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Abstract. Functional Asplund’s metrics were recently introduced to
perform pattern matching robust to lighting changes thanks to double-
sided probing in the Logarithmic Image Processing (LIP) framework.
Two metrics were defined, namely the LIP-multiplicative Asplund’s met-
ric which is robust to variations of object thickness (or opacity) and the
LIP-additive Asplund’s metric which is robust to variations of camera
exposure-time (or light intensity). Maps of distances - i.e. maps of these
metric values - were also computed between a reference template and an
image. Recently, it was proven that the map of LIP-multiplicative As-
plund’s distances corresponds to mathematical morphology operations.
In this paper, the link between both metrics and between their corre-
sponding distance maps will be demonstrated. It will be shown that the
map of LIP-additive Asplund’s distances of an image can be computed
from the map of the LIP-multiplicative Asplund’s distance of a trans-
form of this image and vice-versa. Both maps will be related by the
LIP isomorphism which will allow to pass from the image space of the
LIP-additive distance map to the positive real function space of the LIP-
multiplicative distance map. Experiments will illustrate this relation and
the robustness of the LIP-additive Asplund’s metric to lighting changes.

Keywords: Pattern Recognition · Insensitivity to lighting changes ·
Logarithmic Image Processing · Mathematical Morphology · Asplund’s
metric · Double-sided probing · Relation between functional Asplund’s
metrics

1 Introduction

Functional Asplund’s metrics defined in the Logarithmic Image Processing (LIP)
framework [11] are useful tools to compare images. They possess the interest-
ing property of insensitivity to lighting changes. Two functional metrics were
introduced by Jourlin et al: (i) firstly, the LIP-multiplicative Asplund’s metric
which is based on the LIP-multiplicative law is robust to a variation of object
opacity (or thickness) [12,9] and (ii) secondly, the LIP-additive Asplund’s metric
which is defined with the LIP-additive law is robust to a variation of the light
intensity (or the camera exposure-time) [11]. They both extend to grey level
images the Asplund’s metric for binary shapes [1,6] which is insensitive to an
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homothety (or a magnification) of the shapes. In each functional metric, one
image is selected as a probe and is compared to the other one on its two sides
after a LIP-multiplication by a scalar (i.e. an homothety) or a LIP-addition of a
constant (i.e. an intensity translation). Maps of Asplund’s distances can also be
computed between the neighbourhood of each pixel and a probe function defined
on a sliding window [12]. Noyel and Jourlin have shown [23,24] that the map of
LIP-multiplicative of Asplund’s distance is a combination of Mathematical Mor-
phology (MM) operations [16,28,27,8,17].

In the literature, other approaches of double-sided probing were defined. E.g.,
in the hit-or-miss transform [27] and in its extension to grey level images [15],
a unique structuring element was matched with the image from above and from
below. In [2], Banon et al. translated a unique template two times along the grey
level axis. An erosion and an anti-dilation were used to count the pixels whose
values were in between the two translated templates. In an approach inspired by
the computation of the Hausdorff distance, Odone et al. [25] checked if the grey
values of an image were included in an “interval” around the other. The interval
was obtained by a 3D dilation of the other image and was vertically translated for
each point of the first image. If a sufficient number of the image points were in the
“interval”, then the template was considered as matched. Barat et al. [3] showed
that the last three methods correspond to a neighbourhood of functions (i.e. a
tolerance tube) defined by a specific metric for each method. Their topological
approach constituted a unified framework named virtual double-sided image
probing (VDIP). The metrics were defined in the equivalence class of functions
with a grey level addition of a constant. Only the patterns which were in the
tolerance tube were selected. In practice, the tolerance tube was computed as
a difference between a grey-scale dilation and an erosion. However, even if the
approach of Barat et al. was based on a double-sided probing, such a method
was not insensitive to lighting variations. It simply removed the variations due to
an addition of a constant which had no optical justification contrary to the LIP
functional Asplund’s metrics. The existence of lighting variations in numerous
settings such as medical images [19], industrial control [21,22], driving assistance
[7], large databases [20] or security [5] gives a prime importance to the functional
Asplund’s metrics defined in the LIP framework.

The aim of this paper is to study the existence of a link between the two
functional Asplund’s metrics. The paper is organised as follows. Firstly, the
LIP framework will be reviewed. The definition and the properties of the LIP-
multiplicative and the LIP-additive Asplund’s metrics will then be recalled. Sec-
ondly, a link between the two metrics will be demonstrated. Finally, the results
will be illustrated before concluding.

