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Uniqueness of entropy solutions to fractional conservation laws

with “fully infinite” speed of propagation

B. Andreianov∗ and M. Brassart†

October 23, 2019

Abstract

Our goal is to study the uniqueness of bounded entropy solutions for a multidimensional conservation
law including a non-Lipschitz convection term and a diffusion term of nonlocal porous medium type. The
nonlocality is given by a fractional power of the Laplace operator. For a wide class of nonlinearities, the L1-
contraction principle is established, despite the fact that the ”finite-infinite” speed of propagation [Alibaud,
JEE 2007] cannot be exploited in our framework; existence is deduced with perturbation arguments. The
method of proof, adapted from [Andreianov, Maliki, NoDEA 2010], requires a careful analysis of the action
of the fractional laplacian on truncations of radial powers.

Keywords: Fractional laplacian, Radial powers, Nonlocal conservation law, Entropy formulation,
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1 Introduction

We study the uniqueness of solutions for a multidimensional fractional conservation law
∂tu+ divx

(
f(u)

)
+A[ϕ(u)] = g in I × RN ,

u(t = 0) = u0 ∈ L∞(RN ) in RN ,
(1)

associated with a non-local operator A = c(−∆x)α/2 taken as a positive multiple (c ≥ 0) of a ”fractional
laplacian”. The time interval is here I = R+ and the space domain is the whole RN . The nonlinearities
f : R→ RN and ϕ : R→ R are assumed at least continuous. In addition, ϕ is assumed nondecreasing, so that
(1) is the Cauchy problem for a non-local (fractional) convection-diffusion equation.

1.1 Finite speed of propagation and uniqueness for local or fractional conservation
laws.

The best-known case is A = 0, which corresponds to a pure hyperbolic convection equation without diffusion.
In this setting, it is well-known that regular solutions do not exist in general; that weak solutions fail to be
unique; and that the appropriate notion of solution relies on the so-called entropy inequalities introduced by
Kruzhkov [32]. Via the method of doubling variables, these entropy inequalities imply Kato’s inequality: for
any couple (u, v) of entropy solutions

∂t|u− v|+ divx

(
sgn(u− v)(f(u)− f(v))

)
≤ 0 (2)

in the sense of distributions (i.e. with compactly supported smooth test functions), where sgn(.) denotes the
sign function. The finite speed of propagation (for bounded f ′) is used in [32] to construct appropriate sequences
of test functions to be inserted into Kato’s inequality (2) in order to infer uniqueness. As a matter of fact, the
speed of propagation is the key heuristic issue in the discussion below.

The general problem with c ≥ 0 and α ∈ (0, 1) inherits many key features of the purely hyperbolic case (A = 0).
Indeed, for α < 1 it has been shown:

• by Alibaud, Droniou and Vovelle in [5], that jump singularities may develop from smooth data;

• by Alibaud in [1], that a well-posedness theory for entropy solutions can be derived in the spirit of [32] for
locally Lipschitz f and ϕ = Id; this was later extended by Cifani, Jakobsen [20] to include nonlinear ϕ;

• by Alibaud and the first author in [2], that weak solutions are ill-posed at least for a subclass of equations
(1) including the fractional Burgers equation.

Although solutions do not develop singularities for α ∈ [1, 2) (see Droniou, Gallouët, Vovelle [26] for α > 1 and
Constantin, Vicol [21] for α = 1), it should be stressed that the entropy solutions concept yields well-posedness
for the whole range α ∈ (0, 2] at least when f ,ϕ are locally Lipschitz (see Alibaud [1] for the basic choice
ϕ = Id, and Cifani, Jakobsen [20] for ϕ 6= Id in the non-local case; cf. [19, 39] for the local case α = 2,
and Karlsen, Ulusoy [31] for a mixture of local and non-local diffusion). Note in passing that the setting of
[1, 20] is appropriate for deriving optimal continuous dependence estimates with respect to the nonlinearities
(see Alibaud, Cifani and Jakobsen [4] and references therein); we stress that these estimates rely explicitly
on L∞-bounds for f ′,ϕ′. Finally, let us mention the alternative approach to well-posedness of (1) using an
adaptation of the kinetic formulation (see [3]) which has the advantage to extend to L1 data. Also in the kinetic
context f, ϕ should be at least locally Lipshitz continuous.
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Going into details, note that the presence of a local or non-local diffusion operator naturally leads to the infinite
speed of propagation, i.e., compactly supported data generically lead to solutions supported in the whole space.
In this context, the method used in [1, 31, 20] (see also [27] which contains the local convection-diffusion
case) permits to deduce L1-contraction inequalities based on the finite-infinite speed of propagation approach.
The latter relies upon the Lipschitz continuity of the nonlinearities in (1). Indeed, the finite-infinite speed
of propagation approach of Alibaud exploits, via a kind of splitting argument, the combination of the rapid
decay at infinity for the fractional heat kernel and of the finite speed of propagation proper to the hyperbolic
conservation law with Lipschitz flux. A recent deep improvement of these results is due to Endal and Jakobsen
[27], who introduced localized contraction estimates in order to provide subtler information on local stability
of solutions to (1). These estimates are obtained by inserting, as test functions in (2), super-solutions of an
auxiliary Hamilton-Jacobi equation defined for locally Lipschitz f, ϕ. The ideas and thechniques of [27] are
further pushed forward in [6], where a kind of duality is established between (1) in the local case and the
auxiliary Hamilton-Jacobi equation.

1.2 Infinite speed of propagation, associated uniqueness techniques and possible
non-uniqueness.

This paper aims at going, in the entropy solution framework, beyond the case of locally Lipschitz nonlinearities.
In contrast to the setting of [1, 31, 20, 27, 6], we will focus on the case of what we call fully infinite speed of
propagation: indeed, under our assumptions, the local convection and the non-local diffusion operators both
feature infinite speed of propagation.

This issue was first addressed in the pure hyperbolic local case (A = 0) by Bénilan [12] and by Kruzhkov and
Hildebrandt [35], where a Hölder continuity of order 1 − 1/N on f was shown to be a sufficient condition for
uniqueness (when N = 1 no condition is needed). Kruzhkov, Panov and Bénilan in [33, 36, 37, 16] pushed the
theory of the hyperbolic case further, by elaborating counterexamples to uniqueness and by giving sufficient
conditions for uniqueness thanks to the product of the moduli of continuity of the components of the flux
vector f . The possible non-uniqueness demonstrated by counterexamples due to Panov may be explained by
the infinite speed of propagation caused by the unboundedness of f ′. Heuristically, one can say that information
may come not only from the initial data but also from infinity, as if RN had a boundary on which different
boundary conditions could be applied. Further sufficient conditions based on the monotonicity of N − 1 merely
continuous components of the flux were put forward by Bénilan, Kruzhkov and the first author in [8] under
the additional assumption of integrability of data. This shows that sharp conditions combining the irregularity
of f and the decay of solutions at infinity are still not well-identified (see also Szepessy [45], Bendahmane and
Karlsen [11] for related results based on very different techniques). The fundamental idea of [8] does not permit
its extension to cases with diffusion, therefore it is not relevant for our study of (1). Note in passing that the
program of research on infinite speed of propagation in hyperbolic conservation laws put forward by Kruzhkov
([34]) yet contains further unsolved issues such as the (non?)uniqueness of L1 ∩ L∞ entropy solutions.

The line of research starting from [37, 16] can be continued in the case c > 0. In the local diffusion case
α = 2, the corresponding generalizations were obtained by Maliki and Touré in [39], relying on the fundamental
work of Carrillo [19] that established the entropy formulation and the technique of doubling variables for local
quasilinear convection-diffusion equations. In [39], a Hölder restriction was imposed on ϕ. Extensions to
anisotropic diffusion with the same method were obtained by Ouédraogo et al. in [38, 42, 41] with ad hoc
conditions on products of the moduli of continuity of fi’s and of the components of the diffusion matrix.

In absence of counterexamples to uniqueness in this hyperbolic-parabolic case, Maliki and the first author
investigated the optimality of some conditions obtained in [39], and discovered in [9] that, under the basic
isotropic Hölder of f , mere continuity of ϕ is sufficient to imply uniqueness. The work [9] (see also the related
investigation [10] of the pure diffusion case) provided a new method of proof, using a well-chosen test function
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obtained by appropriate truncation of the fundamental solution of the Laplace operator. Roughly speaking,
in [9], a sequence of (almost) super-harmonic functions with sufficient regularity is built thanks to explicit
calculations. As in all the other works on the subject, these test functions are exploited in the context of Kato’s
inequality (2), see Section 3. It should be stressed that the method of [9], which is essentially isotropic, does not
permit to recover the fine (and sometimes sharp) anisotropic conditions for uniqueness established by Kruzhkov,
Panov, Bénilan for the hyperbolic case and by Maliki, Touré, Ouédraogo for the degenerate parabolic case. In
contrast, we show in the present contribution that this method turns out to be suitable for generalization to
fractional conservation laws (1). We obtain this generalization at the price of a painstaking investigation of the
image, by the fractional laplacian, of the family of radial functions suggested in [9].

1.3 Comments on the (fractional) porous medium case

Our framework includes as an important particular case the situation where f = 0, so that equation (1) becomes
a nonlinear non-local diffusion equation. Although the investigation of this case was not our main motivation,
the results we prove and the techniques we use should be confronted to the state-of-the-art for porous medium
/ fast diffusion equations, in both local and non-local settings.

