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Abstract—A warning sign of frailty is imbalance. Psycho-
motor therapists run tests to evaluate the balance deterioration
but not often enough to track the rapidly changing condition
of the elderly. The proposed system collects fine-grained data
from a smart cane and processes them with Machine Learning
(ML) techniques. The originality of our proposition lies in its
personalization by the elderly biomarkers in ML algorithms.
Our experiments indicate that we can observe the orientation of
locomotion through the cane as well as recognize characteristics
of specific participants ambulation in the uncontrolled scenario.

Index Terms—Smart Cane, Tinetti, Personalized Elderly
Tracking, Frailty Prediction, Lambda Architecture

I. INTRODUCTION

As living conditions have gotten better in most developed

countries, a specific group of citizens has started growing

in numbers: the elderly. While this situation allows for in-

formation exchange and experience sharing among genera-

tions, it also introduces new challenges, especially from a

health care point of view. Aside from diseases related to

neurodegeneration and heart conditions, senior citizens are

prone to accidents. One such event is the fall of an elderly

person. Even though it may only happen once, a fall may have

tremendous repercussions on the lifestyle: in case of broken

bones, the pain and a long recovery period may instill fear

in the person’s mind. Because of this fear, they might stop

participating in social activities, thus drastically reducing their

human interactions. This isolation brings about other health

issues and makes them hard to detect.

Entering ”fall detection” in the search engine of the IEEEx-

plore website yielded 4,842 results. Among these publications,

3 standards, 4,174 conference papers and 642 journal papers

are listed. More than 89% of this research has been published

over the last 20 years. This situation shows how important

fall detection has been. Various technological approaches have

been tested: video-based fall detection [1], inertial sensors

based detection [2] and so on... Some solutions have relied

on body-mounted sensors and others have chosen to have the

environment tracking the patient. While the obtained perfor-

mance varies depending on multiple factors, two observations

can be made:

• Fall detection comes too late: while we are thankful

for systems that allow for a timely response in case of

fall, it’s already too late. At this point, the focus should

be on appropriate reeducation tools that would ensure

a speedy recovery while helping the patient to regain

his/her confidence;

• The whole world is not (yet) a smart environment: the

Blagnac Smart Home (Maison Intelligente de Blagnac,

MIB) [3] is an apartment that is equipped with various

technologies, from home automation devices to voice

recognition and fall detection, through wired and wire-

less networks. Since projects such as Eco-SESA [4],

CANet [5] and SENUM (Seniors et Numérique) aim

at making these types of apartments available to the

public, we expect more and more elderly people to benefit

from the services offered by an MIB-like environment.

Unfortunately, as soon as the elderly steps out of the

apartment-complex, he/she will be catapulted back in

time to an urban jungle. Outside of their homes, they may

be wearing a smart pendant or a smart watch running

the fall detection software but, as indicated before, it’s

already too late.

Based on these observation, the research community has

also produced solutions aimed at fall prediction. By estimat-

ing the risk, appropriate reeducation or monitoring can be

provided. Fall prediction makes sense in studies focusing on

screening and early diagnosis of frailty. The frailty phenotype

can be characterized by several symptoms like slow walking

speed, weak grip strength, exhaustion, low physical activity

level, and unintentional weight loss [6]. In this paper we focus

mainly on the slow mobility and imbalance problems.

In this paper, we introduce our proposal for avoiding this

situation altogether through a proactive approach: instead of

focusing on fall detection, we will investigate the root causes

and propose a decision support tool to health care staff



members. In addition to providing fine-grained monitoring

data about the patient, the objective is to reach personalized

healthcare: the prediction model’s parameters will be tailored

to a specific patient and evolve in conjunction with the

patient’s health condition.

The remainder of the paper is organized as follows: first,

we will review existing approaches to the problem. Then

we will describe the architecture of our solution and its

components. We then present the preliminary results which

show the suitability of a cane-based approach to data collection

in our context before concluding this document.