2 Background

In this section, we will present the LIP model and the two functional Asplund’s
metrics.
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2.1 Logarithmic Image Processing

The LIP model was introduced by Jourlin et al. [14,10,11]. It is based on a famous
optical law, namely the Transmittance law, which gives it nice optical properties,
especially for processing low-light images. The LIP model is also consistent with
the human visual system as shown in [4]. This gives to that model the important
property to process images acquired by reflection as a human eye would do. Let
I = [0,M [D be the set of grey level images defined on a domain D ⊂ Rn with
values in [0,M [⊂ R. For 8-bit digitised images, M is equal to 28 = 256. For
an image f ∈ I acquired by transmission, the transmittance Tf of the semi-
transparent object which generates f is equal to Tf = 1 − f/M . According to
the transmittance law, the transmittance Tf4+ g of the superimposition of two
objects which generate f and g is equal to the (point-wise) product “.” of their
transmittances Tf and Tg:

Tf4+ g = Tf .Tg. (1)
By replacing the transmittances by their expressions in equation 1, one can
deduce the LIP-addition of two images f 4+ g:

f 4+ g = f + g − fg/M. (2)
The LIP-multiplication 4× of an image f by a real number λ is deduced from
equation 2 by considering that the addition f 4+ f may be written as 24× f :

λ4× f =M −M (1− f/M)
λ
. (3)

A LIP-negative function 4− f can be defined by the equality f4+ (4− f) = 0 which
allows to write the LIP-difference f 4− g between two images f and g:

4− f = (−f)/(1− f/M) (4)
f 4− g = (f − g)/(1− g/M). (5)

Remark 1. 4− f is not always an image, as it may have negative values. f 4− g is
an image iff f ≥ g. As 4− f may take values in the interval ]−∞,M [, it is called
a function. The set of functions of which the values are less than M is denoted
FM and is equal to ]−∞,M [D.

Remark 2. Contrary to the classical grey scale, the LIP-scale is inverted: 0 cor-
responds to the white extremity when no obstacle is placed between the source
and the sensor, whereas M corresponds to the black extremity when no light
passes through the object.

2.2 The LIP-multiplicative Asplund’s metric

The LIP-multiplicative Asplund’s metric was defined in [12,9]. Let I∗ = ]0,M [
D

be the space of images with strictly positive values.

Definition 1 (LIP-multiplicative Asplund’s metric). Let f and g ∈ I∗
be two grey level images. A probing image is selected, e.g. g, and two num-
bers are defined: λ = inf {α, f ≤ α4× g} and µ = sup {α, α4× g ≤ f}. The LIP-
multiplicative Asplund’s metric d4×As is defined by:

d4
×

As(f, g) = ln (λ/µ) . (6)
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Property 1 ([12]). The LIP-multiplicative Asplund’s metric is theoretically in-
variant under lighting changes caused by variations of the semi-transparent ob-
ject opacity (or thickness) which are modelled by a LIP-multiplication: ∀α ∈
R∗+: d4×As(f, g) = d4×As(α4× f, g).

To be mathematically rigorous, d4×As is a metric in the space of equivalence
classes I4× of the images f4× and g4× , where f4× = {h ∈ I/∃k > 0, k 4× f = h}
[11, chap 3]. However, one can keep the notations we used because ∀(f4× , g4× ) ∈
(I4× )2, d4×As(f

4× , g4× ) = d4×As(f1, g1), where d
4×
As(f1, g1) is the Asplund’s distance

between any elements f1 and g1 of the equivalence classes f4× and g4× . The
relation (∃k > 0, k4× f = h) is an equivalence relation which satisfies the three
properties of reflexivity, symmetry and transitivity [11,23]

Remark 3 (Terminology). When the Asplund’s metric d4×As is applied between
two images f and g, the real value d4×As(f, g) is called the Asplund’s distance
between f and g. The distance is the value of the metric between both images.

Let b ∈]0,M [Db be a probe function defined on a domain Db ⊂ D. A map of
Asplund’s distances between an image f ∈ I∗ and a probe b can be introduced
as follows for each pixel x ∈ D of the image f .

