Towards predicting frailty symptoms through a smart walking stick - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Towards predicting frailty symptoms through a smart walking stick

Résumé

A warning sign of frailty is imbalance. Psycho-motor therapists run tests to evaluate the balance deterioration but not often enough to track the rapidly changing condition of the elderly. The proposed system collects fine-grained data from a smart cane and processes them with Machine Learning (ML) techniques. The originality of our proposition lies in its personalization by the elderly biomarkers in ML algorithms. Our experiments indicate that we can observe the orientation of locomotion through the cane as well as recognize characteristics of specific participants ambulation in the uncontrolled scenario.
Fichier principal
Vignette du fichier
kessentini_22556.pdf (224.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02181941 , version 1 (12-07-2019)

Identifiants

  • HAL Id : hal-02181941 , version 1

Citer

Oussama Kessentini, Réjane Dalcé, Imen Megdiche, Rémi Bastide. Towards predicting frailty symptoms through a smart walking stick. IFIP/IEEE International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN 2018), Sep 2018, Toulouse, France. pp.1-7. ⟨hal-02181941⟩
58 Consultations
191 Téléchargements

Partager

More