The classical local case is by far the most studied one; we refer to the books of Vázquez [47] and Daskalopoulos,
Kenig [23] and references therein for an extensive account on this case. One important point of the theory here is
that in general, entropy solutions are not the most relevant notion (the very weak solutions can be considered).
Solutions with L2

loc(I;RN ) gradient ∇u often exist, and these turn out to satisfy entropy inequalities (cf. [19]).
The study of uniqueness of very weak solutions cannot rely on the Kato inequalities, therefore it is beyond
our scope. Further, in relation with our focus on low regularity of nonlinearities, let us mention that under
the general continuity assumption on the nonlinearity ϕ, Brézis and Crandall [18] studied bounded very weak
(distributional) solutions of (1) with f = 0 and α = 2. They proved that two solutions u, v in that case coincide
a.e. in (0, T ) × RN as long as u − v ∈ L1((0, T ) × RN ). The latter condition was removed in e.g. [13, 22] and
[29] for classical homogeneous nonlinearities ϕ(u) = |u|m−1u with m > 1 and 0 < m < 1, respectively. Some
new information on the case of local diffusion with general continuous ϕ is provided in [10].

In the non-local case, the theory is more recent and not so extensive. The analogue of [18] was obtained
in [24, 25] for very general operators A, and the integrability condition was very recently removed by Grillo,
Muratori and Punzo in [28] when A is the fractional Laplacian and the nonlinearity ϕ is locally Lipschitz.
Compared to the result of [28], one can interpret our result in this paper (for the case f = 0) as the removal
of the mentioned W 1,∞

loc regularity condition on ϕ; however, we do so in the somewhat restrictive context of
entropy solutions.

Finally, a historical perspective on techniques we use should be provided. First, note that the choice of the test
function in Section 4 has appeared – in combination with properties reminiscent of our Lemma 4.9 below – in
the uniqueness proofs of e.g. [13, 22, 29] (for the local case); after this work was completed, we learned of its use
in [28] (for the non-local case). Second, the technique of Section 3, inspired by [9], is motivated by the difficulties
of the hyperbolic-parabolic case; the way the fundamental solution of the equation is exploited is different from
the preceding literature, to the best of our knowledge. However, generally speaking, instrumentalization of the
fundamental solution of the laplacian is not new in uniqueness proofs for nonlinear diffusion equations (see, e.g.,
Pierre [43] for the local case and Bonforte, Vázquez [15] for the non-local counterpart).

1.4 Outline of the paper.

The main goal of the present paper is to provide sufficient conditions on f and ϕ for uniqueness in (1).

Since we shall follow the line of [9], the essential role will be played by truncations of the fundamental solution
of the diffusion operator. However, the non-local nature of the fractional laplacian makes it very delicate to

4



control the effect of truncations on the values of the operator. As a matter of fact, a large part of the paper is
concerned with a careful study of the action of the fractional laplacian operator A on a class of radial functions
(ERr ) encompassing the desired truncations (er) of the fundamental solution, see Definition (6) in Section 2. The
simple explicit calculations of the local case [9] are here replaced by carefully chosen upper and lower pointwise
bounds derived from symmetry and scaling properties. Particularly, we study the positivity properties of A[ERr ],
its decay at infinity and its continuity w.r.t. parameters, i.e., w.r.t. to the power β in |x|−β and w.r.t. to the
truncation parameters r and R. Several phenomena are observed, such as the lack of L1 continuity as R→∞.
The latter makes it particularly delicate to adapt to the non-local equation (1) the uniqueness method developed
for the local case in [9].

The results obtained in Section 2 are exploited in Section 3 to derive uniqueness and stability for entropy
solutions of equation (1) for general f and ϕ. For the sake of completeness, an existence proof is also given at
the end of Section 3. If we decide to treat in a unified way the nonlinearities f and ϕ, then a much simpler
uniqueness and stability proof becomes available at the price of an additional regularity restriction on ϕ. This
is the purpose of Section 4: in this case, the analysis does not rely on the monotonicity of ϕ but on appropriate
Hölder conditions (namely f is 1 − 1/N Hölder and ϕ is 1 − α/N Hölder; cf. [39] for the case α = 2). Due to
this assumption on ϕ, Section 4 yields a sub-optimal result but it is self-contained, in the sense that it does not
depend on the critical study of action of A on truncated radial powers developed in Section 2.

1.5 Assumptions and well-posedness results for (1)

The precise assumptions under which uniqueness of solutions to (1) and its generalizations will be established
are the following. We assume that∣∣∣∣ if N = 1, then f is continuous;

if N > 1, then f is locally Hölder-continuous of exponent σ := 1− 1/N.
(Hf )

The latter assumption reads

∀M ∈ R+ ∃LMf ∈ R+ : ∀u, v ∈ [−M,+M ] |f(u)− f(v)| ≤ LMf |u− v|σ,

while for N = 1 this condition degenerates into a trivial one. Besides, we assume that

the nonlinearity ϕ : R→ R is continuous and nondecreasing. (Hϕ)

For any 0 < α < 2, uniqueness will be established within the class of bounded entropy solutions introduced by
Alibaud [1], Cifani and Jakobsen [20], as a consequence of the classical L1-contraction principle which is our
main result:

Theorem 1.1. Assume (Hf ) and (Hϕ). Let u be an entropy solution of (1) in the sense of the entropy formu-
lation (see Definition 3.1 in Section 3) with initial datum u0 ∈ L∞(RN ) and source termi g ∈ L1

loc(I;L∞(RN )).
Let v be an entropy solution with the respective data v0 and h. Then we have (with values in [0,+∞])

‖u(t)− v(t)‖L1(RN ) ≤ ‖u0 − v0‖L1(RN ) +

∫ t

0

‖g − h‖L1(RN )(τ)dτ for a.e. t ∈ I. (3)

Moreover, a similar estimate holds with u− v, u0 − v0, g − h replaced therein by their positive parts (u− v)+,
(u0 − v0)+, (g − h)+, respectively.

iOur notation is slightly abusive: as usual (cf., e.g., [8]) in the context, throughout the paper the space L1
loc(I) of L∞(RN )-valued

functions is considered under the weak-∗ measurability assumption.
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It turns out that a simpler proof of (3) is available (see Section 4) under the additional assumption

ϕ is locally Hölder-continuous of exponent s := 1− α/N > 0 (N > α) (Hbis
ϕ )

The paper eventually covers any dimension N ≥ 1 and any power 0 < α < 2. But the case α ≥ N is special
in many respects and deserves a distinctive argument (well-detailed in Remark 4.6), indeed, in this case we
manage to work with merely continuous f and ϕ. The reader may find it worth while to leave this marginal
case aside.

Notice that beyond uniqueness, the result of Theorem 1.1 also leads to well-known a priori estimates and
comparison inequalities on entropy solutions (for a.e. t ∈ I)

u(t) ≤ v(t) whenever u0 ≤ v0 and g ≤ h,
‖u(t)‖L1(RN ) ≤ ‖u0‖L1(RN ) +

∫ t
0
‖g(τ, ·)‖L1(RN ) dτ,

‖u(t)‖L∞(RN ) ≤ ‖u0‖L∞(RN ) +
∫ t

0
‖g(τ, ·)‖L∞(RN ) dτ.

(4)

The two last properties follow upon comparison of u with explicit space-independent solutions v of (1). The
comparison principle is also a cornerstone for the simple existence result contained in our well-posedness claim:

Theorem 1.2. Assume that f is merely continuous. Assume that ϕ is continuous and non-decreasing (i.e.
(Hϕ) holds). Then there exists an entropy solution to (1) for all initial datum u0 ∈ L∞(RN ) and source term
g ∈ L1

loc(I;L∞(RN )).
If we assume in addition that f satisfies the Hölder continuity (Hf ) then there exists a unique entropy solution
to (1) for all data (u0, g) ∈ L∞(RN )× L1

loc(I;L∞(RN )); the solution is stable w.r.t. data in the sense of (3).

1.6 Interpretation of the non-local operator and conventions on notation

Everywhere in the sequel, the non-local operator A = c(−∆)α/2 on RN given by the (fractional) power of the
laplacian will be viewed either as a Fourier multiplier A = c F−1 ◦| · |α ◦F or as a (pseudo)convolution operation

A = ∗ PF

(
c

| · |N+α

)
(see (5) below), in the sense of the dual formulations

A[φ](x) = c F−1
(
|ξ|αFφ(ξ)

)
(x) = −c lim

H→0+

∫
RN

I|h|>H
(
φ(x+ h)− φ(x)

) dh

|h|N+α
.

For this kind of formulae to make sense, φ should vary in a space of locally regular functions with some prescribed
decay at infinity, for instance in the Schwartz class S(RN ) as explained in Ch.VII of the classical book [44] on
distribution theory.

Finally, we take the following conventions of notation. From now on, all constants (c,C,γ) are positive and may
change from place to place. As a rule c is used for a positive constant coming from the non-local operator.
Everywhere sN stands for the surface of the unit sphere in RN appearing in polar coordinates. The symbols
I<R and I>R are sometimes used for the indicator of the ball of radius r (r = r or r = R) and of its exterior
in RN , respectively. Similarly

∫
>R

and
∫
<R

refer to integration over these exterior and interior domains. On a
few occasions when α ≥ 1, we shall make use of test functions in the space

W 2−,1(RN ) :=
⋂
ε>0

W 2−ε,1(RN ),

where W s,1(RN ) for s ∈ R refer to the standard (fractional order) Sobolev spaces based on integrable decay
(with the convention W 0,1 := L1). Whenever a function space is given the subscript c this indicates ’compact
support’ as for instance in the W 1,1

c (RN ) space of (8) or in the C∞c (I × RN ) space of test functions of Definition
3.1.
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2 Action of A on radial powers

Since A may be viewed as a Fourier multiplier, the starting point of the study of A is to recall how the Fourier
transform F itself acts on radial powers. In distribution theory, this problem is best explained and best solved
by means of pseudofunctions (PF), in the sense that a nice formula shows that the class of pseudofunctions
associated with radial powers is invariant through F , up to some exceptional values of the power:

F
(

PF
1

| · |N−m

)
= π

N
2 −m

Γ(m2 )

Γ(N−m2 )
PF

1

| · |m
∀m ∈ C : m /∈ (−2N) ∪ (N + 2N). (5)

Here, the symbol PF may be dropped whenever it is followed by an L1
loc(RN )-function, otherwise it represents

an essential change of the power as a function of L1
loc(RN − {0}) into a distribution of D′(RN ) origin included.