Definition 2 (Map of LIP-multiplicative Asplund’s distances [12]). The
map of Asplund’s distances As4×b : I∗ → (R+)

D is defined by:
As4

×

b f(x) = d4
×

As(f|Db(x) , b). (7)

f|Db(x) is the restriction of f to the neighbourhood Db(x) centred on x ∈ D.
The map of the least upper bounds (mlub) λb and the map of the greatest

lower bounds (mglb) µb can also be defined as follows. Let I = [0,M ]D be the
set of images with the value M included.

Definition 3 (LIP-multiplicative maps of the least upper and of the
greatest lower bounds [23]). Given R+

= [0,+∞], let f ∈ I be an image
and b ∈]0,M [Db a probe. Their map of the least upper bounds (mlub) λb : I →
(R+

)D and their map of the greatest lower bounds (mglb) µb : I → (R+
)D are

respectively defined by:
λbf(x) = inf

h∈Db
{α, f(x+ h) ≤ α4× b(h)}, (8)

µbf(x) = sup
h∈Db

{α, α4× b(h) ≤ f(x+ h)}. (9)

The map of LIP-multiplicative Asplund’s distance has also the property to
be theoretically insensitive to lighting changes caused by variations of the object
opacity (or thickness) which are modelled by a LIP-multiplication.

Let us define f̃ = ln (1− f/M), where f ∈ I. The relation between the map
of LIP-multiplicative Asplund’s distances and MM has been demonstrated in
[23] with the following propositions, 1 and 2.
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Proposition 1. Given f ∈ I, the mlub λb and mglb µb are equal to:
λbf(x) = ∨{f̃(x+ h)/b̃(h), h ∈ Db}, (10)

µbf(x) = ∧{f̃(x+ h)/b̃(h), h ∈ Db}. (11)
If in addition f > 0, the map of Asplund’s distances expression As4×b becomes:

As4
×

b f = ln (λbf/µbf) . (12)

Proposition 2. The mlub λb and the mglb µb are a dilation and an erosion,
respectively, between the two complete lattices (I,≤) and ((R+

)D,≤) [28,8].

Indeed, ∀f, g ∈ I, the mlub distributes over supremum λb(f ∨g) = λb(f)∨λb(g)
and the mglb distributes over infimum µb(f ∧ g) = µb(f) ∧ µb(g) [23].

Moreover, as shown in [24], the mlub, mglb and distance map will be ex-
pressed in proposition 3 with the usual morphological operations for grey level
functions, namely the dilation (f ⊕ b)(x) = ∨h∈Db{f(x − h) + b(h)} and the
erosion (f 	 b)(x) = ∧h∈Db{f(x + h) − b(h)}. The symbols ⊕ and 	 represent
the extension to functions of the Minkowski operators between sets.

Proposition 3. The mlub λb, the mglb µb and the distance map As4×b are equal
to [24]:

λbf = exp (f̂ ⊕ (−b̂)), (13)

µbf = exp (f̂ 	 b̂), (14)

As4
×

b f =
[
f̂ ⊕ (−b̂)

]
−
[
f̂ 	 b̂

]
. (15)

b is the reflected structuring function defined by ∀x ∈ Db, b(x) = b(−x) [29] and
f̂ is the function defined by f̂ = ln (−f̃) = ln (− ln (1− f/M)).

As the operations of dilation ⊕ and erosion 	 exist in numerous image
analysis software, equation 15 facilitates the programming of the map of LIP-
multiplicative Asplund’s distances As4×b f of the image f .

2.3 The LIP-additive Asplund’s metric

Jourlin has proposed a definition for the LIP-additive Asplund’s metric [11, chap.
3]. Let us present it in a more precise way.

Definition 4 (LIP-additive Asplund’s metric). Let f and g ∈ FM be two
functions, we select a probing function, e.g. g, and we define the two numbers:
c1 = inf {c, f ≤ c4+ g} and c2 = sup {c, c4+ g ≤ f}, where c lies in the interval
]−∞,M [. The LIP-additive Asplund’s metric d4+As is defined according to:

d4
+

As(f, g) = c1 4− c2. (16)

Property 2 ([11, chap. 3]). The LIP-additive Asplund’s metric is theoretically
invariant under lighting changes caused by variations of the light intensity (or
camera exposure-time) which are modelled by a LIP-addition of a constant:
∀k ∈]−∞,M [, d4+As(f, g) = d4+As(f 4+ k, g) and d4

+

As(f, f 4+ k) = 0.
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Remark 4. As for the LIP-multiplicative Asplund’s metric, it would be more
rigorous to define the LIP-additive Asplund’s metric on the equivalence classes
f4+ and g4+ , where f4+ = {h ∈ FM/∃k ∈]−∞,M [, f 4+ k = h}.

