Uniqueness of entropy solutions to fractional conservation laws with "fully infinite" speed of propagation
Abstract
Our goal is to study the uniqueness of bounded entropy solutions for a multidimensional conservation law including a non-Lipschitz convection term and a diffusion term of nonlocal porous medium type. The nonlocality is given by a fractional power of the Laplace operator. For a wide class of nonlinearities, the L 1-contraction principle is established, despite the fact that the "finite-infinite" speed of propagation [Alibaud, JEE 2007] cannot be exploited in our framework; existence is deduced with perturbation arguments. The method of proof, adapted from [Andreianov, Maliki, NoDEA 2010], requires a careful analysis of the action of the fractional laplacian on truncations of radial powers.
Origin | Files produced by the author(s) |
---|
Loading...