Remark 2.1. Particularly, in cases when PF cannot be dropped, the resulting distribution on RN (which is not
even a measure) has no sign in the vicinity of the origin, although it is the extension of a positive function on
RN − {0}.

All this material on pseudofunctions is masterly detailed for instance in [44, Ch.II §3 Ex.2 ; Ch.VII §7 Ex.5].
In slightly different notations, formula (5) is just [44, formula (VII,7;13)]. Concerning the constant involving
the standard Γ function, its explicit expressionii will only be used in the sequel for real values of m, to identify
what its sign is.

The radial power
e := 1/| · |N−α ∈ L1

loc(RN )

is readily seen to be a fundamental solution of A i.e. A[e] = c0δ0 for some positive constant c0. This results
from (5) by realizing A as a Fourier multiplier:

A[e] = c F−1(| · |α ×Fe) = c0 F−1

(
| · |α × 1

| · |α

)
= c0 F−1(I) = c0δ0.

Since unfortunately e does not always belong to W 1,1
loc (RN ) due to a lack of local integrability in the gradient,

we approximate it by
er := min{e, e(r)} ∈W 1,1

loc (RN ) for fixed r > 0, (6)

the singularity at the origin being replaced by a step value. The fact that A[er] is a nonnegative function on RN
will be checked later in Lemma 2.4 in a slightly more general context. It is also interesting (and a bit surprising)
to notice that A[er] has always the same finite integral:

Lemma 2.1. A[er] is an integrable and nonnegative function on RN whose integral is∫
RN

A[er] =

∫
RN

A[e] = c0 <∞. (7)

Proof. Remark first that the tempered F-transform of A[er] ∈ S ′(RN ) is a continuous function on RN whose
value at the origin is c0, since in the decomposition

F
(
A[er]

)
= F

(
A[e]

)
−F

(
A[e− er]

)
= c0 − c| · |αF(e− er)

iiThe computation is relative to the definition of F as Fφ(ξ) :=
∫
RN φ(x)e−2iπx.ξdx.
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the term e − er ∈ L1(RN ) transforms into FL1 ⊂ C0. Next, let G = e−|·|
2

denote a Gauss-type function on
RN , so that F−1G is also a Gauss-type function on RN . The nonnegativityiii of A[er] ≥ 0 allows to pass to the
limit as ε ↓ 0+ by monotonic convergence in the relation∫

RN
A[er] G(ε·) =

∫
RN
F
(
A[er]

)
F−1

(
G(ε·)

)
=

∫
RN
F
(
A[er]

)
(ε·) F−1G,

and consequently to obtain∫
RN

A[er] G(0) =

∫
RN
F
(
A[er]

)
(0) F−1G = F

(
A[er]

)
(0) G(0)

as a relation in [0,∞]. Since F
(
A[er]

)
(0) = c0 <∞ it follows that the nonnegative function A[er] has a finite

integral equal to c0.

Once the local regularity has been fixed up by turning e into er, following [9] we would like to compactify the
support of er by a simple subtraction-truncation procedure, and for this purpose we introduce

eRr :=
[
er − e(R)

]+
∈W 1,1

c (RN )

for R > r intended to go to infinity. Unfortunately, this second procedure is a real problem at the level of A,
inasmuch as it destroys many properties, for instance:

(i) A[eRr ] ∈ L1(RN ) is a function whose sign changes on RN ;

(ii) there is a lack of L1 continuity w.r.t. R in the sense that
∫
RN A[eRr ] = 0 < c0 =

∫
RN A[er], a collapse

showing that the approximation A[eRr ]→ A[er] as R→∞ cannot hold in L1(RN ).

In complete analogy, all this may also be applied to other powers than α, by setting for β ∈]0, α[

E := 1 / | · |N−β ∈ L1
loc(RN ),

Er := min{E,E(r)} ∈W 1,1
loc (RN ),

ERr :=
[
Er − E(R)

]+
∈W 1,1

c (RN ).

(8)

In order to keep the notation readable, we will omit the dependence of these functions on β, since the value
β ≤ α will be fixed through all calculations. The case β = α will be referred to as the critical case; it corresponds
to E = e, Er = er, E

R
r = eRr . In the statements below, we focus on the subcritical case β < α; the discussion

at the end of this section highlights the pecularities of the critical case.

We will rely upon the following obvious properties:

ERr ≤ Er, ERr −→ Er pointwise as R→∞.

Lemma 2.2. The distribution A[E] = −(α− β)c PF
1

| · |N+α−β ∈ D
′(RN ) is negative on RN − {0}. Moreover,

it has no sign at all in the vicinity of the origin.

iiiPostponed till Lemma 2.4 without any vicious circle.
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Proof. The same kind of computation as in checking A[e] = c0δ0 together with formula (5) now yields

A[E] = c F−1(| · |α ×FE) = c F−1

(
| · |α × πN2 −β

Γ(β2 )

Γ(N−β2 )

1

| · |β

)
=

c

πα
Γ(β2 )Γ(N+α−β

2 )

Γ(N−β2 )Γ(β−α2 )
PF

1

| · |N+α−β .

In order to exhibit a positive constant, we insert the identity

Γ(1 +
β − α

2
) = −α− β

2
Γ(
β − α

2
),

in which the Γ-term on the l.h.s. is now positive (α − β < 2). This provides the negative factor −(α − β)
followed by a new positive constant. In view of Remark 2.1, this completes the proof.

Lemma 2.3. A[ERr ] is an integrable function on RN (which is moreover continuous and negligible at infinity
when α < 1).

Proof. Let us distinguish between two cases.

(i) Case α < 1. Since ERr ∈ W 1,1(RN ) ∩W 1,∞(RN ), the lemma is a direct consequence of the fact that A
maps W 1,1(RN ) into L1(RN ) while it maps W 1,∞(RN ) into the space C0

b (RN ) of bounded continuous functions.
Indeed, the operator A : W 1,p(RN ) → Lp(RN ) for p = 1 or p = ∞ may be seen to be well-defined through
the interpolation estimate ‖A[φ]‖ ≤ c‖φ‖1−α‖∇φ‖α relatively to the Lp-norm. To check it, notice that for any
translation-invariant norm ‖ · ‖ on functions defined in RN , we may write

‖A[φ]‖ = c
∥∥∥∫
|h|>H

(
φ(·+ h)− φ(·)

) dh

|h|N+α
+

∫
|h|<H

h

|h|

∫ 1

0

∇φ(·+ sh)ds
dh

|h|N−(1−α)

∥∥∥
≤ c

(
2‖φ‖

∫
|h|>H

dh

|h|N+α
+ ‖∇φ‖

∫
|h|<H

dh

|h|N−(1−α)

)
,

and that this relation optimizes into ‖A[φ]‖ ≤ c‖φ‖1−α‖∇φ‖α when H varies over (0,∞). So, the only remaining
point to be established is the continuity of A[φ] for any bounded Lipschitz-continuous φ, an easy fact that can
be proved by the same idea as before (H := 1). Indeed, the parameterized integrals

A[φ] = −c
∫
|h|>1

(
φ(·+ h)− φ(·)

) dh

|h|N+α
− c

∫
|h|<1

φ(·+ h)− φ(·)
|h|

dh

|h|N−(1−α)

both inherit the continuity of their integrands, because of some integrable dominations (w.r.t. h) ensured by
the pointwise estimate

|φ(·+ h)− φ(·)|
|h|N+α

≤ ‖φ‖W 1,∞(RN )

(
2
I|h|>1

|h|N+α
+

I|h|<1

|h|N−(1−α)

)
.

Note also that this integrable domination legitimates the equality

lim
|x|→∞

∫
RN

(
φ(x+ h)− φ(x)

) dh

|h|N+α
=

∫
RN

lim
|x|→∞

(
φ(x+ h)− φ(x)

) dh

|h|N+α
= 0

as well, whenever φ ∈W 1,∞(RN ) satisfies φ(x+ h)− φ(x)→ 0 as |x| → ∞ for every fixed h ∈ RN . Such is the
case when typically

φ ∈W 1,∞(RN ) with lim
∞
|φ| = 0 or lim

∞
|∇φ| = 0.
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As a consequence, A[ERr ] and A[Er] tend to zero at infinity, since φ = ERr and φ = Er are two such functions.

(ii) Case α ≥ 1. A convenient representation formula for A[φ] (which takes into account some higher
regularity of φ) is now

A[φ] = c

∫
|h|>H

(
φ(·)− φ(·+ h)

) dh

|h|N+α
− c

∫
|h|<H

h

|h|

∫ 1

0

∇φ(·+ sh)−∇φ(·)
|h|

ds
dh

|h|N−(2−α)
, (9)

so that (again for any translation-invariant norm)

‖A[φ]‖ ≤ c

(
2‖φ‖

∫
|h|>H

dh

|h|N+α
+

∫ 1

0

sα−1ds

∫
|h|<H

‖∇φ(·+ sh)−∇φ(·)‖
|sh|N+α−1

sNdh

)

= c

(
2‖φ‖

∫
|h|>H

dh

|h|N+α
+

∫ 1

0

sα−1ds

∫
|h|<sH

‖∇φ(·+ h)−∇φ(·)‖
|h|N+α−1

dh

)
.