A map of Asplund’s distances between an image and a probe can also be
defined for each image pixel.

Definition 5 (Map of LIP-additive Asplund’s distances). Let f ∈ FM be
a function and b ∈] −∞,M [Db a probe. The map of Asplund’s distances is the
mapping As4+b : FM → I defined by:

As4
+

b f(x) = d4
+

As(f|Db(x) , b). (17)

The map of LIP-additive Asplund’s distance has also the property to be
theoretically insensitive to lighting changes caused by variations of light intensity
(or camera exposure-time) which are modelled by a LIP-addition of a constant.

3 Linking the LIP-multiplicative and the LIP-additive
Asplund’s metrics

In this section, first, the map of LIP-additive Asplund’s distances will be ex-
pressed with neighbourhood operations. Then the link between both maps and
the metrics will be studied. Finally, this link will be briefly discussed.

3.1 General expression of the map of LIP-additive Asplund’s
distances

From definition 4, the maps of the least upper bounds c1bf and of the greatest
lower bounds c2bf can be defined by computing the constant c1 and c2 between
a probe b ∈]−∞,M [Db and the function restriction f|Db(x).

Definition 6 (LIP-additive maps of the least upper and of the greatest
lower bounds). Let f ∈ FM be a function and b ∈]−∞,M [Db a probe. Their
map of the least upper bounds (mlub) c1b : FM → FM and their map of the
greatest lower bounds (mglb) c2b : FM → FM are defined by:

c1bf(x) = inf
h∈Db

{c, f(x+ h) ≤ c4+ b(h)} (18)

c2bf(x) = sup
h∈Db

{c, c4+ b(h) ≤ f(x+ h)}. (19)

The mlub expression can be rewritten as follows, ∀x ∈ D:
c1bf(x) = inf{c, c ≥ f(x+ h)4− b(h), h ∈ Db}

= ∨{f(x+ h)4− b(h), h ∈ Db}, (20)
where the last equality is due to the complete lattice structure. In a similar way,
the mglb c2b becomes:

c2bf(x) = ∧{f(x+ h)4− b(h), h ∈ Db}. (21)
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The general expression of the map of LIP-additive Asplund’s distances between
f and b is therefore:

As4
+

b f = c1bf 4− c2bf. (22)
This last expression will be useful to establish the link with the map of LIP-
additive Asplund’s distances.

3.2 Link between the maps of distances (and the metrics)

First of all, an isomorphism is needed between the lattice (R+
)D of the LIP-

multiplicative mlub λbf , or mglb µbf , and the lattice [−∞,M ]D of the LIP-
additive mlub c1bf , or mglb c2bf . This isomorphism ξ : [−∞,M ]D → RD and
its inverse ξ−1 were both defined in [13,18] by:

ξ(f) = −M ln (1− f/M) (23)

ξ−1(f) =M(1− exp (−f/M)). (24)

Remark 5. One can notice that ξ(f) = −Mf̃ . This relation will be useful in the
proof hereinafter.

There exists the following relation between the distance maps.

Proposition 4. Let f ∈ I∗ be an image, f c = M − f its complement and
b ∈]0,M [Db a structuring function. The map of LIP-additive Asplund’s distances
is related to the map of LIP-multiplicative distances by the following equation:

As4
×

b f =
1

M
ξ
(
As4

+

(ξ(b))c (ξ(f))
c
)
, (25)

where (ξ(f))c =M − ξ(f) ∈]−∞,M [D.

Corollary 1. Using the following variable changes f1 = (ξ(f))
c and b1 = (ξ(b))

c,
with f1 ∈ FM and b1 ∈]−∞,M [Db , an equivalent equation is obtained:

As4
+

b1f1 = ξ−1
(
M.As4

×

ξ−1(bc1)
ξ−1(f c1)

)
. (26)

Remark 6. Equation 25 can also be written as:
As4+(ξ(b))c(ξ(f))

c = ξ−1(M.As4×b f) = M(1 − exp (−As4×b f)). As the map of LIP-
multiplicative Asplund’s distances As4×b f of f is an element of [0,+∞[D, the map
of LIP-additive distances As4+(ξ(b))c(ξ(f))

c of (ξ(f))c is an element of [0,M [D= I
and is therefore an image.