II. RELATED WORK

Health care facilities have been using different types of tests

such as Tinetti, Timed Up-and-Go (TUG) or Freid’test. Those

test serve as means to assess the risk of fall or frailty for

the elderly population. The Tinetti and TUG tests are both

composed of 6 phases:

• Sitting situation: the observer reports whether the patient

sits properly or is at risk of falling/slipping from the chair,

• Sitting to standing transition: the observer reports whether

the patient is able to stand up by himself and characterizes

the balance during the five first seconds of standing up,

• Balance while standing: while asking the patient to close

his eyes or applying a light push on the sternum, the

caregiver evaluates the ability to retain balance,

• Rotation: the patient is asked to make a complete 360°

turn and the observer reports the continuity of the pace

and the stability during rotation,

• Walking: the patient walks at least 3 meters on a straight

line then quickly comes back. During this phase, the

patient uses his usual tool, either a cane or a walker.

This phase leads to the collection of signals such as :

– stride length,

– stride width,

– symmetry,

– pace continuity,

– path deviation,

– trunk stability.

• Standing to sitting transition: the observer reports on the

patients ability to sit in a secure fashion instead of simply

falling on the chair.

Each item is associated with options which in turn correspond

to points. A low score is associated with a high probability of

fall.

While the Tinetti test is simple and repeatable, it involves

a dedicated caregiver, a psycho-motor therapist, and usually

happens once a year and following an event that may affect

mobility (accident, being bed-ridden for a lengthy period...).

The obtained data is thus a snapshot of the situation. Since

society is moving toward proactive and predictive health, fine-

grained capture of this balance information is required. In the

scientific community, many have addressed the problem using

various tools. For example, in [8], the skeleton representation

of the patient is generated by a Kinect network in the context

of home monitoring and fall detection. Similarly, in [9], the

authors use a multi-Kinect system to evaluate the stride length

and width of the patient. The Kinect is a Microsoft camera

that is able to provide an RGB image as well as a depth

image at a pixel level. This depth information has been used in

[10]: the study uses the Kinect’s ability to identify body joints

and decomposes the body according to the transverse, sagittal

and coronal planes. Each body part’s motion is characterized

during the video by assigning a codeword to it. As the video

progresses, some codewords will have the highest count and

will be used to classify the activity undertaken by the patient.

Camera-based approaches are often considered in opposi-

tion to solutions based on body-mounted sensors. While these

can track user movement with great precision, these systems

are often cumbersome and limit user freedom. For example,

in [23], data is collected from force sensors and IMUs placed

in the shoes and at the waist. The work presented in [16] also

relies on waist-mounted accelerometers to evaluate patient’s

ability to retain balance or postural sway. The proposed

prediction model uses stride characteristics as well as postural

sway evolution to identify patients with a high risk of fall.

The work of [13] studies the postural stability of one leg

stance on the frontal plane and checks the strategy chosen

by volunteers : either ankle strategy or hip strategy. The

posture is captured by a Waseda bio-instrumentation system

(200Hz) [28] and the IMU measurements are composed of 3-

axis accelerometer values, 3-axis gyroscope values and 3-axis

magnetometer values. Authors pointed out the importance of

the roll and pitch measurements according to the ellipse long

axis angle theta projected to the frontal plane.

Another approach to the issue is data collection through

devices used by the patient. In order for this approach to

provide fine-grained data, the chosen object must be essential

for the target population. As observed in [11], the walking stick

or cane is indispensable for the elderly. It can therefore be used

as a means to communicate with other smart systems: in [11],

the cane is used to draw characters and the motion is captured

through a pair of accelerometers mounted at the top and

bottom of the cane. Said motion is then interpreted to identify

user input. In [12], the addition of a differentiation layer to

the protocol stack allows the transmission of different types

of data flows by the cane: depending on how critical the flow

is, the appropriate MAC scheme is used. Other studies around

canes and fall detection are [14] and [17]: both solutions use

the cane as the support for a fall-detection and alert system.

In [14], the fall-detection uses a gyroscope to estimate the

angular velocity of the cane. Should this value be greater than

a given threshold, the system determines that the cane has gone

too far from its stable position and indicates that the user is

falling/has fallen. In [17], data from an accelerometer and a

magnetometer are combined in order to recognize the fall.

Walking sticks are also involved in gait analysis: in [18],

force sensitive resistors (FSRs) and an Inertial Measurement

Unit (IMU) are used together with the Timed Up and Go

test to detect gait freezing in Parkinson patient ambulation:

freezing of gait is defined by a brief absence of forward



progression during locomotion despite the intention to walk.