The use of the L1-norm leads to the classical double integral (dxdy) defining the so-called intrinsic norm of
Wα−1,1(RN ), namely

‖A[φ]‖L1(RN ) ≤ c
(

2‖φ‖L1(RN )

∫
|h|>H

dh

|h|N+α
+Hθ

∫ 1

0

sθ+α−1ds

∫ ∫
|x−y|<sH

|∇φ(x)−∇φ(y)|
|x− y|N+θ+α−1

dxdy
)

≤ c‖φ‖W θ+α,1(RN ),

where θ > 0 is arbitrarily smalliv when α = 1 while θ may be set to zero otherwise. As a conclusion A maps
W 2−,1(RN ) into L1(RN ). The assertion of the lemma for α ≥ 1 is then a consequence of the fact that ERr
belongs to W 2−,1(RN ) (see Remark 2.2 below).

Remark 2.2. The observation ERr ∈W 2−,1(RN ) is a special case of the more general relation ∇ERr ∈W s,p(RN )
valid for 0 ≤ s < 1/p ≤ 1. The latter property can be checked by mimicking a classical exercise on fractional
order Sobolev spaces, according to which the characteristic function IΩ of a bounded domain Ω ⊂ RN with
Lipschitz boundary belongs to W s,p(RN ) for any s < 1/p. See for instance [40] or [46]. Obviously, the presence
here of an extra C∞ non-constant function within Ω := {r < | · | < R} makes no problem.

The following lower bound on A[Er] is fundamental in the sequel: it contains both some nonnegativity within
the ball of radius r (which is no mystery since Er is maximal there) and some information on its decay at
infinity (roughly speaking an improvement of a power α). Recall that β < α is a parameter of Er.

Lemma 2.4. One has A[Er] ≥ −(α− β)c
Er
| · |α

I>r.

Proof. The function θr : s ∈ R 7→ min{s, E(r)} ∈ R used in the construction of Er = θr ◦E is concave on R. So,
the pointwise inequality θr(a)− θr(b) ≥ θ′r(a)(a− b) leads to a convexity property for the operator A, namely

A[Er](x) = −c lim
H→0+

∫
RN

I|h|>H
(
Er(x+ h)− Er(x)

) dh

|h|N+α

≥ −c lim
H→0+

∫
RN

I|h|>H (θ′r ◦ E)(x)
(
E(x+ h)− E(x)

) dh

|h|N+α

= (θ′r ◦ E)(x) A[E](x) = I|x|>r A[E](x).

It remains to insert the expression of A[E] just found in Lemma 2.2 to conclude.

ivNote that for α = 1, use of θ > 0 permits to avoid introducing Besov spaces in this calculation.
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We will also need for A[ERr ] some alternative expression of its main part (|x| < R) and tail (|x| > R):

Lemma 2.5. A[ERr ](x) is equal to
A[Er](x)− c

∫
RN

[
1

RN−β
− 1

|x+ h|N−β

]+
dh

|h|N+α
for |x| < R,

− c

rN−β

(
1− rN−β

RN−β

)∫
B(x,r)

1

| · |N+α
− c

∫
|x+h|>r

[
1

|x+ h|N−β
− 1

RN−β

]+
dh

|h|N+α
for |x| > R.

Proof. For |x| < R fixed, the integral in h defining A[ERr ] may be cut into two parts according to whether |x+h|
is situated below or above the threshold R, i.e.,

A[ERr ](x) = −c
∫
|x+h|<R

(
ERr (x+ h)− ERr (x)

) dh

|h|N+α
− c

∫
|x+h|>R

(
ERr (x+ h)− ERr (x)

) dh

|h|N+α

= −c
∫
|x+h|<R

(
Er(x+ h)− Er(x)

) dh

|h|N+α
+ c

∫
|x+h|>R

ERr (x)
dh

|h|N+α

= A[Er](x) + c

∫
|x+h|>R

(
Er(x+ h)− Er(x) + ERr (x)

) dh

|h|N+α

= A[Er](x)− c
∫
|x+h|>R

(
1

RN−β
− 1

|x+ h|N−β

)
dh

|h|N+α
,

whence the result. For |x| > R fixed, the computation is even more natural:

A[ERr ](x) = −c
∫
RN

ERr (x+ h)
dh

|h|N+α

= −c
∫
|x+h|<r

(
1

rN−β
− 1

RN−β

)
dh

|h|N+α
− c

∫
r<|x+h|<R

(
1

|x+ h|N−β
− 1

RN−β

)
dh

|h|N+α
,

which is the stated formula.

We are now in a position to state and prove the main result of this section:

Lemma 2.6. One has ‖A[ERr ]− I<R A[Er]‖L1(RN ) → 0 as R→∞.

Proof. By the previous lemma, ‖A[ERr ]− I<R A[Er]‖L1(RN ) = c(IRr + JRr +KR
r ), where

IRr :=

∫
|x|<R

(∫
|x+h|>R

[
1

RN−β
− 1

|x+ h|N−β

]
dh

|h|N+α

)
dx,

JRr :=

∫
|x|>R

(∫
R>|x+h|>r

[
1

|x+ h|N−β
− 1

RN−β

]
dh

|h|N+α

)
dx,

KR
r :=

( 1

rN−β
− 1

RN−β

)∫
|x|>R

(∫
|x+h|<r

dh

|h|N+α

)
dx.

We shall start with the estimate of KR
r which turns out to be a mild term, in the sense that KR

r remains
asymptotically small whatever the choice of β be. Next, we shall deal with JRr in detail, leaving the similar
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study of IRr to the reader, since IRr and JRr have been designed in order to be in complete analogy from a
computational point of view.

(i) Study of KR
r . In the double integral defining KR

r , introduce the change of variables h = −x + |x|y for
every fixed x (so that dh = |x|Ndy), then make the polar change of variables w.r.t. x for every fixed h (i.e.,
set ρ := |x|). By the Fubini-Tonelli theorem, the integrals can be freely interchanged. Recall that sN is the
measure of the unit sphere. This leads to the following chain of equalities:∫
|x|>R

(∫
|x+h|<r

dh

|h|N+α

)
dx =

∫
|x|>R

dx

|x|α

∫
|y|<r/|x|

dy∣∣∣ x|x| − y∣∣∣N+α

= sN

∫
ρ>R

ρN−α
dρ

ρ

∫
|·|<r/ρ

1

|ε− ·|N+α
= sN

∫
|·|<r/R

1

|ε− ·|N+α

∫ r/|·|

R

ρN−α
dρ

ρ
,

where the choice of the reference point ε := (1, 0, . . . , 0) on the unit sphere of RN is immaterial here due to the
angular invariance of the integral involved. The conclusion of this computation is the identity∫

|x|>R

(∫
|x+h|<r

dh

|h|N+α

)
dx = sN

∫
|·|<r/R

1

|ε− ·|N+α

1

N − α

( rN−α

| · |N−α
−RN−α

)
,

in which an extra r/R-dilation can be made to get finally the more transparent expression∫
|x|>R

(∫
|x+h|<r

dh

|h|N+α

)
dx =

rN

Rα
sN

N − α

∫
|·|<1

1∣∣ε− r
R ·
∣∣N+α

( 1

| · |N−α
− 1
)
.

The asymptotic behavior as R→∞ is readily seen on this formula: we find KR
r ∼ Crβ/Rα, in particular there

is a constant C for which KR
r ≤ Crβ/Rα → 0 as R→∞.

(ii) Study of JRr . In the double integral defining JRr , consider first a translation of h in the x-variable for
every fixed h, then rename h as h = x − |x|y for every fixed x (so that dh = |x|Ndy), and finally use polar
coordinates to take advantage of the angular invariance (as before ε is a reference point on the unit sphere).
This amounts to successively turning JRr into

JRr =

∫
|x|>R

(∫
R>|x+h|>r

[
1

|x+ h|N−β
− 1

RN−β

]
dh

|h|N+α

)
dx

=

∫ ∫
r<|x|<R<|x−h|

( 1

|x|N−β
− 1

RN−β

)
dx

dh

|h|N+α

=

∫
r<|x|<R

( 1

|x|N−β
− 1

RN−β

) dx

|x|α

∫
|y|>R/|x|

dy∣∣∣ x|x| − y∣∣∣N+α

= sN

∫ R

r

1

ρα−β

(
1− 1

(R/ρ)N−β

)dρ
ρ

∫
|·|>R/ρ

1

|ε− ·|N+α
.

A last change of ρ into R/ρ (so that dρ/ρ is unchanged) leads to an expression of JRr as a monotonic quantity
of R/r, i.e.,

JRr =
sN
Rα−β

∫ R/r

1

ρα−β
(

1− 1

ρN−β

)dρ
ρ

∫
|·|>ρ

1

|ε− ·|N+α
,
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so that JRr ≤ γJ/Rα−β with

γJ := sN

∫ ∞
1

ρα−β
(

1− 1

ρN−β

)dρ
ρ

∫
|·|>ρ

1

|ε− ·|N+α

= sN

∫
|·|>1

1

|ε− ·|N−(2−α)
×
|·|α−β−1
α−β − 1

N−α

(
1− 1

|·|N−α

)
|ε− ·|2

<∞,

the integrability being ensured by the boundedness of the last ratio in the last integrand. Specifically,

|·|α−β−1
α−β − 1

N−α

(
1− 1

|·|N−α

)
|ε− ·|2

∼ 1

2
(N − β)

(
| · | − 1

|ε− ·|

)2

remains bounded in a vicinity of ε.