Remark 7. The same relation exists between both functional Asplund’s metrics:

d4
×

As(f, g) =
1

M
ξ(d4

+

As([ξ(f)]
c, [ξ(g)]c)). (27)

Proof. Let f ∈ I = [0,M ]D be an image, there is:

(M − f)4− (M − b) =M
(M − f)− (M − b)
M − (M − b)

=M
b− f
b

=M

(
1− f

b

)
. (28)
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Equation 28 is set in equations 20 and 21, which gives: ∀x ∈ D,
c4

+

1(ξ(b))c
(ξ(f))

c
(x) = ∨h∈Db{(M − ξ(f)(x+ h))4− (M − ξ(b)(h))}

= ∨h∈Db
{
M

(
1− ξ(f)(x+ h)

ξ(b)(h)

)}
=M

(
1− ∧h∈Db

{
ξ(f)(x+ h)

ξ(b)(h)

})
=M

(
1− ∧h∈Db

{
−Mf̃(x+ h)

−Mb̃(h)

})
=M(1− ∧h∈Db{f̃(x+ h)/b̃(h)})
=M(1− µbf(x)), (29)

c4
+

2(ξ(b))c
(ξ(f))

c
(x) =M(1− ∨h∈Db{f̃(x+ h)/b̃(h)})

=M(1− λbf(x)). (30)
By combining equations 29 and 30 with equations 28, 12 and 24, one deduces
the following equations:
As4

+

(ξ(b))c (ξ(f))
c
= c4

+

1(ξ(b))c
(ξ(f))

c 4− c4+2(ξ(b))c (ξ(f))
c
= (M −Mµbf)4− (M −Mλbf)

=M

(
1− µbf

λbf

)
=M(1− exp (−As4×b f))

= ξ−1(M.As4
×

b f)

⇔ As4
×

b f =
1

M
ξ
(
As4

+

(ξ(b))c (ξ(f))
c
)
.

Moreover, when f lies in I, the function ξ(f) lies in [0,∞]D and (ξ(f))c =
M − ξ(f) lies in [−∞,M ]D. ut

3.3 Discussion

Equations 26 and 25 show that the maps of LIP-multiplicative and LIP-additive
Asplund’s distances as well as their corresponding metrics are related by the
isomorphism ξ. These relations allow to compute one distance map of an im-
age by mean of the other distance map of a transform of this image. E.g. the
LIP-additive map As4+b1f1 of the function f1 can be computed by using the pro-
gram of the LIP-multiplicative map As4+ξ−1(bc1)

ξ−1(f c1) of the transformed function
ξ−1(f c1). However, both equations do not directly link both distance maps of the
image f . E.g. the LIP-multiplicative map of the image f , As4×b f , is not directly
related to the LIP-additive map of the image f , As4+b f .

The relation given in equations 26 and 25 is not surprising. Indeed, the map
of LIP-additive Asplund’s distances As4+(ξ(b))c (ξ(f))

c is an image which lies in
[0,M [D, whereas the map of LIP-multiplicative Asplund’s distances As4×b f lies
in (R+)D. The isomorphism ξ allows to pass from the image space of the LIP-
additive distance map As4+(ξ(b))c (ξ(f))

c to the real function space of the LIP-
multiplicative distance map As4×b f .
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4 Illustration

Figure 1 illustrates relation 25, where the map of LIP-additive Asplund’s dis-
tances As4+b is deduced from the map of LIP-multiplicative distances As4×ξ−1(bc).
Moreover, it shows the theoretical insensitivity of the map of LIP-additive As-
plund’s distances to a lighting change simulated by the LIP-addition of a con-
stant. For this experiment, an image of a parrot [26] (Fig. 1a) was selected in the
Yahoo Flickr Creative Commons 100 Million Dataset (YFCC100M) [30] and con-
verted into a luminance image f in grey levels (Fig. 1b). A darkened image fdk is
obtained by LIP-adding a constant 200 to the luminance image f : fdk = f4+ 200
(Fig. 1c). This operation simulates a decreasing of the camera exposure-time or
a decreasing of the light intensity. In order to detect the parrot’s eye, a probe b
is designed. A white ring - with a height of 161 grey levels - surrounds a black
disk whose grey value is equal to 4 (Fig 1d). The LIP-additive distance map
As4+b f of the image f (Fig. 1f and 1g) is computed from the LIP-multiplicative
distance map As4×ξ−1(bc)ξ

−1(f c) of the function ξ−1(f c) (Fig. 1e) using equation
25. The centre of the parrot’s eye corresponds to the minimum of this former
map, As4+b f (Fig. 1f and 1g), which can be easily extracted by a threshold. It is
remarkable that the detection of an object in a low-light and complex image can
be performed by a simple threshold of its map of Asplund’s distances.

