + b2 − 2ab = (a − b)2 .

Together with (9), this implies that

MK2(R,S)
2 = (a − b)2 =W2(

1
2(δ−a + δa),

1
2(δ−b + δb))

2.

Therefore,

(13) Cq = Cc,

so that the classical and the quantum optimal transport costs are equal in this case.

3. The unequal mass case

In this section, we construct a family of density matrices R and S for which the
quantum cost of optimal transport is smaller than the classical analogous cost.

With the same notations as in previous section, we set

R ∶=
1+η

2 ∣a⟩⟨a∣ + 1−η
2 ∣ − a⟩⟨−a∣, S ∶= 1

2 ∣a⟩⟨a∣ +
1
2 ∣ − a⟩⟨−a∣, 0 < η < 1.

In other words, we consider the same situation as in the previous section with a = b,
but with different masses for the quantum density matrix R.

In the orthonormal basis {φ+, φ−}, the density matrix R takes the form

R =
⎛
⎜
⎝

1+λ
2

η
2

√
1 − λ2

η
2

√
1 − λ2 1−λ

2

⎞
⎟
⎠
,

while S is the same as before.
We define the “quantized classical” coupling as

(14) Qc ∶=
1
2 ∣a;a⟩⟨a;a∣ + 1−η

2 ∣ − a;−a⟩⟨−a;−a∣ + η
2 ∣a;−a⟩⟨a;−a∣,

with the obvious notation

⟨a; b∣ ∶= ⟨a∣ ⊗ ⟨b∣; ∣a; b⟩ ∶= ∣a⟩ ⊗ ∣b⟩.

Obviously Qc ≥ 0 by construction, and

trace2(Qc) =
1
2 ∣a⟩⟨a∣ +

η
2 ∣a⟩⟨a∣ +

1−η
2 ∣ − a⟩⟨−a∣ = R, while trace1(Qc) = S.

Viewed as a matrix in the basis {φ+ ⊗ ψ+, φ+ ⊗ ψ−, φ− ⊗ ψ+, φ− ⊗ ψ−},

(15) Qc =

⎛

⎜
⎜
⎜
⎜
⎜

⎝

1
4
(1 + λ)2 0 1

4
η
√

1 − λ(1 + λ)
3
2 1

4
(−1 + η)(−1 + λ2

)

0 1
4
(1 − λ2

)
1
4
(−1 + η)(−1 + λ2

)
1
4
η(1 − λ)

3
2
√

1 + λ
1
4
η
√

1 − λ(1 + λ)
3
2 1

4
(−1 + η)(−1 + λ2

)
1
4
(1 − λ2

) 0
1
4
(−1 + η)(−1 + λ2

)
1
4
η(1 − λ)

3
2
√

1 + λ 0 1
4
(−1 + λ)2

⎞

⎟
⎟
⎟
⎟
⎟

⎠

.

With (7), we easily compute

(16) trace (CQc) = 2ηa2 =W2(
1+η

2 δa +
1−η

2 δ−a,
1
2δa +

1
2δ−a)

2.

Indeed, let us recall the classical optimal transport from R to S in this case: first, one
“moves” the amount of mass 1

2 from a in R to a in S. The amount of mass η
2 remaining

at a in R is transported to −a in S, and the outstanding amount of mass 1−η
2 , located

at −a in R, is “transported” to −a in S (see Figure 2).
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For each ε > 0, set

(17) Qε ∶= Qc + εQq,

with

Qq ∶=

⎛
⎜
⎜
⎜
⎝

1 0 0 −1
0 −1 1 0
0 1 −1 0
−1 0 0 1

⎞
⎟
⎟
⎟
⎠

One easily checks that

trace1 (Qq) = trace2 (Qq) = trace (Qq) = 0,

so that

(18) trace1 (Qε) = S, and trace2 (Qε) = R, so that trace (Qε) = 1.

The characteristic polynomial of Qc is found to be of the form

det (Qc − tI) = tP3(t),

where P3 is a cubic polynomial satisfying

P3(0) = −
η
8(1 − η)(1 − η

2) < 0.

Therefore the spectrum of Qc is {0, λ1 > 0, λ2 > 0, λ3 > 0} since Qc = Q∗
c ≥ 0. One can

also check that

(19) det (Qε − tI)∣t=0 = detQε = εηλ
2(1 − η)(1 − λ4) +O(ε2) > 0 for 0 < ε≪ 1,

together with
d

dt
det (Qc − tI)∣t=0 ∶= P3(0) < 0.

Hence there exists D (independent of ε) such that

(20)
d

dt
det (Qε − tI)∣t=0 ≤D < 0 for 0 < ε≪ 1.

Both (19) and (20) clearly imply that det (Qε − tI) has a positive zero that is ε-close to
0, and three other roots which are ε-close to λ1, λ2 and λ3 > 0 respectively. Therefore,
Qε = Q∗

ε > 0 for 0 < ε≪ 1, and (18) implies that Qε is a coupling of R and S.
Another elementary computation shows that

trace (CQq) = −
8a2λ2

1 − λ2
,

so that

MK2(R,S)
2 ≤ trace (CQε) = trace (CQc) − ε

8a2λ2

1 − λ2

<W2(
1+η

2 δa +
1−η

2 δ−a,
1
2δa +

1
2δ−a)

2,

for each ε satisfying 0 < ε≪ 1, according to formula (16). In other words,

(21) Cq < Cc,

the quantum cost is (strictly) below the classical cost.
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4. Concluding remarks on quantum optimal transport

The result of Section 2 shows that, in the equal mass case, an optimal coupling is
given by the following matrix in the basis {φ+ ⊗ ψ+, φ+ ⊗ ψ−, φ− ⊗ ψ+, φ− ⊗ ψ−}:

Q =
1

4
(

1 + λµ + λ + µ 0 0
√
(1 + λµ)2 − (λ + µ)2

0 1 − λµ + λ − µ
√
(1 − λµ)2 − (λ − µ)2 0

0
√
(1 − λµ)2 − (λ − µ)2 1 − λµ − λ + µ 0√

(1 + λµ)2 − (λ + µ)2 0 0 1 + λµ − λ − µ
) .