(iii) Study of IRr . Similar transformations of the double integral defining IRr show that IRr is in fact of the
form IRr = γI/R

α−β with

γI := sN

∫
|·|<1

1

|ε− ·|N−(2−α)
×
|·|α−β−1
α−β + 1

N−α

(
1

|·|N−α − 1
)

|ε− ·|2
<∞,

the integrability being ensured by the same argument as before.

We shall end this section with a natural question concerning the border case of powers: what still holds when
β = α? The discussion here will focus on the case α < 1 only to avoid some lengthy digression. Obviously,
Lemma 2.2 has to be re-interpreted as a relation (A[e] = c0δ0) expressing that e(= E) is then an elementary
solution. All other lemmata and proofs remain unchanged, with the outstanding exception that Lemma 2.6
should now state an L1-bound instead of an L1-convergence. Precisely

‖A[eRr ]− I<R A[er]‖L1(RN ) → (γ̂I + γ̂J)c as R→∞,

or equivalently (since A[er] is integrable by Lemma 2.1)

‖A[eRr ]−A[er]‖L1(RN ) → (γ̂I + γ̂J)c as R→∞,

where γ̂I + γ̂J > 0 is the constant appearing in (ii)-(iii) of the proof of Lemma 2.6 when β := α. Note that the
expression we would find in this case

γ̂I + γ̂J = sN

∫
RN

1

|ε− ·|N−(2−α)
×
|·|0−1

0 + 1
N−α

(
1

|·|N−α − 1
)

|ε− ·|2
<∞

involves the logarithm through the usual convention for the zero power
| · |0 − 1

0
:= log| · |.

To complete the picture for α < 1, let us mention that the convergence A[eRr ]→ A[er] as R→∞ may be seen
to hold in Lp(RN ) for any 1 < p ≤ ∞, but not in L1 (nor even in L1 weak, see the comment at the end of the
section). In the sequel, this lack of duality is a serious obstacle to get rid of ’non-local’ terms of the type

lim inf
R→∞

∫
RN

W A[eRr ],
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where W = |ϕ(u) − ϕ(v)|. These terms are required to be nonnegative in the proof of Section 3 when W ∈
L∞+ (RN ) is only known to be bounded (and not in Lp

′
for some 1 < p ≤ ∞). In this respect, all we can

apparently do in an L∞-framework with the aforementioned material for the critical case β = α, is the following
claim.

Lemma 2.7. Assume that W ∈ L∞(RN ) tends to some limit l at infinity. Then∫
RN

W A[eRr ] −→ −c0l +

∫
RN

W A[er] as R→∞

where c0 is the constant of Lemma 2.1.

Proof. Consider the decomposition∫
RN

W A[eRr ]−
∫
RN

W A[er] =

∫
RN

(W − l)
(
A[eRr ]−A[er]

)
− l
∫
>R

A[er]

+ l

∫
>R

A[eRr ] + l

∫
<R

(
A[eRr ]−A[er]

)
.

As R→∞, it is easy to see

(i) that the first term tends to zero because A[eRr ]−A[er]→ 0 uniformly on RN with an L1(RN )-bound;

(ii) that the second term tends to zero because A[er] ∈ L1(RN ) (see Lemma 2.1);

(iii) and that the sum of the two last terms tends to −(γ̂I + γ̂J)c as the proof of Lemma 2.6 shows when β = α.

The case of a constant W permits to calculate (γ̂I+γ̂J)c = c0 as the value (7) of the constant in the fundamental

equation A[e] = c0δ0. In other terms γ̂I + γ̂J = π
N
2 −αΓ(

α

2
)/Γ(

N − α
2

).

The case of a general W ∈ L∞(RN ) is not covered by Lemma 2.7. As a conclusion to this section, we could
therefore say that introducing a strictly smaller power β < α in (8) can be viewed as a technicality to get some
replacement of Lemma 2.7 valid for any bounded W . In the context of Section 3 this will allow the study of
solutions without any prescribed behavior at infinity.

3 Entropy formulation and proofs of Theorems 1.1, 1.2

3.1 Entropy formulation recalled

Following [1] (see also [31, 20, 27] for variants of the definition), we define the entropy formulation of the non-
local conservation law (1) as follows. Note that in order to make most apparent the link to (10) below we chose
to state it with Kruzhkov entropies and not with general smooth convex entropies; we also include the initial
datum into entropy inequalities instead of using the original ess limt→0+ formulation of [32].

Definition 3.1. Let u0 ∈ L∞(RN ) and g ∈ L1
loc(I;L∞(RN )). A function u ∈ L∞(I × RN ) is called an entropy

solution of (1) if for any nonnegative test function φ ∈ C∞c (I × RN ) and any cut value r ∈ R∗+ the following
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entropy inequalities hold:∫
I×RN

|u− k|∂tφ+ Φ(u, k).∇xφ+ sgn(u− k) gφ+

∫
RN
|u0 − k|φ(0, ·)

≥ c
∫
I×RN

sgn(u− k)φ

∫
|h|>r

ϕ(u(·))− ϕ(u(·+ h))

|h|N+α
dh

− c
∫
I×RN

|ϕ(u)− ϕ(k)|
∫
|h|<r

φ(·+ h)− φ(·)− h∇φ(·)
|h|N+α

dh,

where Φ(u, k) = sgn(u−k)(f(u)−f(k)) is the associated entropy flux ([32]) and c is the normalization constant
of the non-local diffusion operator.

3.2 Uniqueness and contraction(-comparison) proof

Let u and v be two bounded entropy solutions of (1) associated with the initial data u0 and v0 and the source
terms g and h. Kruzhkov’s method of doubling variables applied to the entropy inequality of Definition 3.1
allows to derive the Kato-like inequality∫

I

(∫
RN
|u− v|φ dx

)
ψ′(t)dt+

∫
I

(∫
RN

sgn(u− v)
(
f(u)− f(v)

)
.∇xφ dx

)
ψ(t)dt (10)

+

∫
I

(∫
RN

sgn(u− v)(g − h)φ dx

)
ψ(t)dt+ ψ(0)

∫
RN
|u0 − v0|φ dx ≥

∫
I

(∫
RN
|ϕ(u)− ϕ(v)| A[φ] dx

)
ψ(t)dt,

in which φ = φ(x) ∈ W 2−,1
+ (RN ) and ψ = ψ(t) ∈ W 1,1

+ (I) are arbitrary (regularv) functions of space and time.
Although this point is of crucial importance in the global argument, we shall not discuss it further here, since
this has already been done several times elsewhere (see e.g. [1, 27]).

Note also that the monotonicity assumption on the nonlinearity ϕ is fundamental to end up with a nonnegative
r.h.s. of the type sgn(u− v)

(
ϕ(u)− ϕ(v)

)
= |ϕ(u)− ϕ(v)|; but the usually assumed Lipschitz regularity of f ,ϕ

plays no role in the argument as soon as f(u),ϕ(u) are L1
loc functions.

The remaining part of this section aims at deducing from (10) the uniqueness and stability of entropy solutions
through the classical L1-contraction principle

‖w(t)‖L1(RN ) ≤ ‖w0‖L1(RN ) +

∫ t

0

‖g − h‖L1(RN )(τ)dτ ( for a.e. t ∈ I)

for
w := |u− v| ∈ L∞+ (I × RN )

and w0 := |u0 − v0| ∈ L∞+ (RN ). Of course, the underlying assumption is that the data differ here by integrable
terms u0 − v0 ∈ L1(RN ) and g − h ∈ L1

loc(I;L1(RN )), otherwise we have nothing to prove.

In an entirely analogous way, the choice w := (u− v)+ leads to the contraction-comparison principle also stated
in Theorem 1.1. For this sake, it is enough to start with the version of the Kato inequality (2) where the
Kruzhkov entropy | · −k| and its entropy flux are replaced by the semi-entropies (· − k)± and the associated
fluxes, while |ϕ(u)− ϕ(k)| is replaced by (ϕ(u)− ϕ(k))±.

For notational convenience, let us set once for all

M := max{‖u‖L∞(I×RN ), ‖v‖L∞(I×RN ), ‖f(u)− f(v)‖L∞(I×RN ), ‖ϕ(u)− ϕ(v)‖L∞(I×RN )} <∞.
vThe extension from C∞c to W 2−,1 follows from an easy density argument.
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3.2.1 The local term

Besides the trivial bound of source terms by sgn(u− v)(g − h)ERr ≤ |g − h|Er, we shall also plug into (10) the
following estimate of the local term (or div-term)

sgn(u− v)
(
f(u)− f(v)

)
.∇xERr ≤ LMf wσ|∇ERr |, (11)

where

|∇ERr | = |∇Er| Ir<|·|<R = (N − β)
Er
| · |

Ir<|·|<R. (12)

Now, assume N > 1. Fix δ > 0 small and set δ′ := δ−
1

N−1 (as well as N ′ :=
N

N − 1
), in order to write

wσ

| · |
≤ δ

N

1

| · |N
+

δ′

N ′
w. (13)

This estimate results from the Young inequality for nonnegative numbers

ab ≤ ap

p
+
bp
′

p′
applied with a :=

δ1/N

| · |
, b :=

wσ

δ1/N
, p := N.