Moreover, the LIP-additive distance map As4+b f
dk between the darkened im-

age fdk and the probe b - designed for the brightest image f - is also equal to
the LIP-additive distance map As4+b f between the brightest image f and the
probe b (Fig. 1f). This result shows the insensitivity of the map of LIP-additive
Asplund’s distance to a variation of camera exposure-time which is simulated by
a LIP-addition of a constant.

In addition, the LIP-additive distance map was also computed directly with
equation 17 and compared to the LIP-additive distance map obtained from equa-
tion 25 (Fig. 1f). Both maps of distances were equal with a numerical precision
corresponding to the rounding error of the computer. Therefore, relation 25 is
numerically verified.

5 Conclusion

A link between the maps of LIP-multiplicative and LIP-additive Asplund’s dis-
tances has therefore been successfully demonstrated. The relation is based on the
LIP-isomorphism which allows to pass from the image space of the LIP-additive
distance map to the positive real function space of the LIP-multiplicative dis-
tance map. However, there does not exist a link between the maps of LIP-
multiplicative and LIP-additive Asplund’s distances of the same image. Never-
theless, the proven relation is not only interesting from a theoretical point of
view but also from a practical point of view. Indeed, it allows to compute one
map of an image from the other map of a transform of this image. Experiments
have verified the relation from a numerical point of view. They have also illus-
trated the main interest of the map of LIP-additive Asplund’s distances, i.e. its
insensitivity to lighting changes modelled by a LIP-addition and corresponding
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(a) (b) (c)

(d)

(e) (f) (g)

Fig. 1. (a) Colour image of a parrot [26] and (b) its luminance f . (c) Darkened image
fdk obtained by a LIP addition of a constant 200: fdk = f4+ 200. (d) Topographic sur-
face of the probe b. (e) Map of LIP-multiplicative Asplund’s distances As4×ξ−1(bc)ξ

−1(fc)

of the function ξ−1(fc) which is used to compute the (f) map of LIP-additive Asplund’s
distances As4+b f of the image f . It is also equal to the distance map As4+b f

dk between
the darkened image fdk and the same probe b. (g) Zoom in of the map (f). Both white
arrows indicate the minimum of the map As4+b f corresponding to the eye centre.

to a variation of the camera exposure-time or of the light intensity. Such prop-
erties open the way to numerous applications where the lighting conditions are
partially controlled.

References

1. Asplund, E.: Comparison Between Plane Symmetric Convex Bodies and
Parallelograms. Mathematica Scandinavica 8(0), 171–180 (Dec 1960).
https://doi.org/10.7146/math.scand.a-10606

https://doi.org/10.7146/math.scand.a-10606


Linking the multiplicative and additive Asplund’s metrics 11

2. Banon, G., Faria, S.: Morphological approach for template matching. In: Proc.
X Brazilian Symp. on Comput. Graphics and Image Process. pp. 171–178. IEEE
Comput. Soc (Oct 1997). https://doi.org/10.1109/SIGRA.1997.625169

3. Barat, C., Ducottet, C., Jourlin, M.: Virtual double-sided image probing: A unify-
ing framework for non-linear grayscale pattern matching. Pattern Recognit. 43(10),
3433–3447 (Oct 2010). https://doi.org/10.1016/j.patcog.2010.04.020

4. Brailean, J., Sullivan, B., Chen, C., Giger, M.: Evaluating the EM algorithm for
image processing using a human visual fidelity criterion. In: Int. Conf. on Acous-
tics, Speech, and Signal Process., ICASSP-91. pp. 2957–2960 vol.4 (Apr 1991).
https://doi.org/10.1109/ICASSP.1991.151023

5. Foresti, G.L., Micheloni, C., Snidaro, L., Remagnino, P., Ellis, T.: Active video-
based surveillance system: the low-level image and video processing techniques
needed for implementation. IEEE Signal Process. Mag. 22(2), 25–37 (Mar 2005).
https://doi.org/10.1109/MSP.2005.1406473