In the experiment, inertial sensors were placed on the cane but

also on the lower back and ankle of the patient. In the study

presented in [7], similar sensors are used to detect parameters

such as the amount of weight borne on the cane and cane

speed: this objective data will assist a therapist in the diagnosis

phase.

In conjunction with these data collection tools, several

studies in the literature use Machine Learning (ML) techniques

to produce models for the prediction issues : fall, stability

or frailty. ML techniques derive these prediction models by

observing data representing past behaviors of the system.

We compare in table I some of these studies according to

different criteria. Our first observation concerns the used

features. Those features are globally simple to compute since

the experimentation context is controlled (i.e Tinetti or TUG

test) even if the population size can be very important (≥ 100

people). From our point of view, the work of [20] stands out

as it reproduces realistic evaluations by introducing noise (for

example external discussions) to the fall sound. Moreover,

authors propose to extract features directly from the sound

signal. The models built from these features can be easily de-

ployed later in the environment of elderly people. Our second

observation relates to the machine learning techniques, most

approaches propose binary classification models or regression

models. Finally, these models are generated using a snapshot

of the behavior of a coherent group of people (age range,

health condition...). They are not personalized and become

irrelevant as the patient’s health condition deteriorate since

their parameters are fixed.

Nonetheless, elderly people could have different styles of

gait when they use the stick to walk. The Tinetti test involves

some marks to involve the distortion of the signal but this

factor is not yet automated and addressed in the prediction

approaches as far as we know.

In this paper, we propose a new approach aiming to build

predictive and personalized models by ML techniques from

IMU data collected by ”uncontrolled” and ”controlled” proto-

cols. By ”uncontrolled” protocols, we mean that experimen-

tation is independent from Tinetti or TUG tests (”controlled”

protocols), it is taken for a set population for the same period

of time and for the same occurrences of fall or imbalance ( i.e 2

falls in two days or 1 imbalance for 5 minutes...). The period

of data collection may take several days, weeks or months.

The final aim of our work is to provide the practitioners with

robust models trained with the most realistic data.

III. PROPOSED SOLUTION

A. Physical infrastructure

1) Components: The system comprises three main com-

ponents: the cane, the gateway and the processing unit. The

current cane is a prototype based on the work of [17]: the

homemade sensor board is fitted into a plastic tube while en-

suring specific orientation. This board is built around a Teensy

3.2 [25], a LoRa transceiver (HopeRF RFM95), a 3-axis

accelerometer and a 3-axis magnetometer (LSM303DLHC).

The data is sent over a LoRa link to a ChisteraPi board

[26] acting as our gateway to more traditional networks. The

ChisteraPi also supports communication using an RFM22 [27]:

this will allow future interaction between the cane and other

devices using this technology.

We chose to use the LoRa link because of its greater

range compared to typical Wireless Sensor Network (WSN)

technologies such as IEEE 802.15.4: in the target environment

(nursing homes), some of the residents may freely go out of

the facility for their daily activities: with the LoRa technology,

a communication range of a few kilometres means that the

cane will still be able to report measurements to a gateway

located on the roof of the facility. In comparison, an IEEE

802.15.4-based WSN would require the deployment of nodes

in the public space in order to support a multihop solution,

trading complexity for coverage.

The data is delivered to a processing server. These data are

uploaded to the Anaconda platform [29] and processed by an

R kernel in jupyter notebooks.

2) Network: The Teensy periodically polls the embedded

sensors, creates a message following the format of figure 1.

The various fields are computed based on the formulae in

[17]. No timestamps are carried by the frame: in this small-

scale prototype, the timestamps can be derived from the frame

sequence numbers. The frame is sent over the LoRa link

configured with a Spreading Factor (SF) of 7. This shortens the

duration of the experiment as a higher number of frames can

be sent in a given time, compared to a SF of 10. As a matter

of fact, selecting a higher SF value spreads the original signal

more and thus the messages occupy the wireless medium

longer in those configurations. This SF configuration also

allows the definition of multiple orthogonal channels which

can be used for concurrent reception.

Fig. 1. Message frame format.

The gateway accumulates the messages and saves them to a

CSV file which is transferred through an Ethernet network

to the server at the end of the experiment. In the current

experiments, data is accumulated during 2 minutes on the

gateway.