Using (6) and with the same notation as in (14), the optimal coupling Q can be put
in the form

(22) Q =
1

2
(∣a; b⟩⟨a; b∣ + ∣ − a;−b⟩⟨−a;−b∣) .

In other words, Q is the Töplitz operator of symbol

Π(q, p; q′, p′) = 1
2δ(−a,0)(q, p)δ(−b,0)(q

′, p′) +
1

2
δ(a,0)(q, p)δ(b,0)(q′, p′).

Likewise, we recall that R is the Töplitz operator of symbol

µ(q, p) = 1
2(δ(−a,0)(q, p) + δ(a,0)(q, p)),

while S is the Töplitz operator of symbol

ν(q, p) = 1
2(δ(−b,0)(q, p) + δ(b,0)(q, p)).

Therefore,

Π(q, p; q′, p′) = 1
2((δ(−a,0)(q, p) + δ(a,0)(q, p))δ((q

′, p′) −Φ(q, p)))

= µ(q, p)δ((q′, p′) −Φ(q, p)),(23)

where Φ is any map satisfying Φ(a,0) = (b,0) and Φ(−a,0) = (−b,0).
The second equality in (23) says the following: in the equal mass case, in agreement

with (3), an optimal quantum coupling Q is the Töplitz operator of symbol the classical
optimal coupling associated to the optimal transport map

((−a,0), (a,0)) ↦ ((−b,0), (b,0)).

In the unequal mass case treated in Section 3, the coupling Qc defined by (14) is also
a Töplitz operator, with symbol

Πc(q, p; q
′, p′) = 1

2δ(a,0)(q, p)δ(a,0)(q
′, p′)

+
1−η

2 δ(−a,0)(q, p)δ(−a,0)(q
′, p′) + η

2δ(a,0)(q, p)δ(−a,0)(q
′, p′).

This expression is easily interpreted as the optimal coupling associated to the “trans-
port” introduced in Section 1, Figure 2, exactly as in the equal mass case. But, as
explained in the previous section, Qc cannot be an optimal coupling, since the coupling
Qε defined by (17) leads to a strictly lower quantum cost.

We did not compute any optimal coupling in this situation. Observe however that,
thanks to (15) and (6) specialized to a = b (so that λ = µ), one can expand Qq in the
form

Qq = ∑
i,j,k,l=±1

qi,j,k,l∣ia; ja⟩⟨ka; la∣.
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The contribution of the “diagonal” terms qi,j,i,j defines a Töplitz operator, unlike the
off-diagonal terms such as q1,1,−1,1 =

−4λ
(1−λ2)2 ≠ 0 for instance.

In general, when R and S are Töplitz operators of symbols µ and ν satisfying
MK2(R,S) < W2(µ, ν), no optimal coupling Qop of R and S can be a Töplitz op-
erator: if such was the case, the Töplitz symbol of Qop would be a coupling of µ and ν
with classical transport cost MK2(R,S) <W2(µ, ν), which is impossible. The presence
of nonclassical off-diagonal terms in Qop, such as q1,1,−1,1 =

−4λ
(1−λ2)2 ≠ 0 in the example dis-

cussed above, are precisely the reason why quantum optimal transport can be cheaper
in this case than classical optimal transport.

Finally, observe that both W2(
1+η

2 δa +
1−η

2 δ−a,
1
2δa +

1
2δ−a)

2 − trace (CQε) and q1,1,−1,1

are exponentially small as h̵→ 0, but of course are not small for h̵ = 1.
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(LYSM).

References

[1] A.G. Athanassoulis, N.J. Mauser, T. Paul: Coarse-scale representations and
smoothed Wigner transforms, J. Math. Pures Appl. 91 (2009), 296–338.

[2] H. Brezis: Remarks on the Monge-Kantorovich problem in the discrete setting, C.
R. Acad. Sci. Paris, Sér. I 356 (2018), 207–213.

[3] E. Caglioti, F. Golse, T. Paul: Towards optimal transport for quantum densities,
preprint hal-01963667, (2018).

[4] E.A. Carlen, J. Maas: An Analog of the 2-Wasserstein Metric in Non-Commutative
Probability Under Which the Fermionic Fokker-Planck Equation is Gradient Flow
for the Entropy, Commun. Math. Phys., 331 (2014), 887–926.

[5] E.A. Carlen, J. Maas: Non-commutative calculus, optimal transport and functional
inequalities in dissipative quantum systems, J. Stat. Phys. 178 (2020), 319–378.

[6] G. De Palma, D. Trevisan: Quantum optimal transport with quantum channels,
preprint arXiv:1911.00803 [math-ph]

[7] F. Golse, C. Mouhot, T. Paul: On the Mean-Field and Classical Limits of Quantum
Mechanics, Commun. Math. Phys. 343 (2016), 165–205.

[8] F. Golse, T. Paul: The Schrödinger Equation in the Mean-Field and Semiclassical
Regime, Arch. Rational Mech. Anal. 223 (2017), 57–94.

[9] F. Golse, T. Paul: Wave Packets and the Quadratic Monge-Kantorovich Distance
in Quantum Mechanics, Comptes Rendus Mathématique 356 (2018), 177–197.
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