Now, (11),(12),(13) give

sgn(u− v)
(
f(u)− f(v)

)
.∇xERr ≤ LMf (N − β)

(
δ

N

Er
| · |N

+
δ′

N ′
wEr

)
Ir<|·|<R,

so that after integration in space∫
RN

sgn(u− v)
(
f(u)− f(v)

)
.∇xERr ≤ LMf (N − β)

(
δ

N

∫
>r

Er
| · |N

+
δ′

N ′

∫
>r

wEr

)
= LMf

δ

N
sN

1

rN−β
+ LMf (N − β)

δ′

N ′

∫
>r

wEr. (14)

Remark 3.3. In the monodimensional case N = 1, the modulus of continuity of f defined by

ωf : δ ∈ R∗+ 7→ sup
u,v∈[−M,+M ]:0<|u−v|≤δ

|f(u)− f(v)| ∈ R+ (15)

allows to avoid the use of N ′ via the estimate

sgn(u− v)
(
f(u)− f(v)

)
.∇xERr ≤ (1− β)

(
ωf (δ) +

M

δ
w
)Er
| · |

Ir<|·|<R

≤ (1− β)
(
ωf (δ)

Er
| · |

+
M

δr
wEr

)
Ir<|·|<R.

In other words, the constants (
δ

N
,
δ′

N ′
) of the multidimensional case are to be re-interpreted as (ωf (δ),

M

δr
) when

N = 1.
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3.2.2 The non-local term

In the splitting of the non-local term (or A-term) in the r.h.s. of (10) as∫
RN
|ϕ(u)− ϕ(v)| A[ERr ] =

∫
RN
|ϕ(u)− ϕ(v)|

(
A[ERr ]− I<RA[Er]

)
+

∫
r<|·|<R

|ϕ(u)− ϕ(v)| A[Er] +

∫
|·|<r
|ϕ(u)− ϕ(v)| A[Er],

we exploit the nonnegativity of A[Er] for | · | < r and the lower bound of Lemma 2.4 for the case r < | · | < R
to get ∫

RN
|ϕ(u)− ϕ(v)| A[ERr ] ≥ −M‖A[ERr ]− I<RA[Er]‖L1(RN ) − (α− β)c

∫
>r

|ϕ(u)− ϕ(v)| Er
| · |α

. (16)

Next, we make a classical use of the modulus of continuity

ωϕ : ε ∈ R∗+ 7→ sup
u,v∈[−M,+M ]:0<|u−v|≤ε

|ϕ(u)− ϕ(v)| ∈ R+. (17)

by distinguishing between small and large values of w, i.e.∫
>r

|ϕ(u)− ϕ(v)| Er
| · |α

=

∫
>r

I(w≤ε) |ϕ(u)− ϕ(v)| Er
| · |α

+

∫
>r

I(w>ε) |ϕ(u)− ϕ(v)| Er
| · |α

≤
∫
>r

ωϕ(ε)
Er
| · |α

+

∫
>r

M

ε
w
Er
rα

= ωϕ(ε)sN
1

(α− β)rα−β
+
M

ε

1

rα

∫
>r

wEr. (18)

3.2.3 Estimates derived from the evolution in time

The various estimates (14),(16),(18) assembled together yield∫
I

(∫
RN

wERr

)
ψ′ + LMf

∫
I

( δ
N
sN

1

rN−β
+ (N − β)

δ′

N ′

∫
>r

wEr

)
ψ

+

∫
I

(∫
RN
|g − h|Er

)
ψ + ψ(0)

∫
RN

w0E
R
r

≥
∫
I

(
−M‖A[ERr ]− I<RA[Er]‖L1(RN ) − ωϕ(ε)csN

1

rα−β
− M

ε

α− β
rα

c

∫
>r

wEr

)
ψ. (19)

In order to focus on time dependence only, let us set

p :=

∫
<r

wERr ≤
∫
<r

wEr =: p̂ and q :=

∫
>r

wERr ≤
∫
>r

wEr =: q̂,

d :=

∫
RN
|g − h|Er,

as functions of time t; they are defined for a.e. t ∈ I. Let us stress that at this stage, q̂ is not known to be
finite-valued. Introduce the three constants

ν := M‖A[ERr ]− I<RA[Er]‖L1(RN ),

ρ := LMf
δ

N
sN

1

rN−β
+ ωϕ(ε)csN

1

rα−β
and l̂ := LMf (N − β)

δ′

N ′
+
M

ε

α− β
rα

c,
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the dependence upon r (and also upon R for p, q, ν) being dropped for the sake of readability. Notice that ν
vanishes as R→∞ thanks to Lemma 2.6. With these notations, the inequality obtained in (19) reads∫

I

(p+ q)ψ′ + l̂

∫
I

q̂ψ +

∫
I

(d+ ρ+ ν)ψ ≥ −ψ(0)

∫
RN

w0E
R
r , (20)

provided that the q̂-term coming from (18) has been proved finite. Such is the purpose of the following result,
which states an intermediate integrability on w. In the sequel this claim will be improved into global integrability
through the L1-contraction principle itself. Note that the border case β := α is allowed in the statement below.

Lemma 3.8. For all β ≤ α, one has q̂ ∈ L∞loc(I).

Proof. Coming back to (11),(12) and continuing the chain of inequalities (16) by∫
RN
|ϕ(u)− ϕ(v)| A[ERr ] ≥ −M‖A[ERr ]− I<RA[Er]‖L1(RN ) −M(α− β)c

∫
>r

Er
| · |α

= −ν − McsN
rα−β

,

from (10) we obtain in the same spirit as before∫
I

(p+ q)ψ′ + LMf (N − β)

∫
I

(∫
>r

wσ
Er
| · |

)
ψ +

∫
I

(d+ ν +
McsN
rα−β

)ψ ≥ −ψ(0)

∫
RN

w0E
R
r

and consequently (after integration in time)

(p+ q)(t) ≤
∫
RN

w0Er +

∫ t

0

d+ tν + t
McsN
rα−β

+ LMf N

∫ t

0

(∫
>r

wσ
Er
| · |

)
.

Fatou’s lemma as R→∞ then leads to

(p̂+ q̂)(t) ≤
∫
RN

w0Er +

∫ t

0

d+ t
McsN
rα−β

+ LMf N

∫ t

0

(∫
>r

wσ
Er
| · |

)
. (21)

When α < 1, this relation shows as expected that p̂ and q̂ remain bounded locally uniformly in time, since the
integrability ∫ t

0

(∫
>r

wσ
Er
| · |

)
≤ tMσ

∫
>r

Er
| · |

<∞

is obvious in this case. It is also of interest to remark that the limiting procedure β → α− is allowed in this
argument, since taking β := α in the final bound (21) makes no problem.

When α ≥ 1 an extra argument is needed. Let (αk)k∈N denote the decreasing sequence of powers defined from
α0 := α by the inductive formula

αk := α−
∑

0≤j<k

N − αj
N − 1

.

Since its limit as k →∞ is obviously limαk = −∞ (since the general term of the series does not tend to zero),
we may restrict k to the smallest integer K s.t. αK ≤ 1. For 0 ≤ k ≤ K, let Er,k denote the same quantity as
Er, but with β changed into β − α+ αk inside. Instead of (13), we shall now use the similar estimate

wσ

| · |
Er,k ≤

1

N

1

| · |αk
Er,k +

1

N ′
w

| · |(N−αk)/(N−1)
Er,k,
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in which the first term of the r.h.s. has been designed to be integrable at infinity or more precisely, on the set
(> r). So, repeating (21) for any 0 ≤ k ≤ K with Er,k (instead of Er) produces a system of K + 1 inequalities∫

RN
w(t)Er,k ≤

∫
RN

w0Er,k +

∫ t

0

d+ t
McsN
rα−β

+ LMf N

∫ t

0

(∫
>r

wσ
Er,k
| · |

)
≤
∫
RN

w0Er,k +

∫ t

0

d+ t
McsN
rα−β

+ tLMf

∫
>r

Er,k
| · |αk

+ LMf
N

N ′

∫ t

0

(∫
>r

w
Er,k

| · |(N−αk)/(N−1)

)
,

ending (in line K) with a finite r.h.s. due to the bound∫ t

0

(∫
>r

wσ
Er,K
| · |

)
≤ tMσ

∫
>r

Er,K
| · |

<∞.

A careful inspection of powers shows that this system is essentially inductive, in the sense that the r.h.s. of any
line is the l.h.s. of the next line up to some easy terms. Finally, this system exhibits a control from above of
the l.h.s. (p̂+ q̂)(t) of its first line (k = 0) by the finite r.h.s. of its last line (k = K), showing as expected that
p̂ and q̂ remain bounded locally uniformly in time.

The (spatial) integrability expressed by Lemma 3.8 allows to pass to the limit in (20) as R→∞, with the aim
to recover a similar differential inequation for p̂ and q̂, i.e.∫

I

(p̂+ q̂)ψ′ + l̂

∫
I

q̂ψ +

∫
I

(d+ ρ)ψ ≥ −ψ(0)

∫
RN

w0Er.

Therein, it is now possible to let β tend towards α, thanks again to the integrability contained in Lemma 3.8
for the border case. The resulting relation reads∫

I

(P +Q)ψ′ + l

∫
I

Qψ +

∫
I

(D + ρ+ ωϕ(ε)csN )ψ ≥ −ψ(0)

∫
RN

w0er, (22)

where

P :=

∫
<r

wer and Q :=

∫
>r

wer and D :=

∫
RN
|g − h|er

are the quantities corresponding to the border case β = α, Er = er, while

ρ := LMf
δ

N
sN

1

rN−α
and l := LMf (N − α)

δ′

N ′
.

Finally ε → 0+ in (22) yields −(P + Q)′ + lQ + D + ρ ≥ 0 in the sense of distributions on I. We shall now
integrate this evolution inequation in two slightly different ways, viewing it, on the one hand like

(P +Q)′ ≤ D + ρ+ lQ,

and on the other hand like
d

dt

(
P (t)e−lt +Q(t)e−lt

)
≤ (D + ρ− lP )e−lt.