B. Data processing architecture

In order to predict frailty symptoms, we propose the fol-

lowing system as depicted in Figure 2. The processing system

is based on a Lambda architecture characterized by a batch

and real-time processing phases.

• The batch processing phase encompasses two steps :

– The first step is based on an unsupervised processing

which aims to automatically label the frailty ob-

served status (for instance : balance, fall, inactivity

and so on). This step is an auto-configuration of the

system to the studied person. Our system should help



TABLE I
MACHINE LEARNING FOR FALL, BALANCE AND FRAILTY PREDICTION

Observed measures
and test

Device Population Features ML methods Brief description

[19]
Angular velocity,

accelerometer, iTUG
Dynaport elastic belt 57 healty adults

72 variables from
iTUG

PLS-DA combining
regression and PCA

detect the 5 steps of
the TUG test, study
the relation between
iTUG variables and
two-groups of ages
(18-45) and (46-75)

[20] Sound -
Imprecise (40 falls

by feet)
10 temporal and
spectral features

C4.5, 1-NN,
Logistic regression,

NB , PART, Random
Forest, SVM

Use sound to predict
falls events

[21] Chest’acceleration
MTw Development

Kit Xsens
3 people

Magnitude of the
chest’acceleration

Multivariate
Gaussian mixture
models (GMM),

clustering

Balance assessment
with and without

vision

[22]
Shank , iTUG,

Freid’frailty test
Shank-mounted
inertial sensors

399 older people

44 features:
temporal and spatial
gait , 3-axis angular

velocity, turn
parameters

ANOVA regression

Frailty (yes/no)
prediction based on
IMU measures of

iTUG

[24] 3-axis accelerometer
Mobile phones

attached on a belt
15 people Time-series features

SVM, SMLR, NB,
KNN, Decision trees

Predict four different
types of falls

[23] IMU foot pressure
Connected sole

proposed solution
5 young people

8 signals for foot
pressure , 8 signals
for angular velocity

C4.5 decision trees
(J48)

Define thresholds
from decision trees
to characterize daily

activities and
recognize falls

to personalize prevention. Before labeling activities,

we transform raw signals into more interesting fea-

tures namely by using mining sequences techniques

and exploring short or long-term temporality. We

have observed that these techniques are less fre-

quently used in the literature in spite of their useful

contribution in such context.

– The second step is based on a supervised processing

which follows the well known steps in machine

learning : feature selection and model building. Once

the features are computed for all signals, we should

extract the most informative ones for increased

the model accuracy. While different ML techniques

can be exploited, we will focus on deep learning

implementations (in particular a comparative study

between Keras and Tensorflow).

• The real-time processing phase is based on storm topol-

ogy [30]: it consists in a network composed of spouts and

bolts: a spout, in our case, is the raw data coming from the

cane. The bolts are programs running the transformation

of raw data into the computed features and then apply

the built model to predict one of the labelled frailty

symptoms.

As said before, our system target is to personalize the

tracking of elderly people. A system based on a one-shot

model is most likely useless in the case of elderly people

frailty evolution. That’s why we adopt an incremental machine

learning approach. In this case, the model is continuously

being tuned according to the interpreted raw signal ingested

in the batch step. The storm components will be refreshed in

case great differences occurs in the built model.

Fig. 2. Stick Data processing architecture

IV. RESULTS

A. Experimentation protocol

Using the setup of figure 3, we conducted an indoor

measurement campaign.

The data was collected following this protocol: for each

participant, six scenarios were executed. Each scenario lasts

2 minutes and a message is sent over the LoRa link every

100ms. In every scenario, the participant stands up from the

chair and walks along the 4meter path with the aid of the cane.

