A Link Between the Multiplicative and Additive Functional Asplund’s Metrics
Résumé
Functional Asplund's metrics were recently introduced to perform pattern matching robust to lighting changes thanks to double-sided probing in the Logarithmic Image Processing (LIP) framework. Two metrics were defined, namely the LIP-multiplicative Asplund's metric which is robust to variations of object thickness (or opacity) and the LIP-additive Asplund's metric which is robust to variations of camera exposure-time (or light intensity). Maps of distances-i.e. maps of these metric values-were also computed between a reference template and an image. Recently, it was proven that the map of LIP-multiplicative As-plund's distances corresponds to mathematical morphology operations. In this paper, the link between both metrics and between their corresponding distance maps will be demonstrated. It will be shown that the map of LIP-additive Asplund's distances of an image can be computed from the map of the LIP-multiplicative Asplund's distance of a transform of this image and vice-versa. Both maps will be related by the LIP isomorphism which will allow to pass from the image space of the LIP-additive distance map to the positive real function space of the LIP-multiplicative distance map. Experiments will illustrate this relation and the robustness of the LIP-additive Asplund's metric to lighting changes.
Origine | Fichiers produits par l'(les) auteur(s) |
---|