From the first standpoint, we get

(P +Q)(t) ≤
∫
RN

w0er +

∫ t

0

D + tρ+ l

∫ t

0

Q,
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so that (after multiplying by rN−α)∫
RN

w(t)rN−αer ≤
∫
RN

w0r
N−αer +

∫ t

0

(∫
RN
|g − h|rN−αer

)
+ tLMf

δ

N
sN + l

∫ t

0

(∫
>r

wrN−αer

)
≤ ‖w0‖L1(RN ) +

∫ t

0

‖g − h‖L1(RN ) + tLMf
δ

N
sN + l

∫ t

0

‖wI>r‖L1(RN ). (23)

By Fatou’s lemma as r →∞, this relation leads to the L1-contraction principle

‖w(t)‖L1(RN ) ≤ ‖w0‖L1(RN ) +

∫ t

0

‖g − h‖L1(RN ) + tLMf
δ

N
sN

up to some arbitrarily small δ-term, provided that the function w occuring in the r.h.s. of (23) is known to be
integrable on RN . This crucial point is now to be checked.

From the second standpoint, we get

(P +Q)(t) ≤ e+lt
(∫

RN
w0er +

∫ t

0

(D + ρ− lP )(τ)e−lτdτ
)
≤ e+lt

(∫
RN

w0er +

∫ t

0

D + tρ
)
,

so that (after multiplying by rN−α)∫
RN

w(t)rN−αer ≤ e+lt
(∫

RN
w0r

N−αer +

∫ t

0

(∫
RN
|g − h|rN−αer

)
+ tLMf

δ

N
sN

)
≤ e+lt

(
‖w0‖L1(RN ) +

∫ t

0

‖g − h‖L1(RN ) + tLMf
δ

N
sN

)
.

By Fatou’s lemma as r →∞, this relation leads to

‖w(t)‖L1(RN ) ≤ e+lt
(
‖w0‖L1(RN ) +

∫ t

0

‖g − h‖L1(RN ) + tLMf
δ

N
sN

)
<∞,

establishing the expected integrability of w. This concludes the proof of Theorem 1.1.

3.3 The existence claim (sketched)

For the sake of completeness, let us briefly indicate how the existence for our case of irregular f, ϕ can be
deduced with the known tools and existence results designed for the case of locally Lipschitz nonlinearities. For
the sake of conciseness, we skip the mention of the space domain RN in notations like L∞(RN ), BV (RN ), etc..

At the first step of the argument, approximate f, ϕ uniformly on compact sets by locally Lipschitz nonlinearities
f l, ϕl converging as l → ∞, keeping the monotonicity of ϕ: this can be done by the standard mollification
argument. Consider a countable family U0 ⊂ BV ∩L∞ of compactly supported data u0 such that U0 is dense in
L1 for the L1 topology. Analogously, consider a countable family G ⊂ L1(I;BV ∩L∞) of compactly supported
source terms such that G is dense in L1

loc(I;L1) for its topology.

The existence results of Cifani, Jakobsen [20] (case without source) and Endal, Jakobsen [27] (case with
source) provide for each fixed (u0, g) ∈ U0 × G the sequence of respective entropy solutions (ulu0,g)l of (1) with

nonlinearities f l, ϕl. Moreover, from the proofs of e.g. [20], using in particular the translation invariance of the
underlying PDE and the L1 contraction, one infers bounds on space and time translates of ulu0,g independently of
l, which allow the application of the C0(0, T ;L1)-compactness result of [30, Th. A.8]. So, a diagonal extraction
permits to deduce, for a subsequence lk → ∞, the simultaneous – for all (u0, g) ∈ U0 × G – a.e. convergence
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of ulku0,g to some limits uu0,g. The entropy formulation of Definition 3.1 is stable under the a.e. convergence

ulku0,g → uu0,g, having in mind the locally uniform in time bound given by the last line of (4)

‖ulu0,g(t, ·)‖∞ ≤ ‖u0‖∞ +

∫ t

0

‖g(τ, ·)‖∞ dτ.

By the stability results of [20, 27], the solvers (u0, g) 7→ ulu0,g are L1-contractive and order-preserving with
respect to data in U0 × G; this structure is preserved at the limit lk →∞.

At the second step of the argument, the above constructed solver is extended by density to general L1 ∩ L∞
data u0 and L1

loc(I;L1 ∩ L∞) sources g. Here again, extension by density preserves the entropy formulation of
Definition 3.1, the extended solver (u0, g) 7→ uu0,g on L1 ∩ L∞ is L1-contractive and order-preserving, and the

L∞ norm of the solution is controlled by ‖u0‖∞ +
∫ t

0
‖g(τ, ·)‖∞ dτ due to the last line of (4). We now denote

this solver by S.

At the final step of the argument, we attain general initial data u0 ∈ L∞ and source terms g ∈ L1
loc(I;L∞) by

means of the bimonotone approximation due to Ammar, Wittbold [7] by setting

um,n0 := (u0)+I<n − (u0)−I<m ∈ L1 ∩ L∞,

gm,n := (g)+I<n − (g)−I<m ∈ L1
loc(I;L1 ∩ L∞).

By construction, (um,n0 )m,n is bi-monotone in the sense that it is non-decreasing in n and non-increasing
in m. Also the sequence (gm,n)m,n is constructed to be bi-monotone. The order-preservation of S makes(
S(um,n0 , gm,n)

)
m,n

bi-monotone as well. Then we apply twice the monotone convergence theorem on compact

subsets of I × RN , in the context of the locally uniform in time L∞ control on
(
S(um,n0 , gm,n)

)
m,n

(the latter

is inherited from the previous steps, being understood that the truncation procedure via I<n and I<m does not
increase the L∞ norm). We infer a.e. convergence of S(um,n0 , gm,n) to an a.e. finite limit we call S(u0, g). As
previously, we pass to the limit in the entropy formulation of Definition 3.1 and infer the existence claim.

4 Simpler proof of L1-contraction under Hölder regularity of ϕ

In this section we take the assumption (Hbis
ϕ ) in addition to (Hf ) and (Hϕ) . More precisely, we suppose that

ϕ is locally Hölder-continuous of exponent s := 1− α

N
, i.e.vi,

∀M ∈ R+ ∃LMϕ ∈ R+ : ∀u, v ∈ [−M,+M ] |ϕ(u)− ϕ(v)| ≤ LMϕ |u− v|s.

We provide a simpler proof of the result (3) in Theorem 1.1. This alternative proof does not rely on the study
of radial powers developped in Section 2. Instead, the idea is to use the dilations φ(ε·) of a special positive
test function φ ∈ W 2,1(RN ) ∩W 2,∞(RN ) : 0 < φ ≤ 1 satisfying φ(x) = 1 for |x| < 1 and φ(x) = 1/|x|N+α for
|x| > 2. Note that in the case f = 0 (pure diffusion case) this line of analysis can be compared to [29] (in the
local case) and [14] (in the fractional case).

Lemma 4.9. There is a constant γ for which |∇φ| ≤ γφ and |A[φ]| ≤ γφ on RN .

Note that related statements can be found in [14].

viIn case s ≤ 0, the condition degenerates and must be understood as the mere continuity (see Remark 4.6 below).
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Proof. For |x| > 2 fixed, we treat the singular part of the integral defining A[φ](x) in the spirit of Lemma 2.3
(specifically through formula (9) with H := 1), to get

|A[φ]|(x) ≤ c
∫
|h|<1

∫ 1

0

|∇φ(x+ sh)−∇φ(x)|
|h|

ds
dh

|h|N−(2−α)

+ c

∫
|h|>1

φ(x+ h) I|x+h|<1
dh

|h|N+α
+ c

∫
|h|>1

φ(x+ h) I|x+h|>1
dh

|h|N+α
+ cφ(x)

∫
|h|>1

dh

|h|N+α
. (24)

The last term in the r.h.s. of (24) will lead us to the desired conclusion provided we are able to control the
other terms. Since in the first integral of the r.h.s. of (24) we have

|∇φ(x+ sh)−∇φ(x)|
|h|

≤ sup
0<τ<1

|∇2φ|(x+ sτh) ≤ sup
0<τ<1

C

|x+ sτh|N+α+2
(25)

≤ C

(|x| − 1)N+α+2
≤ C

(|x|/2)N+α+2
≤ 2N+αCφ(x), (26)

it remains to study the second and third terms only. In the second term of the r.h.s. of (24), note that
|x+ h| < 1 < |h| implies |h| ≥ |x| − |x+ h| > |x|/2, so∫

|h|>1

φ(x+ h) I|x+h|<1
dh

|h|N+α
=

∫
|x+h|<1

I|h|>1
dh

|h|N+α
≤
∫
|x+h|<1

dh

(|x|/2)N+α
= Cφ(x).

In the third term of the r.h.s. of (24), note that at least one of the following cases occurs: either |x+h| ≥ |x|/2
or |h| ≥ |x|/2. Whence∫
|h|>1

φ(x+ h) I|x+h|>1
dh

|h|N+α
≤ Γ

∫
{|x+h|>1 and |h|>1}

dh

|x+ h|N+α|h|N+α

≤ Γ

∫
|x+h|>|x|/2

I|h|>1
dh

|x+ h|N+α|h|N+α
+ Γ

∫
|h|>|x|/2

I|x+h|>1
dh

|x+ h|N+α|h|N+α

≤ Γ
2

(|x|/2)N+α

∫
>1

1

| · |N+α
= Cφ(x) with Γ := sup

RN
| · |N+αφ.