The characteristics of each scenario are given below:



Fig. 3. Experimentation setup

• Scenario 1: the user walks naturally with the cane,

• Scenario 2: the user imitates the walking process of

an elderly person. We observed one of the participant’s

grandmother and identified the following structure in her

walk:

1) Move the cane forward

2) Catch up to the cane in four small steps

3) Move the cane forward again

• Scenario 3: the subject walks naturally and falls while

holding on to the cane. The fall occurs around 1’58”,

• Scenario 4: the subject walks naturally and falls while

letting go of the cane. The fall occurs around 1’58”,

• Scenario 5: the participant walks naturally and includes

three imbalance occurrences. Imbalance occurs for exam-

ple when a user trips but does not fall: the body’s center

of gravity will usually move outside the support polygon

and the person will accelerate in order to catch up. The

events were scheduled at 1’00”, 1’30” and 1’58”,

• Scenario 6: the participant walks naturally and includes 2

imbalance occurrences and a fall. The imbalance events

occur at 1:00 and 1:30 while the fall happens around 1:58.

These scenarios are considered controlled as the path and

event timing were imposed to the participants. We also per-

formed uncontrolled scenarios: the same participants were

involved for the same scenario specification but the trajectory

and the event timing were independently chosen by each

person.

Three participants were recruited, aged between 23 and 36.

The next section presents the obtained data.

B. Results and analysis

Identifying elements related to gait from the cane has

usually been done while the user simultaneousy bore sensors

on his/her body. In our case, we restrict our capture to the

cane. Therefore, the main objective of this preliminary study

is to investigate the repeatability of signal features. The sensors

were mounted on the cane in a way that positions the z-axis

in the forward direction: the y-axis thus points upwards and

the x-axis is orthogonal to the walking direction.

Fig. 4. Scenario 1, magnetometer, controlled execution

Figure 4 corresponds to the output of the magnetometer,

which is the decomposition on the sensor reference system of

the Earth magnetic field. In this controlled scenario, the fact

that all users went back and forth along a predefined path is

reflected on the x-axis: the sharp transitions represent changes

in orientation at the end of the 4m path. Most participants

tried to stick to the line but visual observation showed that, as

they reached the end of the path, turning with the cane caused

them to take a few steps away from the line and then come

back to it. This can also be gathered from the signal as there

is a peak right after the transition and this peak is followed

by a quasi-horizontal line. With that knowledge, is becomes

possible to interpret the data collected in the uncontrolled

experiment (figure 5).

Fig. 5. Scenario 1, magnetometer, uncontrolled execution

In this experiment, each user follows a self-decided path

for 2 minutes. Person 1 and person 2 mostly walked in

circles in the office while person 3 walked in straight lines

and changed direction when encountering an obstacle. The



continuous changes in direction (circular path) imply that the

local reference system is continuously moving. Therefore, the

projection of the magnetic field vector on the three axes is

also always changing. In the case of person 3, the direction

changes are not as sharp as in the controlled situation but the

flat sections in the graph indicate the periods when the person

was walking in a quasi-straight line.

This observation suggests that each person has a natural

ambulation style: some people walk in straight lines most of

the time, others swerve all the time. The long term evolution

of this characteristic might indicate a degradation in balance

which could lead to falls.

So far, the imbalance event remains difficult to identify.

We used the definition provided by a psycho-motor therapist

and expected one or multiple peaks on the acceleration. Some

participants’ data showed this behavior but others did not

therefore we considered it less reliable. Another signal of

interest is the hand grip strength. In the next version of the

walking stick, suitable sensors will be included in order to

access this information.

Finally, from the controlled data from scenario 4, we

observed that, as long as the user is walking normally, the pitch

does not vary much. From this information, we can confirm the

timing of the fall from the uncontrolled event (figure 6). For

example, person 1 chose to fall 55 seconds after the beginning

of the experiment.

Fig. 6. Scenario 4, Roll-Pitch-Yaw, uncontrolled execution

V. CONCLUSION AND FUTURE WORK

The study presented in this paper takes place in the context

of the analysis of frailty in the elderly. As falls have dire

consequences for this age group, we focused on a warning

sign which is the imbalance. We used a smart walking stick

to gather information. Although the events corresponding to

specific imbalance (user tripped but did not fall) were not

clearly detected, the data indicated the ability of a person to

walk in a straight line, which is one of the parameters of the

Tinetti test. Our next course of action is to investigate the

relationship between hand grip strength evolution and imbal-

ance. In the same time, we plan on designing an algorithm

which can detect medium to long term evolution of the user’s

ambulation from consecutive straight lines to continuously

deviating trajectories. From a network perspective, we will

also need to design a LoRa configuration adaptation scheme

to take into account energy consumption and multi-user access

to the service.
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