6. Grünbaum, B.: Measures of symmetry for convex sets. In: Proc. of Symp. in Pure
Mathematics. vol. 7, pp. 233–270. Amer. Math. Soc., Providence, R.I. (1963).
https://doi.org/10.1090/pspum/007

7. Hautière, N., Aubert, D., Jourlin, M.: Measurement of local contrast in images,
application to the measurement of visibility distance through use of an onboard
camera. Traitement du Signal 23(2), 145–158 (2006), http://hdl.handle.net/2042/
5826

8. Heijmans, H.: Morphological image operators. No. vol. 25 in Adv. Imag. Elec-
tron Phys.: Supplement, Academic Press (1994), https://books.google.fr/books?
id=G-hRAAAAMAAJ

9. Jourlin, M., Couka, E., Abdallah, B., Corvo, J., Breugnot, J.: Asplünd’s
metric defined in the Logarithmic Image Processing (LIP) framework: A
new way to perform double-sided image probing for non-linear grayscale
pattern matching. Pattern Recognit. 47(9), 2908 – 2924 (Sep 2014).
https://doi.org/10.1016/j.patcog.2014.03.031

10. Jourlin, M., Pinoli, J.: Logarithmic image processing: The mathematical and phys-
ical framework for the representation and processing of transmitted images. In:
Hawkes, P.W. (ed.) Adv. Imag. Electron Phys., vol. 115, pp. 129 – 196. Elsevier
(2001). https://doi.org/10.1016/S1076-5670(01)80095-1

11. Jourlin, M.: Logarithmic Image Processing: Theory and Applications, Adv. Imag.
Electron Phys., vol. 195. Elsevier Science (2016). https://doi.org/10.1016/S1076-
5670(16)30078-7

12. Jourlin, M., Carré, M., Breugnot, J., Bouabdellah, M.: Chapter 7 - Logarithmic
image processing: Additive contrast, multiplicative contrast, and associated met-
rics. In: Hawkes, P.W. (ed.) Adv. Imag. Electron Phys., vol. 171, pp. 357 – 406.
Elsevier (2012). https://doi.org/10.1016/B978-0-12-394297-5.00007-6

13. Jourlin, M., Pinoli, J.C.: Image dynamic range enhancement and stabilization in
the context of the logarithmic image processing model. Signal Process. 41(2), 225
– 237 (Jan 1995). https://doi.org/10.1016/0165-1684(94)00102-6

14. Jourlin, M., Pinoli, J.: A model for logarithmic image-processing. J. Microsc.
149(1), 21–35 (Jan 1988). https://doi.org/10.1111/j.1365-2818.1988.tb04559.x

15. Khosravi, M., Schafer, R.: Template matching based on a grayscale hit-or-
miss transform. IEEE Trans. Image Process. 5(6), 1060–1066 (Jun 1996).
https://doi.org/10.1109/83.503921

16. Matheron, G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967)
17. Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications.

Wiley-Blackwell, 1 edn. (2013). https://doi.org/10.1002/9781118600788

https://doi.org/10.1109/SIGRA.1997.625169
https://doi.org/10.1016/j.patcog.2010.04.020
https://doi.org/10.1109/ICASSP.1991.151023
https://doi.org/10.1109/MSP.2005.1406473
https://doi.org/10.1090/pspum/007
http://hdl.handle.net/2042/5826
http://hdl.handle.net/2042/5826
https://books.google.fr/books?id=G-hRAAAAMAAJ
https://books.google.fr/books?id=G-hRAAAAMAAJ
https://doi.org/10.1016/j.patcog.2014.03.031
https://doi.org/10.1016/S1076-5670(01)80095-1
https://doi.org/10.1016/S1076-5670(16)30078-7
https://doi.org/10.1016/S1076-5670(16)30078-7
https://doi.org/10.1016/B978-0-12-394297-5.00007-6
https://doi.org/10.1016/0165-1684(94)00102-6
https://doi.org/10.1111/j.1365-2818.1988.tb04559.x
https://doi.org/10.1109/83.503921
https://doi.org/10.1002/9781118600788


12 G. Noyel

18. Navarro, L., Deng, G., Courbebaisse, G.: The symmetric logarithmic image
processing model. Digital Signal Process. 23(5), 1337 – 1343 (Sep 2013).
https://doi.org/10.1016/j.dsp.2013.07.001