All this proves the expected estimate |A[φ]| ≤ γφ outside the ball of radius 2 for some constant γ. Inside the
ball, in order to conclude it is enough to say that A[φ] is bounded as a consequence of the proof of Lemma 2.3.

This concludes the proof, indeed, the claim of the lemma concerning the bound on ∇φ is obvious.

Remark 4.4. When α < 1, the choice φ := min{1, 1/| · |N+α} ∈W 1,1(RN )∩W 1,∞(RN ) would be enough, since
the regularization up to the second order is needless in this case.

Remark 4.5. Even if the argument just given seems simple, the result is sharp, inasmuch as the decay at
infinity of A[φ] for a nonnegative (regular) φ cannot be made too strong: for α < 1 (to simplify), it is indeed
impossible to find out a non trivial element φ ∈ W 1,1

+ (RN ) − {0} for which | · |N+αA[φ] would tend to zero at
infinity ... This is in sharp contrast with the local case when A is a differential operator. Thus, regarding its
asymptotic behavior, γφ turns out to be the optimal pointwise bound.

For notational convenience, set

n := N/α ( so that s = 1/n′ in (Hbis
ϕ ) )
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and
l := γmax{LMf ‖φ‖

1/N

L1(RN )
, LMϕ ‖φ‖

1/n

L1(RN )
}.

In (10) applied with φ(ε·) instead of φ, let us estimate the source term and the non-local term by, respectively,

sgn(u− v)(g − h)φ(ε·) ≤ |g − h|,
|ϕ(u)− ϕ(v)| A[φ(ε·)] = εα|ϕ(u)− ϕ(v)| A[φ](ε·) ≥ 0 for | · | < 1/ε,

the nonnegativity of A[φ] within the unit ball of RN being derived from the maximality of φ there.

Now, given that f and ϕ are supposed Hölder-continuous of respective exponents σ = 1/N ′ and s = 1/n′, the
div-term and A-term at infinity may be dealt with in a completely similar way, via

ε

∫
RN

sgn(u− v)
(
f(u)− f(v)

)
.∇xφ(ε·) ≤ εLMf

∫
RN

wσ|∇φ|(ε·) ≤ εγLMf
∫
>1/ε

wσφ(ε·)

= εγLMf

∫
>1/ε

(
φ(ε·)

)1/N(
wφ(ε·)

)1/N ′

≤ εγLMf ‖φ(ε·)‖1/N
L1(RN )

‖I>1/ε wφ(ε·)‖1/N
′

L1(RN )

= γLMf ‖φ‖
1/N

L1(RN )

(∫
>1/ε

wφ(ε·)
)σ
≤ l
(∫

>1/ε

wφ(ε·)
)σ
, (27)

and likewise

εα
∫
>1/ε

|ϕ(u)− ϕ(v)| A[φ](ε·) ≥ −εαγLMϕ
∫
>1/ε

wsφ(ε·) = −εαγLMϕ
∫
>1/ε

(
φ(ε·)

)1/n(
wφ(ε·)

)1/n′

≥ −εαγLMϕ ‖φ(ε·)‖1/n
L1(RN )

‖I>1/ε wφ(ε·)‖1/n
′

L1(RN )

= −γLMϕ ‖φ‖
1/n

L1(RN )

(∫
>1/ε

wφ(ε·)
)s
≥ −l

(∫
>1/ε

wφ(ε·)
)s
, (28)

thanks to Lemma 4.9 (and to a few obvious properties of φ). Basically, (27) and (28) are just two simple Hölder
inequalities for integrals, w.r.t. the exponents N and n. Altogether, this turns (10) into∫

I

(∫
RN

wφ(ε·)
)
ψ′ + l

∫
I

(∫
>1/ε

wφ(ε·)
)σ
ψ +

∫
I

(∫
RN
|g − h|φ(ε·)

)
ψ(t)dt+ ψ(0)

∫
RN

w0φ(ε·)

≥
∫
I

(∫
RN
|ϕ(u)− ϕ(v)| A[φ(ε·)]

)
ψ

= εα
∫
I

(∫
<1/ε

|ϕ(u)− ϕ(v)| A[φ](ε·)
)
ψ + εα

∫
I

(∫
>1/ε

|ϕ(u)− ϕ(v)| A[φ](ε·)
)
ψ

≥ −l
∫
I

(∫
>1/ε

wφ(ε·)
)s
ψ. (29)

Remark 4.6. The monodimensional case N = 1 requires here a special argument because (27) makes no sense
for N = 1. Specifically, it will be enough in this case to use the modulus of continuity (15) of f (for the value
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M := ‖f(u)− f(v)‖L∞(R)) as follows:

ε

∫
R

sgn(u− v)
(
f(u)− f(v)

)
.∇xφ(ε·) ≤ ε

∫
R
|f(u)− f(v)| |φ′|(ε·)

=

∫
R
I(w≤δ) |f(u)− f(v)| ε|φ′|(ε·) + ε

∫
>1/ε

I(w>δ) |f(u)− f(v)| |φ′|(ε·)

≤ ωf (δ)

∫
R
ε|φ′|(ε·) +M

γ

δ
ε

∫
>1/ε

wφ(ε·) = ωf (δ)‖φ′‖L1(R) +M
γ

δ
ε

∫
>1/ε

wφ(ε·). (30)

The multidimensional proof developped below may then be adapted to cover the case N = 1 as well, through
replacing (27) by (30) everywhere. Once ε→ 0+ has been sent to zero, this only creates an extra δ-term, which
can easily be made small in the end (since ωf (δ)‖φ′‖L1(R) → 0 as δ → 0+).

In a completely similar fashion, (28) makes no sense when s = 1− α/N ≤ 0 i.e. when N = 1 ≤ α, but in this
exceptionally favourable case the non-local term may be treated as previously in (30), namely

εα−1 × ε
∫
>1/ε

|ϕ(u)− ϕ(v)| A[φ](ε·) ≥ −ε
∫
>1/ε

|ϕ(u)− ϕ(v)| |A[φ]|(ε·)

= −
∫
>1/ε

I(w≤δ) |ϕ(u)− ϕ(v)| ε|A[φ]|(ε·)− ε
∫
>1/ε

I(w>δ) |ϕ(u)− ϕ(v)| |A[φ]|(ε·)

≥ −ωϕ(δ)

∫
R
ε|A[φ]|(ε·)−M γ

δ
ε

∫
>1/ε

wφ(ε·) = −ωϕ(δ)‖A[φ]‖L1(R) −M
γ

δ
ε

∫
>1/ε

wφ(ε·),

where ωϕ stands for the modulus of continuity of ϕ. We arrive to the same conclusion as after (30).

In order to focus on time dependence only, let us set

p :=

∫
<1/ε

wφ(ε·) =

∫
<1/ε

w, then q :=

∫
>1/ε

wφ(ε·) and finally L :=

∫
RN
|g − h|

as functions of time (t ∈ I). With these notations, the inequality obtained in (29) reads∫
I

(p+ q)ψ′ + l

∫
I

qσψ + l

∫
I

qsψ +

∫
I

Lψ ≥ −ψ(0)

∫
RN

w0φ(ε·) ∀ψ ∈W 1,1
+ (I),

and essentially expresses the differential inequation −(p + q)′ + lqσ + lqs + L ≥ 0 in the sense of distributions
on I. We shall integrate it with respect to time in two slightly different ways, viewing it, on the one hand like
(p+ q)′ ≤ L+ lqσ + lqs, and on the other hand like

d

dt

(
(p+ q)(t)e−l(σ+s)t

)
≤
(
L+ l(qσ − σq) + l(qs − sq)− l(σ + s)p

)
e−l(σ+s)t (31)

In the first case, we get∫
RN

w(t)φ(ε·) = (p+ q)(t) ≤
∫
RN

w0φ(ε·) +

∫ t

0

(L+ lqσ + lqs)

≤ ‖w0‖L1(RN ) +

∫ t

0

‖g − h‖L1(RN ) + l

∫ t

0

(∫
>1/ε

w
)σ

+ l

∫ t

0

(∫
>1/ε

w
)s
. (32)

24



By Fatou’s lemma as ε → 0, this relation leads to the L1-contraction principle (3), provided that the function
w occuring in the r.h.s. of (32) is known to be integrable on RN . This crucial point is now to be checked.

In the second case, to avoid unnecessary technicalities regarding the exact integration of (31), we choose first
to convert it into a linear differential inequation by estimating its r.h.s. thanks to two standard inequalities of
the type (13), namely qσ ≤ 1 + σq and qs ≤ 1 + sq. Consequently, we get∫

RN
w(t)φ(ε·) = (p+ q)(t) ≤ e+l(σ+s)t

(∫
RN

w0φ(ε·) +

∫ t

0

(L+ 2l)(τ)e−l(σ+s)τdτ

)
≤ e+l(σ+s)t

(
‖w0‖L1(RN ) +

∫ t

0

‖g − h‖L1(RN ) + 2tl

)
,

and also (letting ε→ 0)

‖w(t)‖L1(RN ) ≤ e+l(σ+s)t

(
‖w0‖L1(RN ) +

∫ t

0

‖g − h‖L1(RN ) + 2tl

)
<∞,

which proves the desired integrability of w.
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[18] H. Brézis and M.G. Crandall. Uniqueness of solutions of the initial-value problem for ut −∆ϕ(u) = 0. J.
Math. Pures Appl. (9)58 (1979), no. 2, 153–163.

[19] J. Carrillo. Entropy solutions for nonlinear degenerate problems. Arch. Rational Mech. Anal., 147(1999),
pp. 269–361.

[20] S. Cifani and E.R. Jakobsen. Entropy solution theory for fractional degenerate convection-diffusion equa-
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