19. Noyel, G., Angulo, J., Jeulin, D., Balvay, D., Cuenod, C.A.: Multivariate mathe-
matical morphology for DCE-MRI image analysis in angiogenesis studies. Image
Anal. Stereol. 34(1), 1–25 (2014)

20. Noyel, G., Thomas, R., Bhakta, G., Crowder, A., Owens, D., Boyle, P.: Su-
perimposition of eye fundus images for longitudinal analysis from large pub-
lic health databases. Biomed. Phys. Eng. Express 3(4), 045015 (Jul 2017).
https://doi.org/10.1088/2057-1976/aa7d16

21. Noyel, G.: Method of monitoring the appearance of the surface of a tire. https:
//patentscope.wipo.int/search/en/WO2011131410 (Oct 2011), international PCT
patent WO2011131410 (A1), also published as: US9002093 (B2), FR2959046 (B1),
JP5779232 (B2), EP2561479 (A1), CN102844791 (B), BR112012025402 (A2)

22. Noyel, G., Jeulin, D., Parra-Denis, E., Bilodeau, M.: Method of checking the
appearance of the surface of a tyre. https://patentscope.wipo.int/search/en/
WO2013045593 (Apr 2013), international PCT patent WO2013045593 (A1), also
published as US9189841 (B2), FR2980735 (B1), EP2761587 (A1), CN103843034
(A)

23. Noyel, G., Jourlin, M.: Double-sided probing by map of Asplund’s distances using
logarithmic image processing in the framework of mathematical morphology. In:
Mathematical Morphology and Its Appl. to Signal and Image Process. pp. 408–420.
Springer Int. Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-57240-
6_33

24. Noyel, G., Jourlin, M.: A simple expression for the map of Asplund’s distances
with the multiplicative Logarithmic Image Processing (LIP) law. In: 12th Eur.
Congr. for Stereology and Image Anal. Kaiserslautern, Germany (Sep 2017), https:
//arxiv.org/abs/1708.08992

25. Odone, F., Trucco, E., Verri, A.: General purpose matching of grey level arbitrary
images. In: Visual Form 2001. pp. 573–582. Springer, Berlin, Heidelberg (2001).
https://doi.org/10.1007/3-540-45129-3_53

26. Parrot: Parrot image from the YFCC100M dataset. https://www.flickr.com/
photos/mdpettitt/2744081052 (2008), licence CC BY 2.0

27. Serra, J.: Image analysis and mathematical morphology: Theoretical ad-
vances, vol. 2. Academic Press (1988), https://books.google.fr/books?id=
BpdTAAAAYAAJ

28. Serra, J., Cressie, N.: Image Analysis and Mathematical Morphology,
vol. 1. Academic Press, New York (1982), https://books.google.fr/books?id=
RQIUAQAAIAAJ

29. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer,
Berlin, Heidelberg, 2 edn. (2004). https://doi.org/10.1007/978-3-662-05088-0

30. Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth,
D., Li, L.J.: YFCC100M: The new data in multimedia research. Commun. ACM
59(2), 64–73 (Jan 2016). https://doi.org/10.1145/2812802

https://doi.org/10.1016/j.dsp.2013.07.001
https://doi.org/10.1088/2057-1976/aa7d16
https://patentscope.wipo.int/search/en/WO2011131410
https://patentscope.wipo.int/search/en/WO2011131410
https://patentscope.wipo.int/search/en/WO2013045593
https://patentscope.wipo.int/search/en/WO2013045593
https://doi.org/10.1007/978-3-319-57240-6_33
https://doi.org/10.1007/978-3-319-57240-6_33
https://arxiv.org/abs/1708.08992
https://arxiv.org/abs/1708.08992
https://doi.org/10.1007/3-540-45129-3_53
https://www.flickr.com/photos/mdpettitt/2744081052
https://www.flickr.com/photos/mdpettitt/2744081052
https://books.google.fr/books?id=BpdTAAAAYAAJ
https://books.google.fr/books?id=BpdTAAAAYAAJ
https://books.google.fr/books?id=RQIUAQAAIAAJ
https://books.google.fr/books?id=RQIUAQAAIAAJ
https://doi.org/10.1007/978-3-662-05088-0
https://doi.org/10.1145/2812802

	A link between the multiplicative and additive functional Asplund's metrics

